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Abstract

Let T be a nonempty set of real numbers, a metric space with metrid and X7 the
set of all functions fromT into X. If f € X7 andn is a positive integer, we sat(n, f) =
supy_ 7 1 d(f(b;), f(a;)), where the supremum is taken over all numhbers...,a,,b1,.... by,
from T such thatay < b1 < ap < bo < --- < ap < by. The sequencév(n, f)}zoz1 is called the
modulus of variation off in the sense of Chanturiya. We prove the following pointwise selection
principle:If a sequence of functiog; 3?021 c XT is such that the closure iK of the se(f; (t)}‘I?O:l
is compact for eache T and

. 1.
nILmoo<— limsupv(n, fj)> =0, ()

n j-sco
then there exists a subsequence{pj}?"zl, which converges iX pointwise onT to a function

f e XT satisfyinglim,,_, » v(n, f)/n = 0. We show that condition) is optimal (the best possible)

and that all known pointwise selection theorems follow from this result (including Helly’s theorem).
Also, we establish several variants of the above theorem for the almost everywhere convergence and
weak pointwise convergence whénis a reflexive separable Banach space.
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1. Main result

We begin with reviewing certain definitions and facts needed for our results. Through-
out the paper we assunfe C R to be a nonempty seff a metric space with metric
d and X7 the set of all functionsf : T — X mapping7 into X. Given a sequence
Uiy =15 c X" and f € XT, we write f; — f on T to denote thepointwise(or
everywherg convergencef f; to f asj — oo, i.e., limj_ o d(f;(), f(t)) =0 for all
t e T. A sequencd f;} C XT is said to bepointwise precompadton T') provided the
sequence f;(¢)} is precompact irX (i.e., its closure inX is compact) for alk € T

LetM(T: R) = {f e RT | f is nondecreasing and boundeselly’s theorem states that
a uniformly bounded sequence of functions fiditT'; R) contains a pointwise convergent
subsequendg20], and also [21, 11.8.9-10], [25, VIII.4.2] i is a closed intervdl, b] and
[13, Theorem 1.3]ifT is arbitrary). This theorem implies a number of selection principles
for functions of various types of bounded (generalized) variations having real values [1,24,
29] as well as values from a metric or Banach space ([2, 1.3.5], [3,6-13,1536 2§]
an examplea pointwise precompact sequenigg} c X of uniformly boundedJordar)
variation contains a subsequence which converges pointwigetora function fromx” of
bounded(Jordan variation [3,13]. Such (Helly type) selection principles have numerous
applications in analysis (cf. [13] and references therein) since they provide efficient tools
for proving existence theorems (see also [18] where Helly's theorem has been generalized
to monotone functions between linearly ordered sets).

The aim of this paper is to present a unified approach to the diverse selection principles
mentioned above without invoking the uniform boundedness of variations of any kind.
Our main result (Theorem 1 below) gives a sufficient condition for extracting a pointwise
convergent subsequence, but it turns out to be (almost necessary and) the best possible in
the sense to be made precise (see Lemma 4(a2), (b)). In order to formulate it, we need a
definition.

GivenneN, fe XT andd# E C T, we set

v(n, f, E)=su Zd(f(bi),f(a,-)) {a;}!_4, {bi}'_, C E such that

i=1

ar<bi<ax<by< - <ap1<by_1<a, <by

The sequence(., f, E) : N — [0, o¢] is called themodulus of variatiorof f on E. This
notion was first considered by Chanturiya in [4] and [5] (see also [19, Section 11.3.7]) for

2 | have not seen book [26] in its original form: in [2, Remark 3.2 on p. 60] the authors refer to [26] where a
selection principle is established which is originally due to Foias.
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E =T =[a,b] and X =R in connection with convergence problems from the theory of
Fourier series. It will play an important role in our considerations as well.

For a sequencg : N — R we employ Landau’s notation(n) = o(n) to denote the
condition lim,_, » (n)/n = 0. Note at once (cf. Lemma 3 in Section 2) thaXifis com-
plete, then a functiorf : [a, b] — X has left and right limits at all points gf:, b] if and
only if v(n, f, [a, b]) = o(n). Thus, the modulus of variation characterizes functions with
simple discontinuities rather than functions of bounded variation of any type.

The following theorem is @ointwise selection principléor metric space valued func-
tions of a real variable in terms of modulus of variation.

Theorem 1. Let@ # T C R and (X, d) be a metric space. Suppose thg;} c X7 is a
pointwise precompact sequence such that
wn) =limsupv(n, fj, T) = o). (1)
j—o00
Then there exists a subsequencd 6}, which converges pointwise dh to a function
f e XT satisfyingu(n, f, T) < u(n),n € N.

In order to see how this theorem implies all the above mentioned selection principles,
let us recall three classical notions of bounded (generalized) variation.

Let ¢ : Rt =[0,00) — RT be ag-function that is,¢ is nondecreasing, continuous,
@(p) =0ifand only if p = 0, and lim,_, o, p(p) = co. We say thatf € X is of bounded
@-variation in the sense of Wiener and Young (e.g., [11,13,14,16,23,24]) and yrite
BV, (T; X) if

Vo(f, T) =su Z(p (ft), fti—D)) [meN, ti_a<ti, i=1,...,m} <oc.
i=1

If o(p) = p, V,(f, T) is the classical variation of in the sense of Jordan, which we denote
by V(f,T), and write BUT; X) instead of B\,(T’; X). Note that ify is superadditive
(i.e., @(p1) + ¢(p2) < @(p1 + p2) for all p1, p2 € RT), then BUT; X) C BV, (T; X);
in addition, if ¢ is convex and lirp_.op(p)/p = 0, then BMT; X) is a strict subset of
BV,(T; X).

Let A = {A;}72; C (0,00) be a nondecreasing sequence such Wadt, 1/x; = oco.
A function f € X7 is said to be ofA-bounded variatiorin the sense of Waterman ([28,
29], [19, Section 11.3]), in symbolg € ABV(T; X), provided

d(f (b)), f(a;
Va(f, T) —SupZ W .

where the supremum is taken over alle N, {a;}" ;, {b;}/"; C T such thatay < b1 <
ap < by <---<ay < by, and all permutations - {1, ..., m} — {1, ..., m}. Note that ifA
is an unbounded sequence, then(BYX) is a strict subset oft BV(T; X).
Givenn € N, the following relations hold:
v(n, f, T)=supf(r) — |nf f@, feMT;R);

teT

v, LTS V(AT = im v, £,T),  f €BV(T; X); )
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if ¢ is a convexp-function, then (it admits the continuous invetse! and)

v(n, f,T) < nw—l(@) f €BVy(T: X) (cf. [4]);
v(n, f,T) < ﬁ%‘(ﬁ T). feABV(T:X) (cf.[19, Theorem 11.17]
i=1 i

Now, let BV,.(T'; X) denote one of the sets BY; X), BV, (T; X) with convexep-func-

tion ¢ (the case of general will be treated in Example 7 of Section 3) drBV(T'; X) and

Vi(f, T) designate the variation in the corresponding 8&tf, T), V,,(f, T) or Vo(f, T).

If a pointwise precompact sequeng} C BV.(T'; X) is such that supy Va(fj, T) =

C < oo (the usual assumption of the uniform boundedness of variations), then the in-
equalities above yield: supyv(n, fj, T) = o(n). By Theorem 1, a subsequence{gf}
(denoted as the whole sequence) converges pointwise tona functionf € X7 . Since

the functionalV, (-, T') is sequentially lower semi-continuous with respect to the pointwise
convergence iX ", we haveV, (f, T) < lim inf; 00 Vi(f;, T) < C, and so, the pointwise
limit fisin BV.(T; X).

The paper is organized as follows. In Section 2 we establish properties of the modulus
of variation and prove Theorem 1. Section 3 contains various examples illustrating the
optimality of Theorem 1. A selection principle for the almost everywhere convergence of
an extracted subsequence is treated in Section 4. In the final Section 5 we prove a selection
principle including weak pointwise convergence and weak almost everywhere convergence
when values of functions under consideration lie in a reflexive separable Banach space.

2. Pointwise selection principle

It follows from the definition of the value(n, f, E) that it is finite for eaclx € N, and
sov(-, f, E) :N— RT,ifand only if f is bounded o (i.e., SUR g d(f(t), f(5)) < 00).
In what follows all functionsf € X7 under consideration are assumed to be bounded.

The straightforward properties of the modulus of variation, needed for our purposes, are
gathered in the following

Lemma?2. Givenf € XT and@ # E C T, we have

(a) the sequencev(n, f, E)}7° ; is nondecreasingf];

(b) vin+m, f, E) <v(n, f,E)+v(m, f, E) forall n,m € N [4];

(©) v(n+1, f, E) <v(n, f. E) + 2“5 for all n € N[5, Lemmal;

(d) v(n, f, E'Yy<vn, f,E)forall ## E' C E andn € N;

(e) v(n, f, E) <liminf ;o v(n, f;, E) for all {f;} c XT such thatf; — f on E and
allneN;

) df@), f(s))+vn, f,(—oo,sINE) <v(n+1, f, (—oo,t]NE) forall s, € E such
thats <t andalln e N.
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As a consequence of Lemma 2(c), for any bounded functfoe X7 the se-
quence{v(n, f, E)/n}>° ; is nonincreasing, and so, the following limit always exists:
lim,_eovn, f,E)/n eRT.

Two more modes of convergence pf;} C XT to f e X7 will be of significance:
uniform, f; = fonT,thatis, lim_, o supr d(f; (), f(t)) = 0; andalmost everywhere
fi— fa.e.onT,thatis,f; — fonT\E forsome seE C T of Lebesgue measure zero,
L(E)=0.

A function f e X¢! is said to beproper if it satisfies the Cauchy condition at every
point of [a, b], i.e.,d(f (), f(s)) — 0 ast,s — v — 0 for each pointa < t < b and
d(f @), f(s)) —> 0 ast,s — 1t + 0 for each pointz < t < b. If X is complete, thery is,
by virtue of the Cauchy criterion, proper if and only if at each pairt r < b the left limit
f(t—0) e X exists (i.e.d(f (1), f(t —0)) — 0ast — T —0) and at each point < v < b
the right limit f (z + 0) € X exists (and s/ (f(¢), f(t +0)) — 0 ast — 7 + 0).

The following illustrative result was first stated in [4, Theorem 5] o= R without
proof.

Lemma 3. A function f € X1 is proper if and only ifv(n, f, [a, b]) = o(n).

Proof. SufficiencyGivenn € N, we setv, () =v(n, f, [a,t]), t € [a, b]. By Lemma 2(d),
v, : [a, b] — RT is nondecreasing and, hence, proper.d.ett < b andv,(r — 0) be the
corresponding left limit. Ifs < s <t < t, by Lemma 2(f), (c), (d), we have:

Vg1 (?) — o (s)
n+1 "
v(in+1, f,[a, b))
+1
For ¢ > 0 choose and fix = n(¢) € N such thatv(n + 1, f, [a,b])/(n + 1) < &/3. Let
0<d8=46(¢) <t—abesuchthatit —§ <t < 7,then|v,(t) —v,(t —0)| < &/3. Itfollows
that ifr,s € [t — §, 1), thend(f(¢), f(s)) < &, which proves that/(f(¢), f(s)) — 0 as
t,s > t — 0. The case when < t < b andd(f(¢), f(s)) — 0 ast,s — 7 + 0 is treated
similarly.

NecessityBeing proper, the functiory is the uniform limit on[a, b] of a sequence
{f;} c X'@1 of step functions (e.g., [17, (7.6.1)]; recall that e X*?! is called astep
functionif there exists a partition =1 <11 < --- < ty_1 <t, = b 0of [a, b] such thatf;
takes a constant value on each integvaly, r;),i = 1, ..., m). Since step functions belong
to BV([a, b]; X), the equality in (2) implies (n, f}, [a, b]) = o(n) for all j € N. Now the
result follows from the uniform convergence gf to f and the estimate:

v fT) _ vn f3.7)
n = n

d(f (@), £(9)) < vat1(t) = vp(s) <vu(1) +

< |on(@) =z = 0)| + + [ (T = 0) = v (5)]-

+28qud(f,-(t),f(t)), T =[a,b], n,jeN. 3)
te

In fact, givene > 0, there existg = j(¢) € N such that, for alk € T, d(f; (1), (1)) <
¢/3, and there existsig = no(e) € N such thatv(no, f;, T)/no < €/3. Therefore,
v(n, f,T)/n < e forall n > ng, which was to be proved. o

Lemma 3 implies, in particular, that all functions belonging to (BNb]; X),
BV, ([a, b]; X) and A BV ([a, b]; X) are proper.
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It is known (e.g., [17, (7.6.3)]) that the imag&[a, b]) ={f(¢) | t € [a, b]} of a proper
function f e X¢?1 is totally bounded inX (precompact ifX is complete). This is also
true for proper multifunctions with compact values with respect to the Hausdorff metric
(cf. [12, Lemma 11 and its proof]).

Items (a2) and (b) in the next lemma may be considerguhetial converse®f Theo-
rem 1 showing at the same time the optimality of condition (1).

Lemma4.

(a) Supposé f;} Cc X, fe X" and f; = f onT. We have
(@l) lim;ov(n, f;,T)=v(@n, f,T) foralln e N;

(@2) if v(n, f,T) = o(n), thenlim;_, v(n, f;, T) = o(n); however, it may happen
thatv(n, f;, T) #o(n) forall j e N;

(@3) if v(n, fj, T) =o(m) forall j eN, thenv(n, f,T) =o(n).

Assertiongal)—(a3)are wrong for the pointwise convergence.

(b) If T is a measurable set with finite Lebesgue measifE), {f;} C xT is a se-
quence of measurable functiongs.e X7, v(n, f,T) = o(n), and fi— fae.onT
(or f; = f onT), then for eache > 0 there exists a measurable sEt=E(s) C T
with L(E) < e such thatlim ;.o v(n, f;, T \ E) = o(n).

Proof. (al) Passing to the limit superior gs— oo in the inequality (cf. (3))

vn, £, T) <vn, £, T)+ 2nsqud(f(r), fi®), n,jeN,
te

we getlimsup_,  v(n, f;,T) <v(n, f,T),n €N, by virtue of the uniform convergence
of f; to f, and it remains to take into account Lemma 2(e).
(a2) The first part is a consequence of (al). As for the second part, see Example 6 in
Section 3.
(a3) Replacéa, b] by T in the necessity part of the proof of Lemma 3.
That (al1)—(a3) are wrong for pointwise convergence, see Examples 4 and 5 in Section 3.
(b) By the assumptions and Egorov’s theorem (e.qg., [27, Theorem 3.2.7]), fos eaBh
there exists a measurable get= E(s) C T with L(E) < ¢ such thatf; = f onT \ E.
Sincev(n, f, T) = o(n), Lemma 2(d) implies (n, f, T \ E) = o(n). Our assertion follows
from Lemma 4(a2). O

Now we are in a position to prove our main result.

Proof of Theorem 1. (1) First, making use of the standard diagonal process we show that
there are a subsequence{gf} (for which, without loss of generality, we use the notation
of the original sequence) and a nondecreasing seqyente— R™ such that

lim v(m, f;, T)=ym) <u(m) forallneN. 4)
j—o00
Set y(1) = u(1). Since Iimsugﬁoov(l, fj,T) = n(1), there exists a subsequence

(M2, of {f;) such that lim_..c v(L, £V, T) = y (D). Inductively, ifn > 2 and a subse-
quence{fj("’l)}?‘;l of {f;} is already chosen, we sgtn) =limsup;_, ,, v(n, fj(”’l), T)
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and, sincey (n) < u(n), we pick a subsequenc{@‘(”)}""1 of {f(" 1)}001 such that

lim ;o0 v(n, f](”) T) = y(n). Then the diagonal sequen(:é(’)}] ° 1, which we denote
by {f;}, enjoys properties (4).

(2) Let us show that there exists a subsequen¢g gfirom (4) (which we again will de-
note as the whole sequenicg }) and for eachr € N there exists a function, € M(T; RT)
such that

lim v(n, fj, (—00,1]NT) =v,(t) forallneNandreT. (5)
]—)
Givenn € N, by Lemma 2(d) the functiom(n, f;,t) = v(n, f;, (—oo,t1 N T) is non-
decreasing i € T, and it follows from the equality in (4) that there exists a constant
C(n) € R such thatv(n, f;,T) < C(n) for all j € N. Again, we apply the diagonal
process. The sequenée(l, f;, )}?Q 1 C M(T; R™) is uniformly bounded byC (1), and

so, by Helly’s theorem, there exists a subsequenf:%)}‘x’1 of {f;} and a function
v1 € M(T: R*) such thaty(1, £{”.1) — vi(t) asj — co forall t € T. If n>2 and a
subsequenc(af(” l)}OO 1 of {f;} is already chosen, by Helly’s theorem applied to the se-
quence{n(n, f(" b )}°o 1 C M(T; RT), which is uniformly bounded by (n), we find

a subsequenc{ef(”)}Oo , of {f(” l)}C>o 1 such thaty(n, f(") -) converges pointwise ofi

asj — oo to a functionv, € M(T; R™). It follows that the diagonal sequenge = f(’)

j €N, satisfies (5).

(3) Denote byQ an at most countable dense subsef @6o thatQ ¢ T c Q) and note
that any point € T, which is not a limit point forT’, belongs toQ. Sincev, is monotone,
the setQ,, C T of its points of discontinuity is at most countable. WeS$et QU J,2 ; O».
ThensS is at most countable dense subseT'dind, if T \ S # @,

each functiory, is continuous at pointse 7'\ S, n € N. (6)

Since the seff;(r)} is precompact inX for all r € T and S C T is at most countable,
without loss of generality we may assume (again applying the diagonal process and passing
to a subsequence ¢ff;} if necessary) thatf;(s) converges inX asj — oo to a point
denoted byf (s) € X forall s € S. If T =S, the proof is complete.

(4) Supposd” # S. Let us prove that, givene T \ S, the sequencgf;(¢)} converges
in X. For this, we fix arbitrary > 0. By the assumptiony(n)/n — 0 asn — oo, SO we
choose and fixx = n(¢) € N such thatu(n + 1)/(n + 1) < ¢/15. By virtue of (4), there
existsj1 = ji(e,n) e Nsuchthav(n + 1, f;, T) < y(n + 1) + (¢/15 forall j > j;. The
definition of S and (6) imply that the pointis a limit point for 7 and a point of continuity
of v,, so by the density of in T there exists = s(e, t, n) € S such thatv, () — v, (s)| <
£/15. Property (5) yields the existence pf= ja(e, , s, n) € N such that ifj > j», then

|l)(n,fj, (_OO,I]OT) — Un(t)‘ < % and

[v(n, fi. (=00, s1NT) = vu(s)| < 15

Assuming (without loss of generality) that< ¢ and applying items (f), (c) and (d) of
Lemma 2 and (4), we get for ajl > max{ j1, j»}:
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d(fi@®), fi(®)) <v(n+1, fj, (=00, t1NT) —v(n, fj, (—00,s]1NT)

v(in+1, fj, (=00, t]INT) —v(n, fj, (=00, t]1NT)
+ |l)(}’l, fj, (=00, N T) - Vn(t)’ + ’Vn(t) - Vn(s)|
+ ‘vn(s) - V(I’l, fj5 (—OO, S] N T)’
v(n+1, fj, (=00, t]NT) e e e
g I R i
n+1 + 15 + 15 + 15
< y(n+1) & N 3e
n+1 15n+1) 15
< un+1) E < f
n+1 15 ° 3
Since{ f;(s)} is convergent, it is a Cauchy sequence, and so, there gxistga(e, s) € N
such thatd(f;(s), fj:(s)) <e/3forall j, j' > ja. It follows that j4s = maxj1, jo, j3} de-
pends ore only and for allj, j* > j4 we have:

d(fi@), fr@) <d(fi@). £i() +d(fi(s), fir()) +d(fj (), [ (D) <e.

Thus,{ f; (1)} is a Cauchy sequence I and, since it is precompact Xi, it is convergent
to a point denoted by (¢) € X.

(5) The functionf € XT defined at the end of steps (3) and (4) is the pointwise limit
on T of the sequencé¢f;} (which is a subsequence of the original sequence). Applying
Lemma 2(e), we conclude that

NN

v(n, £, T) <liminfv(n, f;, T) <limsupv(n, f;,T) <u®), neN. O
j—o0

j—o00

Clearly, in Theorem 1 we havgn, f, T) = o(n) for the limit function f, although we
did not suppose fof € N thatv(n, f;, T) = o(n). Cf. also Examples 3 and 6 in Section 3.
Applying Theorem 1 and the diagonal process over expanding intervals, we get the
following local version of Theorem 1:

Corollary 5. If {f;} c XT is a pointwise precompact sequence such that

lim Supv(n, fi la,bln T) =o(n) foralla,beT, a<b,

j—o00
then a subsequence 6f;} converges pointwise off to a function f € X7 satisfying
v(n, f,la,b]NT)=o0m)foralla, beT,a <b.

3. Examples

All assumptions in Theorem 1 are essential for its validity as the following examples
show.
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Example 1. If (X, | - ) is a finite-dimensional normed vector space, then, by virtue of the
inequalities,

suTq}fj(z>|| < | fiGo)| +v@, £, T) < | fiGo) | + CD),
te

whereC (1) is the constan€ (n) from step (2) of the proof of Theorem 1 corresponding to

n = 1, condition {f;} € XT is pointwise precompact” in Theorem 1 may be replaced by

an equivalent condition{f;} C xT and({ f;(to)} is bounded for somg € T.” In contrast

to this, for an infinite-dimensional Banach spacdhe precompactness ¢f; ()} at all

pointst € T cannot be replaced by their boundedness and closedness even at a single
point. In fact, letl’ = [0, 1], X = ¢! = {x : N — R such that|x| = Y224 1x(@i)] < oo} and,

if j €N, let the element; = {e(i)}2, € ¢! be given bye(i) =0 if i # j ande(j) = 1.
Define f; € X by f;(0) =e; and f;(1) =01if 0 <z < 1, j € N. We have{ f;(0)} = {e;}

is bounded and closedf; ()} = {0} is compact if O<z <1,v(n, f;, T)=V(f;, T)=1

for all n, j € N, and no subsequence {of;} converges irX at the point = 0.

Example 2. Continuity of the sequencgf;} is not preserved in the limit procedure of
Theorem 11 f;} C RI®Z wheref;(1) =t/ if0 <t <landf;j(t)=2—1)/ if 1 <t <2.

Example 3. In general, absent condition (1) Theorem 1 is wrong. It is well known that the
sequence f;} C R[9-27] defined byf;(t) =sin(jt), t € T =0, 2], has no subsequence
convergent at all points df. Givenn, j € N, a straightforward calculation shows that

2n ifl<n<2j,
v(n, f;,T)=12n—1=4j -1 .ifn=2j, (7)
4j=V(f;,T) ifn=22j+1

It follows that lim;_, o, v(n, f;, T) = 2n # o(n). In view of Lemma 3, this example also
ensures that condition (1) in Theorem 1 cannot be replaced by, f;, T) = o(n) for
all j € N,” and that one cannot interchange the limits Jimg and limsup_, ., in this
condition.

Example 4. In this example we will show that: (i) condition (1) in Theorem hist nec-
essary although we have(n, f, T) = o(n) andv(n, f;, T) = o(n) for all j € N, and (ii)
assertions (al) and (a2) in Lemma 4 are not valid for pointwise convergence, and the in-
equality in Lemma 2(e) may be strict.

Define the sequendgf;} ¢ RI%271 by

| sin(?r) if0 <t <2n/), .
ff(’)_{o itor/j<t<2r N
Clearly, f; converges pointwise off = [0, 2] to f = 0. The graph off; on [0, 27 //]
“looks like” the graph of — sin(jz) on [0, 27] and, in particular, we havg = j2/j
flattened copies of graphs of the ordinary sine function on its period/difd, [0, 27]) =
V(f;,[0,2r/j1) =4j. Thus, the modulus of variation of our sequence is given by (7), and
S0,

O=v(n, f,T) < lim v(n, f;,T) =2n#o(n).
j—00o
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Example 5. Here we will see that Lemma 4(a3) is wrong for the pointwise convergence.
Let f be the Dirichlet function, i.e., the characteristic function of the ratioQalg (r) = 1
ifreQandf(r)=0ift e R\ Q. We set
. . 2m 1 if jlteZ .
() — ! = . ’
fi(®)=lim (cogj!r1)) {0 it 711 R\ Z. teR, jeN,
whereZ stands for the set of all integers. It is well known tifatconverges pointwise on
R to f. Given an intervala, b] C R, any functionf; is equal to zero offa, b] outside a
finite number of points, so it is proper and, according to Lemma&i, f;, [a, b]) = o(n)
forall j e N. LetT =[O, 1]. Since the Jordan variation ¢f on [0, 1] is equal to 2 j!, we
have:

_|n ifn<2-j!, .
V(n’f"’T)_{Z.j! itn>2. 1 n,j€eN.

Thus, lim;_, o, v(n, fj, T) =n. Note thatv(n, f, T) = n, as well.

Example 6. Let f; € RI%Y be defined byf;(t) = f(t)/j, j € N, where f € R js
the Dirichlet function on[Q, 1]. Clearly, f; = 0 on [0, 1] and v(n, f},[0,1]) =n/j #
o(n) for all j € N. So, Theorem 1 is applicable {¢f;}, but none of the more classical
selection principles applies (sind&(f;, [0, 1]) is infinite for all j € N). Also, condition
SUp;en v(n, fj, T) = o(n) is too restrictive as compared to condition (1).

Example 7. Let ¢ be ag-function (not necessarily convex). We are going to show that if
{fj} CBVy(T; X) andC = supen Vo (fj. T) < o0, then SUpen v(n, fj, T) =o(n), and

so, condition (1) is satisfied in this general case as well. In particul#reBV,(T'; X),
thenv(n, f,T) =o(n), i.e., f is proper by Lemma 3 (fof = [a, b]).

The function<p;l :RT — R* defined byw;l(r) =supp e R | p(p) <r}, r eRT,
is called theright inverseof ¢. Recall (cf. [22, Section 1.2]) thad;l is nondecreasing,
continuous from the righty;*(r) = 0 if and only if r = 0, and lim_, 5 ¢ 1(r) = o0;
moreover, the following relations holdi(g;(r)) = r if r e R*, o7 (p(p)) = p if p €
R, andwll(w(p) —¢e) < pif p>0andO0< e < ¢(p). If, in addition, thep-function ¢
is convex, then it is strictly increasing and its usual invessé coincides with the right
inversept.

Letn e N and{a;}7_;, {bi}}_; C T be arbitrary such that; < by <az < b2 <--- <
an < by,. By the definition ofV,,, for j e Nandi € {1, ...,n} we have

o(d(fj i), fia))) < Ve(fj.lai,bilNT) = ci(j),

so that, taking the right invers(p;l, we getd(fj(b;), fj(a)) < gof(ci(j)). Summing
overi=1,...,n,we find

D d(fii). £i(@) <o),
i=1 i=1
where, by virtue of the semi-additivity df, (e.g., [16, (P3)], [24, 1.17]),

> =) Vo(filai. b INT) <V (f5. T)SC. jeN.
i=1 i=1
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Due to the arbitrariness df;}?_; and{b;}?_; and the definition ob(n, f;, T), the last
two inequalities yield:

{eiff_ycRYand) o <Cy. (8)
i—1

v(n, f;.T) <supt Y o3 (e)
i=1
Denote byé&(n) the right-hand side in (8). Sincg(n) is independent ofj, we have
supe v(n, fj, T) <&(n) for alln € N. Let us show thak (n) = o(n).

Givene > 0, the (right) continuity ofp;l at 0 implies the existence o =ro(¢) >0
such thatp;(r) < &/2 for all 0< r < ro. Setng = no(e) = [C/ro] + 1, where[u] =
max{k € Z | k < u}. Clearly,ng € N andng > C/ro. Now, letn > no and{c;}_; C Rt
be arbitrary such thaf_"_; c; < C. We denote by (n) the set of thosé € {1, ..., n} for
which ¢; < rg and byl>(n) the set of thoseé € {1, ..., n} for which ¢; > rg and note that
the number of elements iB(n) is < ng. If n > n1(e) = max{no, 2n0(p_|__l(C)/8}, then

Z¢+ @)= > oile+ Y eiHer< Y —+ > eito)

tell(n) 1612(11) lEIl(l’l) ielr(n)

<n§ +no¢; <) <n§ +n§ =ne,

and sog(n)/n < e for all n > n1(e), which was to be proved.

Given ag-function ¢, a function f € X7 is said to be ofgeneralized boundeg-
variation (cf. [14,24]) if there exists a constaat> 0 such thatV,, (f, T) < oo, where
0:(0) = @(p/1), p € RT. Theorem 1 and the above considerations imply the follow-
ing result, which generalizes Theorem 1.3 from [24] and Theorem 1.3 from [f3]:
{fj} € XT is a pointwise precompact sequence and there is a conatand such that
Sup;en Vo, (fj, T) < 0o, then a subsequence pf;} converges pointwise ofi to a func-
tion f € XT satisfyingV,, (f, T) < cc.

4. Almost everywhere conver gence

Theorem 1 implies immediately that iff;} C XxT is pointwise precompact and
lim SUp; oo v(1, fj, T\ E) = 0(n) for someE c T with £(E) =0, then a subsequence
of { f;} converges a.e. ofi to a functionf e XT suchthaw(n, f, T\ E) =o(n).

The following theorem, which is aelection principle for almost everywhere conver-
gencein terms of the modulus of variation, is more subtle and is subsequence-converse to
Lemma 4(b).

Theorem 6. Supposel # T C R, (X,d) is a metric space andf;} ¢ X! is an al-
most everywheréor pointwisg§ on T precompact sequence satisfying the condition
each ¢ > 0 there exists a measurable sét= E(¢) c T with L(E) < ¢ such that
limsup;_, o v(n, f;, T \ E) = o(n). Then a subsequence ff;} converges a.e. offl to

a function f € X7 having the propertyfor eache > 0 there exists a measurable set
E'=E'(¢) c T with L(E") < e such thatv(n, f, T \ E') = o(n).
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Proof. Let To ¢ T be a (possibly empty) set of measure zero such that the sequence
{fj(®)} is precompact inX for all t € T \ To. We employ Theorem 1 and the diagonal
process. By the assumption, there exists a measurablg; setT with £(E1) < 1 such

that limsup_, ., v(n, f;, T \ E1) = o(n). The sequencef;} is pointwise precompact on

T\ (To U E1) and, by Lemma 2(d),

limsupv(n, f;, T \ (ToU E1)) <limsupv(n, fj, T \ E1) =o(n).

j—o00 j—oo

Applying Theorem 1, we find a subsequer{qél)};?O , of {f;} and a functionf: T\

(To U E1) — X satisfyingv(n, f1, T \ (To U E1)) = o(n) such thatfj(l) — flonT\
(ThUEYD.Ifk>2anda subsequenc{:fj(k_l)}?O=1 of { f;} is already chosen, there exists
a measurable sdf;, c T with L(E;) < 1/k such that lim SUp, o v(n, fj, T \ Ex) =

o(n). The sequenc(afj(k’l)}‘;":l is pointwise precompact ofi \ (To U E;) and, again by
Lemma 2(d), ‘

limsupv(n, £, T\ (ToU Ex)) <limsupv(n, £, T\ Ex)
Jj—=oo Jj—=oo
<limsupv(n, f;, T\ Ex) =o0(n),
Jj— 00
and so, by Theorem 1, there exists a subsequ{ef}%é}ﬁl of {f;k_l)};?‘;l and a function
5T\ (ToU Ex) — X satisfyingv(n, f*, T \ (To U Ex)) = o(n) such thatfj(k) — fk
pointwise onT \ (To U E).
SettingE = To U (=1 Ex, We have:E is measurablef(E) =0 and
o0
T\E= U(T \ (ToU Ep)).
k=1

Define the functionf : T \ E — X as follows: giverr € T \ E, there exists € N such
thatr € T\ (ToU Ey), and so, we sef (1) = f*(¢). The definition off is correct, i.e. f(¢)
is independent of: in fact, if ky e Nandr € T \ (To U Ey,), thenk < k1 (with no loss of

generality), so tha{tf;kl)}?o 1 Is a subsequence ()fj(k)}ﬁo 1 and, therefore,

Ao =1lm (o= lim [Po = inx
j—o0 j—o00

Let us show that the diagonal sequelﬁé) (which, of course, is a subsequence{ ¢f})
converges tof pointwise on7' \ E. Infact, ift € T\ E, thent € T\ (To U Ex) for some
keN, and sof(t) = fk(r). Since{f}”}?‘;k is a subsequence ()fj(k)}?‘;l, we have:

‘ggﬁW0=g&ﬁWn=ﬂm=fm in X.

We extendf arbitrarily fromT \ E to the wholeT and denote this extension again py
Given e > 0, choosek € N such that 1k < ¢ and setE’ = E'(¢) = To U Ei. Then we
have:L(E') = L(Ey) <1/k<e, f= fXonT\(ToUEy) =T\ E'andv(n, f, T\ E') =

v(n, f5, T\ (ToU Ex)) =o(n). O
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5. Weak pointwise selection principle

The aim of this Section is to prove a weak variant of Theorem 1 using some specific
features when the values of functions under consideration lie in a Banach space (see The-
orem 7 below).

Let (X, | - |I) be a normed linear space (over the fi8d= R or C) and X* be its
dual, i.e., the spacé.(X; K) of all continuous linear functionals oki. Recall thatX* is
a Banach space under the nofint|| = sup{|x*(x)| | x € X and||x|| < 1}, x* € X*. The
natural duality betweeX andX* is determined by the bilinear function@l-) : X x X* —

K defined by(x, x*) = x*(x), x € X, x* € X*. Recall also that if a sequen¢e;} C X
converges weakly X tox € X, in symbols,x; %> x in X (i.e., lim;_, o0 (x;, x*) = (x, x*)
for all x* € X*), then|lx|| < liminf;_, o [|x;].

The notion of the modulus of variatian(n, f, T) for f € XT is introduced as in Sec-
tion 1 with respect to the natural metdcx, y) = [|x — y||, x, y € X.

Theorem 7. Let® # T C R and (X, | - ||) be a reflexive separable Banach space with
separable duak*. Suppose the sequengg} c X7 is such that

0] sup;en I1fj (01 < 00 forallt € T, and
(i) wm) =lim SUp;_, o (1, fj. T) = o0(n).

Then there exist a subsequencg £ (still denoted as the whole sequehaad a function
f e XT satisfyingv(n, f, T) < n(n) for all n € N such thatf;(r) *> f(¢) in X for all
teT.

Proof. (1) We setC(t) = SUpien I i DIl 1 €T. Givenj € N andx* € X*, by virtue of
(i) we have

(fi@, ) <[ /@] - Ix I <Colx™ll, teT, 9)

and sincev(n, (f; (1), x*), T) <v(n, f;, T)|lx*||, condition (i) implies

e () = limsupy (n, (£;0), %), T) < () 14*]. (10)

j—o0

Applying Theorem 1 to the sequenfef; (), x*)} C KT for any givenx* € X*, we find a
subsequencgf; ,+} of { £;} (generally depending at*) and a functiony,~ € K’ satisfy-
iNg v(n, yyr, T) < py(n) < @) |lx*||, n € N, such that{ f; ,«(t), x*) — y«(t) in K for
allteT.

(2) Making use of the diagonal process, we will get rid of the dependen¢é; ot}
on the element™ € X*. Let {x;};°, be a countable dense subsetf. From step (1),
for x* = x] we get a subsequen¢¢;l)} ={fjx} of {f;} and a functionyxiﬁ e KT sat-
isfying v(n. ;. T) < () x|l such that( £V (1), x}) — y,: (1) in K for all r € 7. If
k>2anda subsequent{:fj(k’l)}f/?":l of { f;} is already chosen, by (9) and (10) we have:
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(V). 581 < C@lxg | forall j e N andr e T and

limsupv (n, (fj(k_l)(~),x,f), T) <limsupv(n, (f; (), x¢), T) < () || xj

j—o00 j—o0

’

and so, by Theorem 1, there exist a subsequey‘i}f‘é}?":1 of {fj("’l)}‘;i1 and a function
Yar € KT satisfyingv(n, yip. T) < u(mllxgll, n €N, such that(fj(k)(t),x,f) = yr(®)in
K f_or gll teT. Th(_ar_1 the diagonal subsequer{g‘éj) ?021, which we again denote byf;},
satisfies the condition:

lim (£ (), x{) =y, (1) forallz e T andk e N. (11)
J—)OO

(3) If x* € X* is arbitrary andt € T, let us show tha{(f;(¢), x*)} C K is a Cauchy
sequence. Given> 0, by the density ofx;}22 ; in X*, there exist& = k(e) € N such that
[x* —x;1l <&/(4C(t) + 1), and from (11) we findio = jo(e) € N such that(f; (1), x) —
(fir@),xf) <e/2forall j, j' > jo. It follows that

00) = (1O < 50 - £ @] - | =]
L0 57) = [ 0. 57)
<20t x| + |10 50) - 00,5

£
= 4Z<e gz
A0 11 258 Sz

Hence, there exists an element(r) € K such that(f;(r), x*) — y.«(¢) in K. In other
words, we have shown that for eagh € X* there exists a function,+ € K’ satisfying
(cf. Lemma 2(e) and (10))

vy, T) < liminf vn, (fi(,x*), T) < pm)lx*|l, neN,

<2C()

such that

lim (fj(),x*)=y=() inKforallreT andx* € X*. (12)
j—o00
(4) Givenr € T, let us show thaf; () converges weakly itX. By the reflexivity of X,

we havef;(t) € X = X* = L(X*; K) for all j € N. Defining the functionat; : X* — K
by Y; (x*) = y«(2), x* € X*, we get from (12):

lim (f; @), x*) =y (1) = Y, (x*) forall x* € X*,

j—)OO
i.e., the sequencgf;(r)} C L(X*;K) converges pointwise orX* to the operator
Y;: X* — K. By the uniform boundedness principlg, € L(X*; K) = X and || Y;|| <
liminf ;o | £;(1)|l. Settingf (t) = Y, t € T, we find thatf € XT and

lim (f;@), x*) =Y, (™) = (Y, x*) =(f (), x*), x*eX* teT, (13)

Jj—>00

thatis, f;(1) = f(tr)in X forallr e T.
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(5) It remains to prove that(n, f, T) < u(n), n € N. Givena, b € T, condition (13)
yields f;(b) — fj(a) 2> f(b) — f(a), and so,| f(b) — f(a)| < liminf;_o || fj(b) —
fi@ll. Now, if n € N and {a;}?_,, {b;}!_; C T are arbitrary such that; < by <az <
by < -+- < ay < by, then, by (ii),

2@ = fan] < 3 limin] 70 - £6an]
i=1

i=1
< liminf ;H £i i) = fia|
<liminfv(n, f;, T) < u(n),
j—o0
and soy(n, f, T) < u(n), which completes the proof.0
Remarks.

(1) Condition (i) in Theorem 7 can be replaced by: gupll f;(to)ll < Co for some
to e T and Cg € RT. In fact, since Iimsupﬁoov(l, fi,T) = n(1), we have
supien (1, £, T) < C1 for someC; e R*, and so, forany e Nandr e T,

l£io| <|lfi® = fia)| + | fit)| < v f;.T) + Co < C1+ Co.

(2) If in Theorem 7 instead of condition (i) we assume that the sequgf)¢e)} is pre-
compact inX for all r € T, then, by Theorem 1, a subsequencg £ can be chosen
to converge pointwise off strongly inX. In this caseX may be any normed linear
space.

(3) Instep (5) of the proof of Theorem 7 we have shown tha{f) = f(r) in X for all
teT,thenv(n, f,T) <liminf; o v(n, f;,T),neN.

(4) If in Theorem 7 condition (ii) is replaced by sy Vi, (fj, T) < oo, then the weak
limit function f will belong to BV,,(T'; X). To see this, it suffices to apply arguments
similar to step (5) in the proof of Theorem 7 and note that #f € 7, theng (|| f (b) —
f@I) <liminf ;L o (]l f;(b) — fi(@)]). In this case Theorem 7 with(p) = p and
T = [a, b] gives a result from [2, Chapter 1, Theorem 3.5].

A similar conclusion holds if (ii) is replaced by sy Va(f;, T) < oco.

The following theorem can be proved along the same lines as Theorem 6 by applying
Theorem 7 instead of Theorem 1.

Theorem 8. Let@ # T Cc R and (X, | - ||) be a reflexive separable Banach space with
separable duak*. Suppose thatf;} c X satisfies the conditions

(1) supjen II.fj ()]l < oo for almost allz € 7', and
(iiy for eache > 0 there exists a measurable sEt= E(¢) C T with L(E) < ¢ such that

lim SUP; o v(n, [, T\ E) =0(n).
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Then there exists a subsequencgfof (denoted as the whole sequehsech thatf; (1) >
f(t)in X foralmostallr € T, wheref € XT is a function with the propertyor eachs > 0
there exists a measurable s&t= E’(¢) C T with L(E") < e such thatv(n, f, T \ E') =
o(n).
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