COLLINEATION GROUP AS A SUBGROUP OF THE SYMMETRIC GROUP

FEDOR BOGOMOLOV AND MARAT ROVINSKY

ABSTRACT. Let Ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let H be a closed (in the pointwise convergence topology) subgroup of the permutation group \mathfrak{S}_{Ψ} of the set Ψ . Suppose that H contains the projective group and an arbitrary self-bijection of Ψ transforming a triple of collinear points to a non-collinear triple. It is well-known from [\[9\]](#page-8-0) that if Ψ is finite then H contains the alternating subgroup \mathfrak{A}_{Ψ} of \mathfrak{S}_{Ψ} .

We show in Theorem [3.1](#page-2-0) below that $H = \mathfrak{S}_{\Psi}$, if Ψ is infinite.

Let a group G act on a set Ψ . For an integer $N \geq 1$, the G-action on Ψ is called N-transitive if G acts transitively on the set of embeddings into Ψ of a set of N elements. This action is called highly transitive if for any finite set S the group G acts transitively on the set of all embeddings of S into Ψ . The action is highly transitive if and only if the image of G in the permutation group \mathfrak{S}_{Ψ} is dense in the pointwise convergence topology, cf. below.

Let Ψ be a projective space of dimension ≥ 2 , i.e., the projectivization of a vector space V of dimension ≥ 3 over a field k. The k-linear automorphisms of V induce permutations of Ψ , called projective transformations.

Suppose that a group G of permutations of the set Ψ contains all projective transformations and an element which is not a collineation, i.e., transforming a triple of collinear points to a non-collinear triple. The main result of this paper (Theorem [3.1\)](#page-2-0) asserts that under these assumptions G is a dense subgroup of \mathfrak{S}_{Ψ} if Ψ is infinite.

Somewhat similar results have already appeared in geometric context. We mention only some of them:

- J.Huisman and F.Mangolte have shown in [\[7,](#page-8-1) Theorem 1.4] that the group of algebraic diffeomorphisms of a rational nonsingular compact connected real algebraic surface X is dense in the group of all permutations of the set Ψ of points of X;
- J.Kollár and F.Mangolte have found in [\[10,](#page-8-2) Theorem 1] a collection of transformations generating, together with the orthogonal group $O(3, 1)$, the group of algebraic diffeomorphisms of the two-dimensional real sphere.

We note, however, that our result allows to work with quite arbitrary algebraically non-closed fields.

EXAMPLE. Let K|k be a field extension and τ be a self-bijection of the projective space $\mathbb{P}_k(K) :=$ K^{\times}/k^{\times} , satisfying one of the following conditions: (i) $\tau : x \mapsto 1/x$ for all $x \in \mathbb{P}_k(K)$ and $K|k$ is separable of degree > 2 ,^{[1](#page-0-0)} (ii) $\tau : x \mapsto x^n$ for some integer $n > 1$ and all $x \in \mathbb{P}_k(K)$, the subfield k contains all roots of unity of all n-primary degrees in K, and the multiplicative group K^{\times} is *n*-divisible (e.g., if the field K is algebraically closed). Then the group generated by the group PGL(K) of projective transformations (K is considered as a k-vector space) and τ is N-transitive on $\mathbb{P}_k(K)$ for any N. Indeed, it is clear that such τ 's are not collineations. Hence our Theorem implies the result.

The proof of Theorem [3.1](#page-2-0) consists of verifying the N-transitivity of the group H for all integer $N \geq 1$.

¹If $[K : k] = 2$ then τ is projective; if k is of characteristic 2 and $K \subseteq k(\sqrt{k})$ then τ is identical on $\mathbb{P}_k(K)$.

F.B. is supported by NSF grant DMS-1001662 and by AG Laboratory GU-HSE grant RF government ag. 11 11.G34.31.0023.

M.R. is supported by AG Laboratory NRU-HSE grant RF government ag. 11 11.G34.31.0023 and by RFBR grant 10-01-93113-CNRSL-a "Homological methods in geometry".

We thank Dmitry Kaledin for encouragement and Ilya Karzhemanov for useful discussions and for providing us with a reference to the work [\[10\]](#page-8-2). We are grateful to the referees for suggesting improvements of the exposition.

1. Permutation groups: topology and closed subgroups

Let Ψ be a set and G be a group of its self-bijections. We consider G as a topological group with the base of open subgroups formed by the pointwise stabilizers of finite subsets in Ψ . Then G is a totally disconnected group. In particular, any open subgroup of G is closed.^{[2](#page-1-0)}

Denote by \mathfrak{S}_{Ψ} the group of all permutations of Ψ . Then the above base of open subgroups of \mathfrak{S}_{Ψ} is formed by the subgroups $\mathfrak{S}_{\Psi|T}$ of permutations of Ψ identical on T, where T runs over all finite subsets of Ψ .

- **Lemma 1.1.** (1) For any finite non-empty $T \subset \Psi$, $T \neq \Psi$, the normalizer $\mathfrak{S}_{\Psi,T}$ of $\mathfrak{S}_{\Psi|T}$ in S^Ψ *(i.e., the group of permutations of* Ψ*, preserving the subset* T*) is maximal among the proper subgroups of* \mathfrak{S}_{Ψ} ([\[13\]](#page-8-3), [\[1\]](#page-8-4)).
	- (2) *Any proper open subgroup of* \mathfrak{S}_{Ψ} *which is maximal among the proper subgroups of* \mathfrak{S}_{Ψ} *coincides with* $\mathfrak{S}_{\Psi,T}$ *for a finite non-empty* $T \subset \Psi$ *, if* Ψ *is infinite.*
	- (3) *Any proper open subgroup of* \mathfrak{S}_{Ψ} *is contained in a maximal proper subgroup of* \mathfrak{S}_{Ψ} *.*

Proof. By definition of our topology, any open proper subgroup U in \mathfrak{S}_{Ψ} contains the subgroup $\mathfrak{S}_{\Psi|T}$ for a non-empty finite subset $T \subset \Psi$. Assume that such T is minimal.

We claim that $\sigma(T) = T$ for all $\sigma \in U$. Indeed, if $\sigma(t) \notin T$ for some $t \in T$ and $\sigma \in \mathfrak{S}_{\Psi}$ then (i) it is easy to see that the subgroup \tilde{U} generated by σ and $\mathfrak{S}_{\Psi|T}$ meets $\mathfrak{S}_{\Psi|T\setminus\{t\}}$ by a dense subgroup, (ii) \tilde{U} contains $\mathfrak{S}_{\Psi|T\setminus\{t\}}$, since both subgroups, as well as their intersection, are open, and thus, the intersection is closed. This contradicts to the minimality of T, and finally, U is contained in $\mathfrak{S}_{\Psi,T}$.

The subgroups $\mathfrak{S}_{\Psi,T}$ are maximal, since they are not embedded to each other for various T. \Box

The following 'folklore' model-theoretic description of closed subgroups of \mathfrak{S}_{Ψ} is well-known, cf. [\[2,](#page-8-5) [4,](#page-8-6) [5\]](#page-8-7). Suppose that Ψ is countable. Let $\mathcal{L} = \{R_i\}_{i\in I}$ be a countable relational language and $\mathcal{A} = (\Psi, \{R_i\}_{i \in I})$ be a structure for $\mathcal L$ with universe Ψ . Then Aut $(\mathcal A)$, the group of automorphisms of A, is a closed subgroup of \mathfrak{S}_{Ψ} . Conversely, let H be a subgroup of \mathfrak{S}_{Ψ} . For each n, let I_n be the set of H-orbits on Ψ^n . Set $I := \coprod_{n\geq 1} I_n$ and consider the structure $\mathcal{A}_H := (\Psi, \{R_i^H\}_{i\in I})$ associated with H, where $R_i^H = i \subset \Psi^{n(i)}$. One easily checks that $\mathrm{Aut}(\mathcal{A}_H)$ is the closure of H.

Apart from that, G.Bergman and S.Shelah prove the following result. Assume that Ψ is countable. Let us say that two subgroups $G_1, G_2 \subseteq \mathfrak{S}_{\Psi}$ are equivalent if there exists a finite set $U \subseteq \mathfrak{S}_{\Psi}$ such that G_1 and U generate the same subgroup as G_2 and U. It is shown in [\[3\]](#page-8-8) that the closed subgroups of \mathfrak{S}_{Ψ} lie in precisely four equivalence classes under this relation. Which of these classes a closed subgroup G belongs to depends on which of the following statements about open subgroups of G holds:

- (1) Any open subgroup of G has at least one infinite orbit in Ψ .
- (2) There exist open subgroups $H \subset G$ such that all the H-orbits are finite, but none such that the cardinalities of these orbits have a common finite bound.
- (3) The group G is not discrete, but there exist open subgroups $H \subset G$ such that the cardinalities of the H-orbits have a common finite bound.
- (4) The group G is discrete.

EXAMPLES OF A SET Ψ AND A GROUP G ACTING ON IT: (1) (a) Ψ is arbitrary and $G = \mathfrak{S}_{\Psi}$. (b) Ψ is a projective space over a field with non-discrete automorphism group and G is the collineation group. (c) Ψ is an infinite-dimensional projective (or affine, or linear) space and G is the projective (or affine, or linear) group. (d) If Ψ is arbitrary, G contains a transposition ι of some elements

 2 Indeed, the complement to an open subgroup is the union of translations of the subgroup, so it is open.

 $p, q \in \Psi$ and G is 2-transitive then G is a dense subgroup in \mathfrak{S}_{Ψ} .^{[3](#page-2-1)} (Indeed, as all transpositions generate any finite symmetric group, it suffices to show that G contains all the transpositions. If G is 2-transitive then for any pair of distinct elements $p', q' \in \Psi$ there is $g \in G$ with $g(p) = p', g(q) = q',$ and thus, $g \iota g^{-1}$ is the transposition the elements p' and q'.)

(4) Ψ is the set of closed (or rational) points of a variety and G is the group of points of an algebraic group acting faithfully on this variety; Ψ is the function field of a variety and G is a field automorphism group of Ψ .

2. Dense subgroups of the symmetric groups and the transitivity

It is evident that the G-action on Ψ is highly transitive for any dense subgroup $G \subseteq \mathfrak{S}_{\Psi}$. Conversely, if a group G is highly transitive on Ψ then it is dense in \mathfrak{S}_{Ψ} . Indeed, for any $\sigma \in \mathfrak{S}_{\Psi}$ any neighborhood of σ contains a subset $\sigma \mathfrak{S}_{\Psi|\mathcal{T}}$ for a finite subset $T \subset \Psi$, on the other hand, the identity embedding of T into Ψ and the restriction of σ to T belong to a common G-orbit, i.e., $\tau|_T = \sigma|_T$ for some $\tau \in G$.

We use the following terminology: (i) an N-set in Ψ is a subset in Ψ of order N; (ii) an Nconfiguration in Ψ is an ordered N-tuple of pairwise distinct points of Ψ . The group G acts naturally on the sets of N-sets and of N-configurations in Ψ . Two configurations or sets are called G-equivalent if they belong to the same G-orbit.

The G-action on the set of N-configurations in Ψ commutes with the natural action of the symmetric group \mathfrak{S}_N (given by $\sigma(T) := (p_{\sigma(1)}, \ldots, p_{\sigma(N)})$ for all $T = (p_1, \ldots, p_N)$ and all $\sigma \in \mathfrak{S}_N$).

Lemma 2.1. For each $N \geq 1$ consider the following conditions: (i)_N G is N-transitive on Ψ , $(iii)_N$ *any* N-configuration in Ψ *is G-equivalent to a fixed* N-configuration R in Ψ , $(iii)_N$ *any* N*configuration* T *is* G -equivalent to $\sigma(T)$ *for any permutation* $\sigma \in \mathfrak{S}_N$.^{[4](#page-2-2)}

Then the conditions (i)_N *and* (ii)_N *are equivalent;* (i)_N *implies* (iii)_N; (iii)_{N+1} *implies* (i)_N *if* $|\Psi| > N$. In particular, the group G is highly transitive on Ψ if and only if for all N, all N*configurations* T *and all permutations* $\sigma \in \mathfrak{S}_N$ *the* N-configurations T and $\sigma(T)$ are G-equivalent.

Proof. Implications (iii)_N \Leftarrow (i)_N \Leftrightarrow (ii)_N are evident. Assume now the condition (iii)_{N+1}.

For an arbitrary pair N-configurations $T = (p_1, \ldots, p_N)$ and $T' = (q_1, \ldots, q_N)$ denote by s, $0 \leq s \leq N$, the only integer such that $p_1, \ldots, p_s, q_1, \ldots, q_s$ are pairwise distinct and $p_i = q_i$ for all $i, s < i \leq N$. To show that T and T' are G-equivalent, we proceed by induction on $s \geq 0$, the case $s = 0$ being trivial. For $s > 0$, the $(N + 1)$ -configurations (p_1, \ldots, p_N, q_1) and $(q_1, p_2, \ldots, p_N, p_1)$ are G-equivalent, so the N-configurations T and (q_1, p_2, \ldots, p_N) are also G-equivalent.

On the other hand, the sets $\{q_1, p_2, \ldots, p_N\}$ and $\{q_1, \ldots, q_N\}$ have $N - s + 1$ common elements, so the N-configurations T' and (q_1, p_2, \ldots, p_N) are G-equivalent by the induction assumption. \Box

It is shown by H.D.Macpherson and P.M.Neumann in the usual framework of Zermelo–Fraenkel set theory with the axiom of choice (cf. [\[11,](#page-8-9) Observation 6.1]) that any maximal proper non-open subgroup of \mathfrak{S}_{Ψ} is dense in \mathfrak{S}_{Ψ} . In particular, if Ψ is a projective space then the collineation group (which is obviously closed) is not maximal. However, it will follow from Theorem [3.1](#page-2-0) below that the collineation group is maximal among proper closed subgroups (in dimension > 1).

3. Projective group as a subgroup of the symmetric group

In this section we prove the following

Theorem 3.1. Let k be a field, V be a k-vector space of dimension > 2 and $\Psi := \mathbb{P}_k(V)$ $(V \setminus \{0\})/k^{\times}$ *be the projectivization of* V. Let H *be a subgroup of* \mathfrak{S}_{Ψ} *containing* PGL(V) *and an arbitrary self-bijection of* Ψ *which is not a collineation. Then* H *is dense in* \mathfrak{S}_{Ψ} *, if* Ψ *is infinite.*

³The transitivity does not suffices: if $\Psi = \mathbb{Z}$ and G is generated by the transposition (01) and by the shift $n \mapsto n+2$ then the G-orbit of the pair $(0,1)$ is $\{(a, a + (-1)^a) \mid a \in \mathbb{Z}\}\)$, so G is not dense in \mathfrak{S}_{Ψ} .

⁴Instead of all permutations one can equivalently consider only a generating system of the group \mathfrak{S}_N . E.g., the transpositions (involutions interchanging only a pair of elements of $\{1, \ldots, N\}$).

Proof. By induction on N, we are going to show that H is N-transitive on Ψ for any $N \geq 1$. The cases $N = 1, 2$ are clear, since even the group PGL(V) is 2-transitive on Ψ . Though PGL(V) (and even the bigger group of all the collineations of Ψ) is not 3-transitive on Ψ if dim_k $V \geq 3$, the 3-transitivity of H on Ψ is evident (whenever dim_k $V \geq 2$): all general 3-configurations, as well as all collinear 3-configurations, are $PGL(V)$ -equivalent, while any non-collineation sends some collinear 3-configuration to a general 3-configuration. In other words, the case $N = 3$ is also trivial.

There are two possibilities for the group H :

A. There exist hyperplanes P, P' in Ψ and an element $h \in H$ such that $h(\Psi \setminus P) \subseteq P'$. (This can happen only if Ψ is infinite, i.e., either the field k is infinite or Ψ is of infinite dimension.)

B. For any element $h \in H$ and any hyperplane P in Ψ the set $h(\Psi \setminus P)$ is not contained in a hyperplane.

Lemma 3.2. *In the case A, all* N*-configurations in* Ψ *are* H*-equivalent for all* N*.*

Proof proceeds by induction on N, the cases $N = 1, 2$ being trivial. Let $T = (p_1, \ldots, p_N)$ and $T' = (p'_1, \ldots, p'_N)$ be a pair of N-configurations. We need to show that $\xi(T) = T'$ for some $\xi \in H$. By the induction assumption, we may assume that $(p_2, \ldots, p_N) = (p'_2, \ldots, p'_N)$.

It remains to show that for any point $p \in \Psi$ lying on neither of the lines passing through p_1 and one of the points of the set $\{p_2, \ldots, p_N\}$ there exists an element $\xi_1 \in H$ with $\xi_1(T) = (p, p_2, \ldots, p_N) =:$ T''. (Indeed, the assumption A implies that $|\Psi| \geq 2N|k|$, so we can choose a point p outside the union of the $2N-2$ lines joining the points of the set $\{p'_1, p_1\}$ and the points of the set $\{p_2, \ldots, p_N\}$. Then the point p'_1 lies on neither of the lines passing through p and one of the points of the set $\{p_2,\ldots,p_N\}$. Therefore, $\xi_2(T'')=T'$ for some $\xi_2\in H$, and thus, $\xi_2\xi_1(T)=T'$.)

By the hypothesis A, there exist hyperplanes P, P' in Ψ and an element $h \in H$ such that $h(\Psi \setminus P) \subseteq P'$. As h is surjective (and even bijective), $h(r)$, $h(q) \notin P'$ for a pair of distinct points $r, q \in P$. First, we can find a projective transformation $g_2 \in \text{PGL}(V)$ sending the pair (p_1, p) to the pair (r, q) such that the support of $g_2(T)$ meets P only at r. Next, we can find a projective involution $g_1 \in \text{PGL}(V)$ identical on P' and interchanging the points $h(q)$ and $h(r)$. Then $g_2^{-1}h^{-1}g_1hg_2(T) = T''$. In the contract of the contract of

From now on we assume the hypothesis B.

Let $N \geq i \geq 1$ be integers and $T = (p_1, \ldots, p_N)$ be an N-configuration $T = (p_1, \ldots, p_N)$ in Ψ . Denote by $P_T^{\{i\}}$ the projective envelope of $p_1, \ldots, \widehat{p_i}, \ldots, p_N$.

We say that T is *i*-disjoint if $p_i \notin P_T^{\{i\}}$, and that T is disjoint if T is *i*-disjoint for some *i*.

Lemma 3.3. Let $N \geq i \geq 1$ be integers. Assume that H is $(N-1)$ -transitive on Ψ .

Then, in the case B, all i*-disjoint* N*-configurations are* H*-equivalent.*

Proof. Let $T = (p_1, \ldots, p_N)$ and $T' = (p'_1, \ldots, p'_N)$ be *i*-disjoint *N*-configurations for some *i* (so dim $\Psi \geq 2$ if $N \geq 3$).

As H is $(N-1)$ -transitive on Ψ , we can choose an element $h \in H$ with $h(p_1, \ldots, \widehat{p_i}, \ldots, p_N) =$ $(p'_1,\ldots,\widehat{p'_i},\ldots,p'_N)$. As $h(\Psi \setminus P_T^{\{i\}})$ is not contained in $P_T^{\{i\}}$, there exist: (i) a point $p \in \Psi \setminus P_T^{\{i\}}$ such that $hp \notin P_{T'}^{\{i\}}$, (ii) $g_2 \in \text{PGL}(V)$ identical on $P_T^{\{i\}}$ and sending p_i to p , (iii) $g_1 \in \text{PGL}(V)$ identical on $P_{T'}^{\{i\}}$ and sending $h(p)$ to p'_i . Therefore, $g_1 h g_2(T) = T'$, as desired.

Lemma 3.4. *Assume that* H *is* $(N-1)$ *-transitive on* Ψ *for an integer* $N \geq 1$ *.*

Then, in the case B, all disjoint N*-configurations are* H*-equivalent. In particular, the permutation group* \mathfrak{S}_N *preserves the* H-equivalence class of any disjoint N-configuration.

Proof. Fix some pair $i \neq j$ with $1 \leq i, j \leq N$. Let us show that any *i*-disjoint N-configuration $T = (p_1, \ldots, p_N)$ in Ψ is H-equivalent to a j-disjoint N-configuration. As H is $(N-1)$ -transitive on Ψ , we can choose an element $\xi \in H$ such that $\xi(p_s) = p_s$ for all $s \neq i, j$ and $\xi(p_j) = p_i$. If $\xi(p_i) \in P_T^{\{i\}}$ then $\xi(T)$ is j-disjoint. If $\xi(p_i) \notin P_T^{\{i\}}$ then there exists a projective involution ι fixing $P_T^{\{i\}}$ and interchanging $\xi(p_i)$ and p_i , i.e., $\xi^{-1} \iota \xi(T)$ (having the same support as T) is j-disjoint. In both cases T is H-equivalent to a j-disjoint N-configuration, while all j-disjoint N-configurations are H -equivalent.

The following Lemma reduces verification of the N-transitivity to checking of the H-equivalence of all N-sets.

Lemma 3.5. Let P be a hyperplane in Ψ . Suppose that H is $(N-1)$ -transitive on Ψ .

Then, in the case B, the permutation group \mathfrak{S}_N *preserves the* H-equivalence class of any N*configuration in* Ψ *, if* $|P| \geq N - 2$ *.*

Proof. Suppose that an N-configuration T in Ψ is not H-equivalent to a disjoint one. By $(N-1)$ transitivity of H, we may assume that $T = (q_1, \ldots, q_N)$, where $(q_1, \ldots, \widehat{q}_i, \ldots, \widehat{q}_j, \ldots, q_N)$ is a fixed $(N-2)$ -configuration in P for some pair $i \neq j$ with $1 \leq i, j \leq N$, and $q_i \in \Psi$ is a fixed point outside of P. Then, as T is not H-equivalent to a disjoint configuration, $q_j \in \Psi \setminus P$.

To show that T is H-equivalent to $\sigma(T) := (q_{\sigma(1)}, \ldots, q_{\sigma(N)})$ for any permutation $\sigma \in \mathfrak{S}_N$ it suffices to verify that T is H-equivalent to $\sigma_{ij}(T)$ for the transposition σ_{ij} of any pair $1 \leq i < j \leq N$. But this is clear, since there exists a projective involution ι_{ij} fixing P and interchanging q_i and q_j .

For any pair of subsets $\Pi_1, \Pi_2 \subset \Psi$ we introduce the subset $H_{\Pi_1, \Pi_2} := \{h \in H \mid h(\Pi_1) \subseteq \Pi_2\}$ in H. There is a natural composition law: $H_{\Pi_1,\Pi_2} \times H_{\Pi_2,\Pi_3} \to H_{\Pi_1,\Pi_3}$. One has $gH_{\Pi_1,\Pi_2} = H_{\Pi_1,g\Pi_2}$ and $H_{\Pi_1, \Pi_2} g = H_{g^{-1} \Pi_1, \Pi_2}$ for any $g \in H$.

Define a binary relation \succ_{Π_1,Π_2} on Ψ by the condition $x \succ_{\Pi_1,\Pi_2} y$ if and only if one has $h(y) \in \Pi_2$ for any $h \in H_{\Pi_1, \Pi_2}$ such that $h(x) \in \Pi_2$. Clearly, $g(x) \succ_{g(\Pi_1), \Pi_2} g(y)$ for any $g \in H$ if $x \succ_{\Pi_1, \Pi_2} y$.

Lemma 3.6. The binary relation \succ_{Π_1,Π_2} is reflexive and transitive. Moreover, if Π_1 is contained *in a proper projective subspace* P *in* Ψ *then* (i) *the restriction of* \succ_{Π_1,Π_2} *to* $\Psi \setminus P$ *is an equivalence relation;* (ii) *the equivalence classes in* $\Psi \setminus P$ *are complements to* P *of projective subspaces in* Ψ *.*

Proof. The reflexivity and the transitivity of \succ_{Π_1,Π_2} are trivial. (i) If Π_1 is contained in a subspace $P \subset \Psi$ then for any pair of points $x, y \in \Psi \setminus P$ there is a projective involution ι identical on P and interchanging x and y. Now, if $x \succ_{\Pi_1,\Pi_2} y$ then $h(y) \in \Pi_2$ for any $h \in H_{\Pi_1,\Pi_2}$ such that $h(x) \in \Pi_2$. As $H_{\Pi_1,\Pi_2} = H_{\Pi_1,\Pi_2}\iota$, one has $h'\iota(y) \in \Pi_2$ for any $h' \in H_{\Pi_1,\Pi_2}$ such that $h'\iota(x) \in \Pi_2$, i.e., $y \succ_{\Pi_1, \Pi_2} x$.

(ii) A subset in $\Psi \setminus P$ is a complement to P of a projective subspace in Ψ if and only if together with a pair of points $x, y \in \Psi \setminus P$ it contains the line \overline{xy} passing through them (eventually, punctured at the meeting point with P). Thus, we need to show that for any triple of pairwise distinct collinear points $x, y, z \in \Psi \setminus P$ such that $x \succ_{\Pi_1, \Pi_2} y$ one has $x \succ_{\Pi_1, \Pi_2} z$. Indeed, there is a projective transformation α identical on $P \cup \{x\}$ and sending y to z. As $H_{\Pi_1,\Pi_2} = H_{\Pi_1,\Pi_2} \alpha$, one has $h' \alpha(y) \in \Pi_2$ for any $h' \in H_{\Pi_1, \Pi_2}$ such that $h' \alpha(x) \in \Pi_2$, i.e., $x \succ_{\Pi_1, \Pi_2}$ z . \Box

Lemma 3.7. *Suppose that* H *is* $(N - 1)$ *-transitive on* Ψ *. Then, in the case B, any* N-set *is H*-equivalent to a disjoint one,^{[5](#page-4-0)} if $\dot{N} \leq |k| + 2$.

Proof. By $(N-1)$ -transitivity of H, if $N \leq |k| + 2 = \# \mathbb{P}^1(k) + 1$ then any N-set in Ψ is Hequivalent to $T = \{q_1, q_2\} \cup R$, where R is a fixed $(N-2)$ -subset of a projective line $l \subset \Psi$ and $q_2 \in \Psi$ is a fixed point. If $N = |k| + 2 = \#\mathbb{P}^1(k) + 1$ then taking $q_2 \in l$ we get a disjoint T.

From now on $N \leq |k| + 1$. Then fixing $q_2 \in \Psi \setminus l$ we may assume that $q_1 \in \Psi \setminus l$, that $q_2 \succ_{R,l} q_1$ and that T is coplanar, as otherwise T is H-equivalent to a disjoint N -set.

Let q_0 be the intersection point of l and the line $\overline{q_1q_2}$ passing through q_1 and q_2 .

Suppose first that $q_0 \notin R$. Then $\{q_0, q_2\} \cup R$ is a disjoint N-set and Lemma [3.4](#page-3-0) implies that there is $\xi \in H$ interchanging q_0 and q_2 and identical on R. Then $\xi(q_0) \notin l$. By Lemma [3.6](#page-4-1) (ii), where we take $\Pi_1 = R$ and $\Pi_2 = l$, one has $\xi(\overline{q_1q_2} \setminus \{q_0\}) \subset l$. We can choose such $\psi \in H$ that $\psi(R) \subset \overline{q_1q_2}$ and $\psi(q_2) = q_0$. If $\psi(T)$ is not a disjoint set then $\psi(q_1) \in \overline{q_1q_2}$, but then $\xi\psi(T)$ is a disjoint set.

This settles the case $q_0 \notin R$, so let us now suppose that $q_0 \in R$ and that T is not H-equivalent to a disjoint N-set. If we change q_2 in its ≻_{R,l}-equivalence class then the resulting new T is not

 5 Naturally, a set is called *disjoint* if one of its points is not in the projective envelope of the others.

H-equivalent to a disjoint N-set. Then $\overline{q_1q_2} \setminus \{q_0\}$ is precisely the ≻R,l-equivalence class of q_1 . (Otherwise, by Lemma [3.6](#page-4-1) (ii), we can choose a new q_2 in its equivalence class so that the new q_0 is not in R, but then T is H-equivalent to a disjoint N-set.) We can find an element $\gamma \in H$ such that all the points in the support of $\gamma(T)$ are on the line $\overline{q_1q_2}$, and $\gamma(q_1) = q_0 \in R \subset l$.

Then any $\beta \in H$ fixing $\gamma(q_2)$ and inducing a cyclic permutation of R induces an automorphism of the $\succ_{R,l}$ -equivalence class $\overline{q_1q_2} \setminus \{q_0\}$, so $\beta\gamma(T)$ is disjoint.

4. CASE OF FINITE FIELD k and the end of the proof

Lemma 4.1. Let V be a vector space over a finite field k, h be a self-embedding of $V \setminus \{0\}$, $J \subset V$ be *a finite set such that* J *and* $\tilde{h}(J)$ *consist of independent vectors and* $J \subset P_0 \subset P_1 \subset P_2 \subset \cdots \subset V =$ $_i P_i$, $\dim P_i = |J| + i$, be a flag of vector subspaces. Then there exists a basis $\mathcal{B} = J \cup \{e_1, e_2, \dots\}$ *of V such that* $e_i \in P_i \setminus P_{i-1}$ *and* $h(\mathcal{B})$ *consists of independent vectors.*

Proof. It is possible to choose such e_i inductively, since $\#\tilde{h}(P_i \setminus P_{i-1}) = \#(P_i \setminus P_{i-1}) =$ $(\#k-1)(\#k)^{|J|+i-1} > \#[\langle \tilde{h}(J), \tilde{h}(e_1), \dots, \tilde{h}(e_{i-1}) \rangle \setminus \{0\}] = \#(P'_{i-1} \setminus \{0\}) = (\#k)^{|J|+i-1} - 1.$

Lemma 4.2. *Suppose that* H *is* $(N-1)$ *-transitive on* Ψ *, the field* $k \cong \mathbb{F}_q$ *is finite of order* q *and either* Ψ *is infinite-dimensional, or* dim $\Psi \geq N - 1 \geq 3$ *and* $q > 2$ *. Then, in the case B, any* N-set *in* Ψ *is* H *-equivalent to a general* N *-set in* Ψ *.*

Proof. For any subset $A \subset \Psi$ denote by P_A the projective envelope of A. Let P be an $(N-2)$ dimensional subspace in Ψ . There is a disjoint N-set in $P: N \leq \#\mathbb{P}^{N-3}(\mathbb{F}_q)+1 = \frac{q^{N-2}-1}{q-1}+1$. Then, by Lemma [3.4,](#page-3-0) there exists $h \in H$ such that $h(P)$ is contained in no $(N-2)$ -dimensional subspace. Fix such h. Let S be a maximal independent subset in P such that $h(S)$ is also independent.

By Lemma [4.1,](#page-5-0) one has $P_S = P$ (in other words, $|S| = N - 1$).

By $(N-1)$ -transitivity, any N-set is H-equivalent to an N-set $T = \{p_1\} \cup S$ in Ψ . If either $p_1 \in P$ and p_1 is not in general position with respect to S, or $p_1 \notin P$ then T is disjoint, so by Lemma [3.4,](#page-3-0) T is H-equivalent to a general N-set. Suppose therefore that T is a general N-set in P .

As all general N-sets in P are PGL(V)-equivalent, we may assume that $h(p') \in P_{h(S)}$ and that $h(p')$ is in general position with respect to $h(S)$ for any point $p' \in P$ in general position with respect to S. Note, however, that there is only one such p' in the case $q = 2$.

Fix some $p \in P$ such that $h(p) \notin P_{h(S)}$. In particular, the set $\{p\} \cup S$ is H-equivalent to a general set. Then p is a point of P_I in general position with respect to I for some subset $I \subsetneq S$ with $|I| \geq 2$.

Fix some $s \in I$ and choose homogeneous coordinates X_2, \ldots, X_N on P such that the elements of S are given by $X_2 = \cdots = X_i = \cdots = X_N = 0$ for $2 \le i \le N$, the elements of I correspond to $2 \leq i \leq |\bar{I}|+1$, the point s corresponds to $i = |I|+1$ and the point p is given by $X_2 = \cdots = X_{|I|+1} \neq 0$ $\& X_{|I|+2} = \cdots = X_i = \cdots = X_N = 0.$

In the case $q = 2$, our choice of h contradicts to the conclusion of Lemma [4.3](#page-5-1) below, and thus, to the assumption that T is not H -equivalent to a general set.

In the case of $q > 2$, we are looking for a point $s' \in P$ in general position with respect to S and in general position with respect to $\{p\} \cup (S \setminus \{s\})$. In coordinates: $X_2 \cdots X_N \neq 0$ and $\prod_{i=1}^{|I|} (X_i - X_{|I|+1}) \neq 0$. As $q \geq 3$, we can find such a point.

Then $\{p, s'\} \cup S \setminus \{s\}$ is a general N-set in P and its image under h is disjoint, i.e., it is Hequivalent to a general N -set.

Lemma 4.3. Let $m, n \geq 1$ be integers, and P be an m-dimensional vector subspace of an infinite*dimensional* \mathbb{F}_2 -vector space V. Let h be a self-bijection of V such that $h(0) = 0$. Suppose that the *image under* h *of any general* (n + 1)*-set in any* n*-dimensional vector subspace is not general. Then* $h(P)$ *is a vector subspace of* V *isomorphic to* P.

Proof. Set $m = \dim P$ and consider an $(m + 1)$ -dimensional vector subspace P in V containing P. By Lemma [4.1,](#page-5-0) there exist a basis $\mathcal B$ of V such that (i) the vectors of $\tilde h(\mathcal B)$ are independent, (ii) B contains bases of P and of \tilde{P} . If x is the unique element of $\mathcal{B} \cap (\tilde{P} \setminus P)$, we write also $\mathcal{B} = \mathcal{B}_x$.

Denote by V_x^+ the hyperplane in V of sums of even number of elements of \mathcal{B}_x . Denote by P^+ (resp., by \tilde{P}_x^+) the corresponding hyperplane in P (resp., in \tilde{P} , \tilde{P}_x^+ does not contain x). There are precisely three hyperplanes in \tilde{P} containing P^+ : (i) P , (ii) a hyperplane containing x, (iii) \tilde{P}^+_x .

Set $V_x^- := P \setminus V_x^+$, $P^- := P \setminus P^+$ and $\tilde{P}_x^- := \tilde{P} \setminus \tilde{P}_x^+$. Suppose that h does not transform a general $(n+1)$ -set in any *n*-dimensional vector subspace to a general one. Then for any general set $I \subset V$ of order *n* with general $h(I)$ one has $h(\sum I)$ $v_{v} = I(v) = \sum_{v \in I} h(v)$. By Lemma [4.4,](#page-6-0) $h(V_v^-)$ is an affine subspace of the span of $h(\mathcal{B}_x)$ and $h|_{V_x^-}$ is the restriction of a linear endomorphism of V.

As $P \cap \tilde{P}^+_x = P^+$, one has $\#(\tilde{P} \setminus (P \cup \tilde{P}^+_x)) = 2^m - 2^{m-1} = 2^{m-1} > \#(P \setminus P^-) = 2^{m-1} - 1$, and thus, there is $y \in \tilde{P} \setminus (P \cup \tilde{P}^+_x)$ with $h(y) \notin P$. Therefore, $\tilde{P} = P \cup \tilde{P}^+_x \cup \tilde{P}^+_y$.

Then the restriction of h to $\tilde{P}^-_x = P^- \cup (\tilde{P}^+_y \setminus P^+)$ coincides with the restriction of a linear map, and hence, if $t \in \tilde{P}^-_x$ and $h(t)$ is in the linear span L of $h(P \cap \mathcal{B}_x)$ then t is in the linear envelope of P^- , i.e., $t \in P$. Similarly, if $t \in \tilde{P}^-_y$ and $h(t)$ is in L then $t \in P$. As $\tilde{P} = P \cup \tilde{P}^-_x \cup \tilde{P}^-_y$, we get that $h(x_0)$ is in L a point $x_0 \in \Psi$ only if $x_0 \in P$. We conclude that $h(P)$ contains L, since h is surjective (and even bijective), and thus, $h(P) = L$, since P is finite and $L \cong P$.

Lemma 4.4. Let B be a basis in an infinite-dimensional \mathbb{F}_2 -vector V and $n \geq 2$ be an integer. Denote by V^+ the hyperplane in V consisting of all sums of even number of elements of \mathcal{B} . A subset *of* V *is called* n*-*closed *if it contains the sums of all collections of its* n *independent elements.*

- (1) *Let* C *be the minimal* n*-closed subset of* V *containing all one-element subsets of* B*. Then* $\mathcal{C} = V \setminus \{0\}$ *if* n *is even,* C consists of all sums of odd number of elements of B if n *is odd.*^{[6](#page-6-1)}
- (2) Let $\tilde{\mathcal{C}}$ be the minimal n-closed subset of V containing all sums of odd number of elements of B and a non-zero vector $I \in V^+$. Then $\tilde{C} = V \setminus \{0\}$.

Proof. Note, the map $J \mapsto \sum$ $v \in J$ v induces an isomorphism of the group of the finite subsets in B (with the operation Δ of symmetric difference) onto V. We have to show that C contains the sum of all elements of an m-subset $J \subset \mathcal{B}$ for any $m \geq 1$, odd in the case of odd n. Such a J is constructed as $I_1\Delta \ldots \Delta I_n$ for some independent sets $I_1, \ldots, I_n \in \mathcal{C}$, uniquely (modulo $\mathfrak{S}_\mathcal{B}$ -action) determined by the numbers $|I_1|, |I_1 \cap (I_2 \cup \cdots \cup I_n)| = a$ and some extra conditions described below. For any $I_1, \ldots, I_n \in \mathcal{C}$ one has $|J| \equiv \sum_{j=1}^n |I_j| \pmod{2}$. In particular, $|J| \equiv n \equiv 1 \pmod{2}$ if n is odd. In all cases we impose the conditions $|I_2| = \cdots = |I_n| = 1$ and $|I_1| + 1 \equiv n + m \pmod{2}$.

If $m \leq 2n-1$ is odd, it suffices to impose the conditions $|I_1| = n$, $a = n - \frac{m+1}{2}$ $rac{+1}{2}$.

If $m \leq 2n-2$ is even and n is even, it suffices to ask that $|I_1| = n-1$ (is odd, so $I_1 \in \mathcal{C}$), $a = n - 1 - \frac{m}{2}$ $\frac{n}{2}$.

If $m \ge n$ (m is odd, if n is odd), we proceed by induction on (odd, if n is odd) m and take some disjoint sets $I_1, \ldots, I_n \in \mathcal{C}$, where $|I_1| = m - n + 1$.

Suppose that n is odd. To show that $\tilde{\mathcal{C}}$ contains the sum of all elements of an m-set for any even $m > 2$, we take some $(m + |I| + n - 2)$ -set J containing I and choose pairwise distinct one-element subsets $J_3, \ldots, J_n \subset J \setminus I$. Then $|J\Delta I \Delta J_3\Delta \ldots \Delta J_n| = m$.

The proof of Theorem [3.1](#page-2-0) is concluded by combining Lemma [3.4](#page-3-0) either with Lemma [3.7](#page-4-2) (in the case of infinite k), or with Lemma [4.2](#page-5-2) (in the case of finite k).

5. REMARKS ON THE CASE OF FINITE Ψ

Theorem 5.1 (Kantor–McDonough, [\[9\]](#page-8-0)). *Let* k *be a finite field and* V *be a* k*-vector space of a finite dimension* > 2*.* Set $\Psi := \mathbb{P}_k(V) = (V \setminus \{0\})/k^\times$ *. Let* H *be a subgroup of* \mathfrak{S}_{Ψ} *containing* PGL(V) *and an arbitrary self-bijection of* Ψ *which is not a collineation. Then* H *contains the alternating* $subgroup \mathfrak{A}_{\Psi}$.

For the sake of completeness we mention some details of the proof of Theorem [5.1.](#page-6-2) Let G be a group acting on a projective space $\mathbb{P}^d(\mathbb{F}_q)$. Suppose that G contains the special projective group, but its action is not m-transitive for $m = \# \mathbb{P}^{d-1}(\mathbb{F}_q)$ then [\[8,](#page-8-10) Theorem 1.1 (iii)] gives a choice of 3 groups

⁶This is an affine space over V^+ .

of possibilities for G , one is being excluded by the principal theorem of projective geometry, while the remaining 2 being excluded for arithmetical reasons. Then it remains to prove the following

Proposition 5.2. Let $d \geq 2$ be an integer and \mathbb{F}_q be a finite field. Suppose that a group G acts m*transitively on the projective space* $\mathbb{P}^d(\mathbb{F}_q)$, where $m = \# \mathbb{P}^{d-1}(\mathbb{F}_q)$. Then G contains the alternating $group \ \mathfrak{A}_{\mathbb{P}^d(\mathbb{F}_q)}$.

Proof. A theorem of H.Wielandt from [\[14\]](#page-8-11) asserts that *if a group* G *permuting* M *elements is* m-transitive then $m < 3 \log(M - m)$, unless G contains \mathfrak{A}_M .

The following calculation lists all 9 cases where the condition $m < 3 \log(M - m)$ of Wielandt's theorem is not satisfied.

Lemma 5.3. Let $d \geq 2$ be an integer and \mathbb{F}_q be a finite field. Suppose that $\#\mathbb{P}^{d-1}(\mathbb{F}_q) <$ $3\log\#A^d(\mathbb{F}_q)$ *. Then* $d=2$ *and* $q \leq 13$ *.*

Proof. Consider the function $\xi(d) = \# \mathbb{P}^{d-1}(\mathbb{F}_q) - 3 \log \# \mathbb{A}^d(\mathbb{F}_q) = \frac{q^d-1}{q-1} - 3d \log q$. Its derivative $\xi'(d) = \frac{q^d \log q}{q-1} - 3 \log q$ vanishes only at $\frac{\log(3(q-1))}{\log q}$. We see from $(q-3/2)^2 + 3/4 > 0$ that $3(q-1) < q^2$, and thus, $\frac{\log(3(q-1))}{\log q} < 2$. In other words, ξ increases in $d \geq 2$.

Now consider the (same) function $\varphi(q) = \# \mathbb{P}^{d-1}(\mathbb{F}_q) - 3 \log \# \mathbb{A}^d(\mathbb{F}_q) = \frac{q^d-1}{q-1} - 3d \log q$. If $d = 3$ then $\varphi(q) = q^2 + q + 1 - 9 \log q$. As $\varphi'(q) = 2q + 1 - 9/q$, the critical point of φ is at

 $\frac{\sqrt{73}-1}{4}$ < 2, so φ increases in $q \ge 2$. As $\varphi(2) = 7 - 9 \log 2 > 0$, the function φ is positive.

If $d = 2$ then $\varphi(q) = q + 1 - 6 \log q$. As $\varphi'(q) = 1 - 6/q$, the critical point of φ is at 6. One has $\varphi(2) = 3 - 6 \log 2 < 0, \varphi(15) = 16 - 6 \log 15 < 0, \varphi(16) = 17 - 6 \log 16 > 0.3 > 0$, so the function φ is positive for $q \ge 16$. This means that $\varphi(q)$ is negative only if q is one of 2, 3, 4, 5, 7, 8, 9, 11, 13. \Box

In the cases $q \neq 2, 4$ we apply the following theorem of G.Miller from [\[12\]](#page-8-12): *If* $M = qp + m$ *, where* p *is a prime,* $p > q > 1$ *and* $m > q$ *, then a group permuting* M *elements can be at most* m-transitive, *unless it contains the alternating group.* Namely, setting m_0 for a lower bound of transitivity,

In the case $q = 2$, i.e., of the projective plane over $k = \mathbb{F}_2$ (with $(M, m_0) = (7, 3)$), one has $\#PGL_3(\mathbb{F}_2) = 7 \cdot 6 \cdot 4$, so $[\mathfrak{A}_7 : PGL_3(\mathbb{F}_2)] = 5 \cdot 3 = 15$. By Lemma [3.7,](#page-4-2) G is 3-transitive. There are precisely $\begin{pmatrix} 7 \\ 3 \end{pmatrix}$ 3 $= 35$ 3-sets, so $#G$ is divisible by the least common multiple 7 · 6 · 5 · 4 of 7 · 6 · 4 and 35, and thus, $[\mathfrak{S}_7:G][6.$ The only such subgroups are \mathfrak{A}_7 and \mathfrak{S}_7 .

In the remaining case $q = 4$ (with $(M, m_0) = (21, 5)$) we apply the following theorem of C.Jordan: *If a primitive group contains a cycle of length* p and permutes $M = p + m$ *elements, where* p *is a prime and* m > 2*, then it contains the alternating group.*

Remarks. 1. The collineation group of $\mathbb{P}_k(V)$ is maximal among proper closed subgroups of \mathfrak{S}_{Ψ} . 2. Parity of projective transformations. Let \mathbb{F}_q be a finite field and $n \geq 1$ be an integer. The projective special linear group $PSL_{n+1}(\mathbb{F}_q)$ is simple, with two solvable exceptions: $PSL_2(\mathbb{F}_2) \cong \mathfrak{S}_3$ and $PSL_2(\mathbb{F}_3) \cong \mathfrak{A}_4$.

In any non-exceptional case, any element of the maximal abelian quotient of the projective group $PGL_{n+1}(\mathbb{F}_q)$ is presented by a diagonal matrix $g_{\lambda} := \text{diag}(\lambda, 1, \ldots, 1) \in \text{PGL}_{n+1}(\mathbb{F}_q)$ for some

 $\lambda \in \mathbb{F}_q^{\times}$. Let $s \geq 1$ be minimal with $\lambda^s = 1$. Then g_λ acts on an *n*-dimensional projective space over \mathbb{F}_q with a fixed hyperplane and an extra fixed point. Other orbits consist of s elements, and therefore, the parity of g_{λ} coincides with the parity of $\frac{q^n-1}{s}(s-1) = q^n - 1 - \frac{q^n-1}{s} \equiv q + 1 - \frac{q-1}{s}(1 + (n-1)q)$ (mod 2). Finally, $PGL_{n+1}(\mathbb{F}_q)$ contains an odd permutation if and only if qn is odd.

3. Let G be a finite permutation group, which is neither symmetric nor alternating group. As mentioned in [\[6,](#page-8-13) $\S7.3$], it can be deduced from the classification of finite simple groups that G is at most 5-transitive; moreover, if G is 4- or 5-transitive then G is one of the Mathieu groups M_{11} , M_{12} , M_{23} , M_{24} .

REFERENCES

- [1] R.Ball, Maximal subgroups of symmetric groups, Trans. Amer. Math. Soc. 121 (1966), 393–407.
- [2] H.Becker, A.S.Kechris, The descriptive set theory of polish group actions, LMS Lecture Notes Series 232, Cambridge University Press, (1996), p. 10.
- [3] G.Bergman, S.Shelah, Closed subgroups of the infinite symmetric group, Special issue dedicated to Walter Taylor. Algebra Universalis 55 (2006), no. 2–3, 137–173.
- [4] P.J.Cameron, Oligomorphic permutation groups, LMS Lecture Notes Series 152, Cambridge University Press, (1990).
- [5] W.Hodges, Model theory, Cambridge University Press (Encyclopedia of Mathematics and its Applications) (2008), Theorem 4.1.4, p.136.
- [6] J.D.Dixon, B.Mortimer, Permutation groups, Springer (1996).
- [7] J.Huisman, F.Mangolte, The group of automorphisms of a real rational surface is n-transitive, Bulletin of the London Mathematical Society 41, 563–568 (2009).
- [8] W.M.Kantor, Jordan groups, J. Algebra 12 (1969), 473–493.
- [9] W.M.Kantor, T.P.McDonough, On the maximality of $PSL(d+1, q)$, $d \geq 2$, J. London Math. Soc. (2) 8 (1974), 426.
- [10] J.Kollár, F.Mangolte, Cremona transformations and diffeomorphisms of surfaces, Adv.Math. 222 (2009), 44–61, [arXiv:0809.3720](http://arxiv.org/abs/0809.3720).
- [11] H.D.Macpherson, P.M.Neumann, Subgroups of infinite symmetric groups, J. London Math. Soc. (2) 42 (1990), 64–84.
- [12] G.A.Miller, Limits of the degree of transitivity of substitution groups, Bull. Amer. Math. Soc. 22 (1915), no. 2, 68–71.
- [13] F.Richman, Maximal subgroups of infinite symmetric groups, Canad. Math. Bull. 10 (1967), 375–381.
- [14] H.Wielandt, Abschätzungen für den Grad einer Permutationsgruppe von vorgeschriebenem Transitivitätsgrad, Schriften math. Sem. Inst. angew. Math. Univ. Berlin 2 (1934), 151–174.

F.B.: Courant Institute of Mathematical Sciences, 251 Mercer St., New York, NY 10012, U.S.A. & Laboratory of Algebraic Geometry, National Research University Higher School of Economics,

7 Vavilova Str., Moscow, Russia, 117312

E-mail address: bogomolo@cims.nyu.edu

M.R.: Laboratory of Algebraic Geometry, National Research University Higher School of Economics, 7 Vavilova Str., Moscow, Russia, 117312 & Institute for Information Transmission Problems of Russian Academy of Sciences

E-mail address: marat@mccme.ru