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Abstract—Standing surface waves in a viscous infinite-depth fluid are studied. The solution of the
problem is obtained in the linear and quadratic approximations. The case of long, as compared with the
boundary layer thickness, waves is analyzed in detail. The trajectories of fluid particles are determined
and an expression for the vorticity is derived.
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The asymptotic theory of water waves is traditionally constructed in the inviscid-fluid approximation [1].
Taking fluid viscosity into account requires the development of fundamentally new methods of an analysis.
In analytically studying the propagation of nonlinear gravity waves there arises a difficulty connected with
the satisfaction of the boundary conditions on the free surface. Near the free surface the boundary layer
thickness can be considerably smaller than the wave amplitude; for this reason, to formulate the boundary
condition on a horizontal surface, as in the case of waves in an ideal fluid, would generally be incorrect.
In this sense, the results of [2] need an additional validation. Transferring the boundary condition onto the
horizontal surface level is possible for a low-viscosity fluid. Thus, in [3] an example of the calculations of
the Faraday high-frequency ripple is presented, while in [4] the Stokes wave parameters are calculated in
the cubic approximation. In the case of an arbitrary viscosity, in the quadratic approximation in the small
wave-steepness parameter this difficulty can be overcome by means of going over to curvilinear coordinates
that give the parameteric representation of quasistationary linear waves [5–7]. For progressive waves this
approach is ineffective in the higher approximations, while for the standing waves it is inapplicable owing
to the unsteadiness of the free surface shape.

However, this problem does not arise when using the Lagrangian variables. In the Lagrange description
the vertical coordinate corresponding to the free surface is assumed to be zero and the boundary condition is
formulated in the conventional fashion [8]. In the case of progressive waves the Lagrangian approach turns
out to be very convenient in calculating drift flows [9–11] in the quadratic approximation. Below it is shown
that it makes it possible to analyze the dynamics of a weakly-nonlinear standing wave as well.

1. FORMULATION OF THE PROBLEM

We will consider plane flows of an incompressible, viscous, infinitely deep fluid with a free surface. For
a viscous fluid the equations of two-dimensional fluid dynamics in the Lagrange form can be written as
follows [8]:

[X , Y ] =
D(X , Y )
D(a, b)

= 1,

Xtt =−ρ−1[p, Y ] + ν{[X , [X , Xt ]] + [Y, [Y, Xt ]]},

Ytt =−g − ρ−1[X , p] + ν{[X , [X , Yt ]] + [Y, [Y, Yt ]]}.

(1.1)
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726 ABRASHKIN, BODUNOVA

Here, X and Y are the coordinates of a fluid particle trajectory, a and b are its Lagrangian coordinates, t is
time, ρ is the density, p is the pressure, ν is viscosity, and g is the gravity acceleration; the brackets mean the
operation of taking the Jacobian with respect to the variables a and b. The boundary conditions are those of
impermeability at the bottom (Yt = 0 at b=−∞) and of the absence of viscous stresses on the free surface [8]

Tiknk =−p0ni, n{nx, ny}= n
{
− Ya√

X2
a + Y 2

a

,
Xa√

X2
a + Y 2

a

}
, b = 0,

Txx =−p + 2νρ [Xt , Y ], Tyy =−p−2νρ [Yt , X ], Txy = νρ([Yt , Y ] − [Xt , X ]),

(1.2)

where Tik is the viscous stress tensor, p0 is the constant external pressure, and n is the outward normal to the
free surface.

We will represent all the unknown functions in the form of a series in the small parameter of wave
steepness ε = kA, where k is the wavenumber and A is the wave amplitude

X = a + εξ1 + ε2ξ2 + O(ε3),

Y = b + εη1 + ε2η2 + O(ε3),

p = p0 − ρgb + ε p1 + ε2p2 + O(ε3).

(1.3)

Substituting relations (1.3) in Eqs. (1.1) and (1.2) yields the equations for the unknown functions in the
corresponding order of perturbation theory.

2. LINEAR APPROXIMATION

In the first order of perturbation theory Eqs. (1.1) take the form:

ξ1a + η1b = 0, ξ1tt + ρ−1 p1a + gη1a − νΔLξ1t = 0,

η1tt + ρ−1p1b − gξ1a − νμ0ΔLη1t = 0,
(2.1)

while the boundary conditions on the free surface are written as follows:

η1a + ξ1b = 0, −p1 + 2νρη1tb = 0, b = 0. (2.2)

In Eq. (2.1) the Laplacian is taken with respect to the Lagrangian variables, while the functions ξ1, η1,
and ρ1 are assumed to be space-periodic.

For the convenience of calculations we will represent the deviations from the initial positions of the
particles and the hydrostatic pressure as the real parts of complex functions ξ k

i , ηk
i , and pk

i letting

ξi =
1
2

(
ξ k

i + ξ̄ k
i

)
, ηi =

1
2

(
ηk

i + η̄k
i

)
, pi =

1
2

(
pk

i + p̄k
i

)
.

Here, the bars refer to complex-conjugate variables. We will also introduce a new independent variable
τ = μt, where μ = μ0 + ε2μ2. The value of μ1 is chosen to be zero, as for the potential standing waves
[12]. The value of μ0 is determined in the process of calculations.

We will seek the solution of system (2.1), (2.1) in the form:

ξ k
1 = A(b)eτ sin ka, ηk

1 = B(b)eτ cos ka, pk
1 =C(b)eτ coska, Reτ < 0. (2.3)

Here, the quantity k is real and the functions A, B, C, and τ and the constant μ0 are complex. The real
parts of expressions (2.3) have the physical meaning. After the substitution of expressions (2.3) in system
(2.1) and some algebra we arrive to the following equation
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AIV
bbbb −

(
2k2 +

μ0

ν

)
A′′

bb + k2
(

k2 +
μ0

ν

)
A = 0. (2.4)

Letting A = eib in Eq. (2.4) we obtain a biquadratic equation in l, whose solution is given by the relations

(l2)1 = k2, (l2)2 = k2 +
μ0

ν
= m2. (2.5)

Wave disturbances must decrease with the depth (as b →−∞); for this reason, the function A should be
taken in the form:

A = αekb + βemb, Rem > 0. (2.6)

The functions B and C are determined by the equalities

B =−
(

αekb +
k
m

βemb
)
, C =

ρ
k

[
(μ2

0 + kg)αekb +
k2

m
gβemb

]
. (2.7)

In view of Eqs. (2.6) and (2.7), the solution of system (2.1) takes the form:

ξ k
1 = (αekb + βemb)eτ sin ka,

ηk
1 =−

(
αekb +

k
m

βemb
)

eτ coska,

pk
1 =

ρ
k

[
(μ2

0 + kg)αekb +
k2

m
βemb

]
eτ coska, Reτ < 0.

Substituting this solution in conditions (2.2) yields

2kνmα + β (2νk2 + μ0) = 0, (μ2
0 + 2νk2μ0 + kg)α +

(
k2

m
g + 2νμ0k2

)
β = 0.

The condition of compatibility of these two equations can be written as follows:

(μ0 + 2νk2)2 + kg = 4ν2k3m. (2.8)

For the sake of brevity, we will use the designations ω2 = gk, νk2/ω = θ , and μ0 + 2νk2 = sω ,
where ω is the frequency of the propagation of linear gravity waves. When raised to the square, in the new
designations Eq. (2.8) takes the form:

(s2 + 1)2 = 16θ3(s − θ). (2.9)

This equation is precisely the same as that which appears in considering the linear waves traveling over
a viscous fluid surface. Of four its roots only two satisfy the condition Rem > 0 [13]. The real part of a root
determines the decrement value and the imaginary part determines the wave oscillation frequency. One of
two quantities α and β can be arbitrarily chosen. Let, for example, α be given; then the expression for β
can be written as follows:

β =− 2kνm
μ0 + 2νk2 α =

2km
m2 + k2 α . (2.10)

The quantity α specifies the initial wave amplitude.
In this approximation, the wave motion vorticity is determined by the expression

Ω1 =−Re(μ2
0 β/νm)emb+τ sinka.

It is concentrated in a surface layer, 2π(Rem)−1 in thickness.
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728 ABRASHKIN, BODUNOVA

By way of illustration, we will consider the decay of sufficiently long waves for which the wave length
λ = 2πk−1 satisfies the condition θ = 4π2ν/ωλ 2 ≪ 1. In this case, the right side of Eq. (2.9) can be
neglected. Then its solution is given by the values s=±i, or, in the dimensional quantities, μ0 =−2νk2± iω .
Hence we conclude that the decrement value is −2νk2 and ω is the wave oscillation frequency whose sign
determines the oscillation phase and can be arbitrary; for the sake of definiteness, we will choose the plus
sign. As follows from Eq. (2.5), the value of m is approximately m = (1 + i)Δ, where Δ =

√
ω/2ν , and

Eq. (2.10) takes the form β/α =−(1 − i)k/Δ. This quantity is in absolute value always less than unity; for
this reason, in the approximation adopted the quantity β can be neglected as compared with α . Because of
this, the expression for the free surface elevation η1 can be written as follows:

η1 = α0e−2νk2t +kb coskasin ωt. (2.11)

Here, it is chosen α = iα0, where α0 is real, in order for at zero viscosity expression (2.11) have the form
similar to the solution for the potential waves [12]; the quantity εα0 is equal to the wave amplitude. The
horizontal displacement of fluid particles is written in the form:

ξ1 =−α0e−2νk2t +kb sinkasin ωt, (2.12)

so that the fluid particle trajectories satisfy the equation of a straight line

Y − b =−(X − a)cot ka. (2.13)

As in the potential wave, the fluid particles move relative to its equilibrium position X0 = a, Y0 = b
along a line inclined by the angle −cotka but, due to the viscosity effect, the amplitude of their oscillations
exponentially decays with time. The particle with the Lagrangian coordinates ka = π/2± πn, where n is
an integer, correspond to nodes and move in the horizontal direction. In antinodes the particles move in the
vertical direction (for these ka = π/2).

For fairly long waves the viscosity effect reduces to the exponential decay of the oscillation amplitude
with time. In the surface layer the flow is vortical, the vorticity varying in accordance with the law Ω1 =
−2kωα0e−2νk2t +Δb sinkacos(Δb + ωt). In this case, the standing waves furnish a rare example of the
analytical representation of the flow with a time-dependent vorticity distribution.

3. QUADRATIC APPROXIMATION

The second-order equations are as follows:

ξ k
2a + ηk

2b =
k
4

[
(F1(b) + F2(b)cos 2ka)e2τ + (H1(b) + H2(b)cos 2ka)eτ + τ̄],

ξ k
2tt + gηk

2a + ρ−1pk
2a − νΔLξ k

2t =
k
4

[
F3(b)e

2τ + H3(b)e
τ + τ̄]sin 2ka,

ηk
2tt − gξ k

2a + ρ−1pk
2b − νΔLηk

2t

=
k
4

[
(F4(b) + F5(b)cos 2ka)e2τ + (H4(b) + H5(b)cos 2ka)eτ + τ̄].

(3.1)

The complex functions Fi and Hi are determined by the solution of the linear approximation in the
following functions
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F1 =−AB′ − A′B, F2 = A′B − AB′, H1 =−AB̄′ − A′B̄,

H2 = A′′ − AB̄′, F3 = ρ−1(B′C − BC′) + νμ0(AA′′ − A′2 + 3k(A′B − AB′)),

H3 = ρ−1(B̄′C − B̄C′) + νμ0(2ĀA′′ − AĀ′′ − A′Ā′ + 3kA′ − 3kAB̄′),

F4 =−ρ−1(A′C + AC′) + νμ0(2AB′′ + A′′B + 3A′B′ − 2kBB′),

F5 = ρ−1(A′C − AC′) + νμ0(2AB′′ − A′′B − A′B′),

H4 =−ρ−1(Ā′′C + ĀC′) + νμ0(2ĀB′′ + Ā′′B + 3A′B′ − k(B̄B′ + B̄′B)),

H5 = ρ−1(Ā′C − ĀC′) + νμ0(2ĀB′′ − Ā′′B − Ā′B′ + 3k(B̄B′ − B̄′B)).

(3.2)

System (3.1), (3.2) should be supplemented with the boundary conditions at the free surface b = 0

ξ k
2tb + ηk

2ta =
1
4
(F6(b)e

2τ + H6(b)e
τ + τ̄)sinka,

F6 = k[(νρ)−1BC − 2kμ0AB],

H6 = k[(νρ)−1B̄C + μ0(BB̄′ − B̄B′ − 2kAB̄ + AĀ′ − A′Ā)],

(νρ)−1 pk
2 − 2ηk

2tb

=
1
4

[
(F7(b) + F8(b)cos 2ka)e2τ + (H7(b) + H8(b)cos 2ka)eτ + τ̄],

F7,8 = kμ0(2AB′ ± 3A′B ∓ kB2), H7,8 = kμ0(2ĀB′ ± 2Ā′B ∓ kB̄B ± A′B̄).

(3.3)

In the two last relations the upper signs relate to the first subscript.
We will seek the solution of system (3.1), (3.2) in the form:

ξ k
2 = [e2τ f1(b) + eτ+τ̄h1(b)]sin 2ka,

ηk
2 = e2τ( f2(b) + f3(b)cos 2ka) + eτ + τ̄(h2(b) + h3(b)cos 2ka),

pk
2 = e2τ( f4(b) + f5(b)cos 2ka) + eτ + τ̄(h4(b) + h5(b)cos 2ka).

(3.4)

The functions fi(b) and hi(b) are complex. Thus, the problem of describing the waves is reduced to the
determination of ten unknown complex functions in Eq. (3.4) satisfying the boundary conditions (3.3).

We note the basic properties of the disturbances in the quadratic approximation. Their spatial oscillation
scale is equal to half the main wavelength. For μ1 = 0 the particle oscillation frequency and decrement are
2Im μ0 and 2Re μ0, respectively. The presence of the term independent of the horizontal coordinate a in the
expression for the vertical displacement of the particles η2 means that the mean level of the free surface may,
generally, oscillate relative to the horizon Y = 0, gradually approaching it. It lies strictly in this horizontal
plane if the relation

π/k∫

−π/k

Y dX

∣∣∣∣
b=0

= ε2

π/k∫

−π/k

(η1ξ1a + η2)da

∣∣∣∣
b=0

+ O(ε3) = 0

is fulfilled.
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730 ABRASHKIN, BODUNOVA

In the quadratic approximation this relation is fulfilled if f2 = f3 = −kAB/4 and h2 = h3 = −kAB̄/4 at
b = 0.

If all these relations hold for the functions f3 and h3 but are not fulfilled for, at least, one of the functions
f2 and h2, then the mean level simply monotonically decreases with time, down to the Y = 0 horizon.

In our designations, the solution for the potential standing waves in the quadratic approximation is written
as follows [12]:

ξ2pot = 0, η2pot =
kα2

0

4
e2kb(1 − cos 2ωt), p2pot =

ρω2α2
0

2
(1 − e2kb)cos2ωt. (3.5)

The expressions for the disturbances are independent of the coordinate a; because of this, the particles
with the same value of b move in a similar manner, oscillating in the vertical direction. In a viscous fluid in
this approximation the motion of the particles is considerably more complicated. Not only the dependence
on the horizontal Lagrangian coordinate is added but also the formulas for the quadratic disturbances of the
fluid particle coordinates involve time multipliers of two types. Apart from the typical multiplier determining
the exponential decay, one of these includes oscillation with a double frequency and the other does not
contain them (zero frequency harmonic).

4. SECOND FREQUENCY HARMONIC

After substitution of relations (3.4) in system (3.1) and fairly cumbersome algebra the following equation
for the function f3(b) can be obtained

f IV
3 −

(
8k2 +

2μ0

ν

)
f ′′3 + 4k2

(
4k2 +

2μ0

ν

)
f3 =

k2(k − m)3(k + m)2α2

2(k2 + m2)
e(k+m)b.

The expression for the function f3(b) is as follows:

f3 =C1e2kb + C2e
√

2(m2+k2)b + J3e(k+m)b, J3 =
k2(k + m)2α2

2(3k + m)(k2 + m2)
.

Here, C1 and C2 are some constants.
In the general solution of the homogeneous equation only those terms are retained that decrease, as

b → −∞ (two of the four free constants are taken to be zero). In the second term the exponent is chosen
from the condition Re

√
2(k2 + m2)> 0. The formulas for the other functions fi are as follows:

f1 =−C1e2kb −
√

2(m2 + k2)

2k
C2e

√
2(m2 +k2)b + J1e(k+m)b, J1 =

k2(k2 − 4km − m2)α2

2(3k + m)(k2 + m2 ,

f2 =
kα2

4

[
e2kb +

4k3m
(m2 + k2)2 e2mb − 2k(k + m)

m2 + k2 e(k+m)b + C3

]
,

f4 = ρν2α2(J2e2kb + J4e2mb + J5e(k+m)b) − ρ(4μ3
0 bC3 − νC4),

J2 =
k − m

2
[2k3 − (k + m)(3k2 − m2)], J5 =

k2(k2 − m2)(k2 − m2 + 2mk)
k2 + m2 ,

J4 =
k(k − m)

(k2 + m2)2 [(k
4 + m4)(k + 2m) − 2k2m2(3k + 2m)],

f5 = ρν2(J6C1e2kb + J7C2e
√

2(k2 + m2)b + J8e(k+m)b,
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J6 =
1
k
(k − m)[m2(k + m) − k2(k + 5m)], J7 =

k − m
k

[k2(k − 3m) − m2(k + m)],

J8 =
α2k2(k + m)2(k − m)

(3k + m)(k2 + m2)

[
3k2 + m2 − 6km

]
.

The constant C3 should be let zero for the impermeability condition be fulfilled at the bottom. The three
other constants are determined from the boundary conditions (3.3). They can be represented as follows:

C1 =−3k2 + m2

4k2 C2 +
k + m

4k
J1 − 1

2
J3 − 1

32kν(m2 − k2)
F0(0),

C2 =
(4ν)−1F8(0) − C1[J0 − 8(m2 − k2)k] − J8 + 4(m2 − k2)(k + m)J3

J7 − 4(m2 − k2)
√

2(k2 + m2)
,

C4 = α2(m − k)

{
k2(k + m)

m2 + k2

[
2km(k − m)2

m2 + k2 + k2 + 3m2 + 2km

]
+

k3 + m3 + km(m − 3k)
2

}
.

The first two quantities enter in the expressions for fluid particle displacements and the last determines
the pressure.

5. ZERO FREQUENCY HARMONIC

Substituting relations (3.4) in system (3.1) yields an equation for the function h3(b)

hIV
3 −

(
8k2 +

μ0 + μ̄0

ν

)
h′′3 + 4k2

(
4k2 +

μ0 + μ̄0

ν

)
h3

= J∗1 e(m̄+k)b + J∗2 e(m+k)b + J∗3 e(m̄+m)b.

(5.1)

The coefficients of the exponents on the right side of the equation are functions of k, m, and m̄

J∗1 =
αβ̄k(k − m̄)

m̄(2k2 − m2 − m̄2)
{4k[4k3m − (k2 + m2)2] + (k + m̄)(k2 + m2 − 2km̄)

+ (2k2 − m2 − m̄2) + 4k(k − m)[2k2m(m̄ − k) − m̄(k + m)(3k2 − m2 − 2km̄)]},

J∗2 =− αβ (k − m
2k2 − m2 − m̄)

{4k[4k3m − (k2 + m2)2] + (k + m)(k2 + m̄2 − 2km)

+ (2k2 − m2 − m̄) +
2k(k − m)

m
[k2(k + m)(3k − 5m) − m2(k + m)(3k + m)]},

J∗3 =
∣β ∣2k(m − m̄)

m̄(2k2 − m2 − m̄2)
{4k(4k3m − (m2 + k2)2) + 2(m + m̄)(2k2 − m2 − m̄2)

+ (k2 − m̄m) +
2(k − m)(m + m̄)

m
[k3(k − 3m) − m(k + m)(3k2 − m̄2 + km − 2mm̄)]

− 4k(m − m̄)

m
[k2m̄(k − 3m) − (k + m)(3k3 + m2m̄ − 2kmm̄ − km̄2)]}.
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732 ABRASHKIN, BODUNOVA

The general solution of Eq. (5.1) satisfying the condition of the wave disturbance decay down to zero at
the bottom can be written in the form:

h3 =C∗
1e2kb + C∗

2e
√

m2+m̄2+2k2b +
J∗1 e(k+m̄)b

(k2 + m2 − 2m̄k)(3k2 − m̄2 − 2m̄k)

+
J∗2 e(k+m)b

(k2 + m̄2 − 2mk)(3k2 − m2 − 2mk)
+

J∗3 e(m̄+m)b

2(k2 − mm̄)(4k2 − m2 − m̄2 − 2mm̄)
.

Here, C∗
1 and C∗

2 are constants.
In the general solution of the homogeneous equation only those terms are retained that decay, as b →−∞

(two of four free constants are taken to be zero). In the second term the exponent is chosen from the
condition Re

√
m2 + m̄2 + 2k2 > 0. From the known h3 the functions hi, i = 1, 2, 4, 5 are determined from

the relations

h1 =
H2

8
− 1

2k
h′3, h′2 =

k
4

H1, h′4 = ρ
(

k
4

H4 − (μ0 + μ̄0)
2h2 + ν(μ0 + μ̄0)h

′′
2

)
,

h5 =
ρ
2k

{[
(μ0 + μ̄0)

2 + 4ν(μ0 + μ̄0)k
2]h1 − ν(μ0 + μ̄0)h

′′
1 − 2gkh3 − k

4
H3

}
.

The values of the constants are determined from the boundary conditions

4(μ0 + μ̄0)(h
′
1 − 2kh3)

∣∣∣∣
b=0

= H6(0),

4
[
(νρ)−1h4 − 2(μ0 + μ̄0)h

′
2

]∣∣∣∣
b=0

= H7(0),

4
[
(νρ)−1h5 − 2(μ0 + μ̄0)h

′
3

]∣∣∣∣
b=0

= H8(0).

All algebraic calculations are performed in the same fashion as those of the previous section. They are
extremely cumbersome. For this reason, the complete expressions for functions (3.4) are not presented.
Actually, the boundary layer thickness Δ is almost always considerably smaller than the wavelength λ ;
because of this, it seems natural to present the form of solution (3.4) in the long-wave limit.

Following the solution in the linear approximation, we let m = (1 + i)Δ and expand the polynomial
expression in a series in the small parameter k/Δ, restricting ourselves to the terms linear in this parameter.
Ultimately, the formulas for the fluid particle coordinates are written as follows:

ξ2 =

[
ΔeΔb

k
√

2
sin

(
Δb − 1

4
π
)

− 3e2Δb

4
− ke

√
2Δb

2Δ
sin

(√
2Δb + 2ωt +

1
4

π
)]

kα2
0 e−4νk2t sin2ka,

η2 =

[
(1 − cos 2ωt)e2kb +

keΔb

Δ

[√
2

2
sin

(
Δb + ωt +

1
4

π
)

−
√

2sin

(
Δb +

1
4

π
)]]

+

[
4eΔb cosΔb +

3ke2Δb

Δ

]
cos2ka

}
kα2

0

4
e−4νk2t .

(5.2)
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When viscosity vanishes and Δ increases without bound, expressions (5.2) go over into formulas (3.5)
determining the potential standing waves. With increase in the depth (Δ∣b∣ ≫ 1, ν ∕= 0) these formulas take
the form:

ξ int
2 = 0, η int

2 =
kα2

0

4
(1 − cos2ωt)e−4νk2t cos2ka.

Rectilinear motions of fluid particles in the linear wave are superimposed by vertical oscillations, inho-
mogeneous in the horizontal direction. In this case, the fluid particle trajectories are governed (in view of
Eqs. (2.11)–(2.13)) by the equation

Y − b =−(X − a)cot ka +
k(X − a)2

2
(cot2 ka − 1),

that is, now the particles move along parabolic sections; in antinodes they oscillate in the vertical direction.
Within the framework of the long-wave approximation the terms of the order of k/Δ should, generally be

neglected in expressions (5.2). Then the solutions of the quadratic approximation are rewritten as follows:

ξ bound
2 = kα2

0

(
ΔeΔb

k
√

2
sin

(
Δb − 1

4
π
)

− 3e2Δb

4

)
e−4νk2t sin2ka,

ηbound
2 =

kα2
0

4
[(1 − 2cos 2ωt)e2kb + 4eΔb cosΔbcos 2ka]e−4νk2t .

The boundary layer effect consists in the appearance of additional terms in the expressions for the dis-
placements, which depend on the Lagrangian coordinates but are independent of the oscillation frequency
ω . Qualitatively, their effect can be represented as nonlinear deformation of the flow structure with the
depth; fluid particles oscillate along curves somewhat more complicated than parabolic sections.

For the terms of the order of k/Δ in expressions (5.2) the frequency dependence already exists. Hence
follows that near the free boundary for the shorter waves the fluid particle motion becomes more complicated
than the motion of the particles within the fluid depth. In the situation in which the derivation of analytical
representations for the boundary layer flows is fairly difficult problem expressions (5.2) can be used for
approximately describing the fluid motion also for finite values of the parameter k/Δ. Obviously that in this
case it makes sense to speak of only qualitative features of the flow.

In the quadratic approximation the flow vorticity is given by the expression

Ω2 = [ξ1t , ξ1] + [η1t , η1] + ξ2tb − η2ta.

Substituting the first approximation and relations (5.2) in the above relation yields the following repre-
sentation

Ω2 = ωk2α2
0

[
(2cos Δb − sinΔb)eΔb + 2e

√
2Δb cos(

√
2Δb + 2ωt)

]
e−4νk2t sin 2ka + o

(
k
Δ

)
.

The vorticity is the sum of two fields, namely, the quasistationary field (νk2 ≪ 1) and that oscillating at
double frequency. The vortex layer thickness is by a factor of

√
2 greater than in the linear waves.

Summary. Within the framework of the Lagrangian approach the asymptotic theory of weakly-nonlinear
standing waves in a viscous fluid is developed. For the case of an infinitely deep fluid the complete solution
of the problem is given in the quadratic approximation. This is the first example of the complete analytical
description for the nonlinear wave motion of a viscous fluid.
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