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Abstract Gamma oscillations are a prominent phe-
nomenon related to a number of brain functions. Data show
that individual pyramidal neurons can fire at rate below
gamma with the population showing clear gamma oscilla-
tions and synchrony. In one kind of idealized model of such
weak gamma, pyramidal neurons fire in clusters. Here we
provide a theory for clustered gamma PING rhythms with
strong inhibition and weaker excitation. Our simulations of
biophysical models show that the adaptation of pyramidal
neurons coupled with their low firing rate leads to cluster
formation. A partially analytic study of a canonical model
shows that the phase response curves with a near zero flat
region, caused by the presence of the slow adaptive current,
are the key to the formation of clusters. Furthermore we
examine shunting inhibition and show that clusters become
robust and generic
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1 Introduction

The gamma rhythm is ubiquitous in the cortex. It appears
during sensory and cognitive tasks and has been associated
with increased attention (Engel et al. 2001), with sensory
processing and feature binding, (Gray 1999; Fries et al.
2001), with short memory formation (Tallon-Baudry et al.
1998) as well as with a range of other forms of neuronal
information processing, see Wang (2010) for a review. This
gamma band activity appears to be spatially organized with
local coherence (von Stein and Sarnthein 2000; Jia et al.
2011).

Two regimes of gamma have been observed: strong
gamma, where the pyramidal cells and fast-spiking,
parvalbumin-positive basket cells fire on every cycle, and
weak gamma, where interneurons fire on every cycle and
pyramidal cells skip cycles (randomly), so that the individ-
ual pyramidal cell firing is sparse and yet the population
shows clear gamma oscillations (Börgers et al. 2005). In an
idealized and simplified model of weak gamma the pyrami-
dal cells fire in clusters, with synchrony within each cluster
(Kilpatrick and Ermentrout 2011).

One of the prevalent mechanisms of gamma is Pyra-
midal Interneuron Gamma (PING), based on the idea that
excitatory input from the pyramidal cells to the interneu-
rons plays an important role in the formation of the rhythm
(Whittington et al. 1997; Cunningham et al. 2004). The
overall scheme for PING (weak or strong) is as follows: the
pyramidal cells fire a volley of spikes, strongly exciting the
inhibitory interneurons, whose firing, in turn, suppresses the
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pyramidal cell activity. When the inhibition wears off, the
pyramidal cells are free to fire a volley again. Theoretical
analyses have shown (Börgers and Kopell 2003, 2005) that
such ping-pong of excitation and inhibition should lead to
synchronization. The difference between weak and strong
PING is that, in strong PING, the pyramidal cells fire in syn-
chrony (all approximately at the same time), while in weak
PING only a subset of the pyramidal cells fire at a time.
Thus the mechanisms that lead to PING synchronization
are a combination of intrinsic cellular properties and synap-
tic properties. The focus of earlier work on strong gamma
(Börgers and Kopell 2003, 2005) has been on the synaptic
properties, specifically on the role of inhibition in timing the
gamma oscillations. While gamma synchrony is generically
global, several works have shown that the firing of individ-
ual pyramidal cells can have much lower frequency than
gamma (Cunningham et al. 2004). Some of the time traces
of experimental data indicate that the pyramidal cells could
be firing regularly, in particular this is suggested by Fig. 1 in
Cunningham et al. (2004).

The spatial organization of weak gamma remains a ques-
tion of interest. An important advance in understanding
weak gamma came through the work of Kilpatrick and
Ermentrout (2011) who showed using methods of singu-
lar perturbation theory that a combination of inhibition
and spike frequency adaptation can lead to clustered fir-
ing of pyramidal cells. These authors derived an asymp-
totic formula for the number of clusters depending on
the strength and the duration of the adaptation current.
Formally speaking, the mechanism of the formation of clus-
ters depends on the skewed shape of the Phase Response
Curve (PRC). The strength and the duration of adaption
influence the shape of the PRC and thus play an impor-
tant role in the formation of clusters (weak gamma). We
also mention earlier work on clustered solutions in net-
works with inhibitory connections (Golomb and Rinzel
1994).

Fig. 1 Schematic drawing of the PING model consisting of a popu-
lation of E-cells (E with a circle around it) and I cells (I with a circle
around it)

The article of Kilpatrick and Ermentrout (2011) focuses
on the very important role of the adaptation current but does
not discuss the role of inhibition. In particular, their formula
does not include either the strength or the duration of inhibi-
tion. On the other hand simulations show that by increasing
either of these parameters while fixing the parameters of
the adaptation current can significantly lower the number
of clusters. In this article we explore the combined effects
of adaptation and inhibition in a PING model with strong
inhibition and relatively weak excitation. In particular, we
obtain an estimate for the number of clusters which depends
on the parameters of both the adaptation and the inhibition.
We also emphasize the role of shunting inhibition, whose
importance has been pointed out in the context of ING
(Vida et al. 2006).

Under weak gamma conditions the pyramidal cells with
adaptation have significantly skewed PRC (Ermentrout et al.
2001; Gutkin et al. 2005). We use this fact to formulate a
canonical model with a coupling function which is not very
close to 0 only for a short interval of the phase. In this
context we explore the role of inhibition which is ’slow’
in absolute time terms, but fast relative to the period of
the pyramidal cells with adaptation. In this way our paper
builds on the ideas of Börgers and Kopell (2003, 2005) and
can be seen as a continuation of these papers. We test the
derived estimate of the number of clusters with simulations
of the canonical model and of a conductance based model.
We also analyze the effect of the inhibitory reversal poten-
tial and find that for shunting inhibition clustering arises
for weaker adaptation currents and inhibition and oscilla-
tions with many clusters are more likely to occur. We back
up our simulations of conductance based models with anal-
ysis of a canonical model. Once again we reiterate that
the new contribution of the paper is to consider parame-
ters of inhibition and adaptation together in determining
how gamma oscillations cluster. The feature established by
Kilpatrick and Ermentrout (2011) is that adaptation currents
promote clustering. The message of this paper is comple-
mentary: strong inhibition counter-acts clustering and there
is more clustering when inhibition is shunting than when it
is hyperpolarizing.

The paper is organized as follows. In Section 2 we intro-
duce the biophysical model, consisting of a network of
reduced Miles-Traub neurons (MT) as pyramidal cells and
Quadratic Integrate and Fire neurons (QIF) as interneurons.
(By choosing QIF neurons we opt for a simple model, which
will not introduce extra complications to the already com-
plex dynamics. ) Next we describe our canonical model,
which is a network with pyramidal cells as phase oscilla-
tors and the skew effect formally built in as an interaction
function. We begin Section 3 by presenting the principal
simulation results for the biophysical model. Our simula-
tions show that spike frequency adaptation leads to clustered
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gamma under strong coupling and that the number of clus-
ters and the sparsity of firing increase when the adaptation
current becomes stronger. We give a heuristic argument
explaining how adaptation and low firing rate for the indi-
vidual pyramidal cells lead to the clustering. Subsequently,
in the context of the canonical model, we derive an estimate
for the maximal number of clusters and the maximal firing
period of the pyramidal cells, depending on the parame-
ters of the canonical model. Finally we discuss shunting
inhibition. Simulations for the biophysical model and for
the canonical model show the clustering arises for a much
larger range of adaptation currents when inhibition is shunt-
ing. Hence shunting makes out of cluster gamma a generic
phenomenon. We end the paper with a discussion section.

2 Materials and methods

In this computational study we consider networks consist-
ing of a population of excitatory (E) cells and inhibitory (I)
cells, known as PING networks, see Fig. 1.

The E-cells are meant to represent pyramidal cells and
the I-cells are meant to represent interneurons. The acronym
PING stands for Pyramidal Interneuron Gamma. Gamma
oscillations can arise in a PING model as a result of the
interplay between the excitation from the E-cells to the I-
cells and the inhibition from the I-cells to the E-cells. We
refer to the work of Börgers and Kopell (2003) for an expla-
nation of this phenomenon. In the present work we use
PING models with two kinds of E-cells, reduced Miles-
Traub (MT) cell with adaptation (AHP current) and a phase
model with a specially designed coupling function (PRC).
In both cases the I-cells are represented by QIF neurons.

2.1 The MT cells

The MT cell model used in this work is given by the
following system:

dv

dt
= Iapp − IL − IK − INa − ICa − IAHP

dn

dt
= αn(v)(1 − n)− βn(v)n

dCa2

dt
= −εCaICa − Ca2/τCa. (1)

with Iapp representing the external drive, IL the leak cur-
rent and INa , IK are the usual spike generating sodium and
potassium currents and IAHP is a hyperpolarization acti-
vated, calcium dependent potassium current. Without the
AHP current the equation is as in Börgers et al. (2005). The
AHP current is as introduced in Jeong and Gutkin (2007).

The currents appearing in the RHS of Eq. (1) were
defined as follows: IL = gL(v − EL), IK = gKn

4(v −
EK), INa = gNaminf(v)

3Fh(n)(v − ENa) and IAHP =
gAHP (Ca2/(Ca2 + 1))(v − EK). The functions were
defined as follows: m∞(v) = αm(v)/(αm(v) + βm(v)),
αm(v) = 0.32(v+54)/(1− e−(v+54)/4), βm(v) = 0.28(v+
27)/(e(v+27)/5 − 1) and Fh = max{1 − 1.25n, 0}. The
variable n measures the activation of the potassium cur-
rent IK , with αn(v) = 0.032(v + 52)/(1 − e−(v+52)/5)

and βn(v) = 0.5e−(v+57)/40. The variable Ca2 corresponds
to the calcium concentration and the calcium current is
given by ICa = gCaminf,1(v)(v − ECa), with m∞,1(v) =
1/(1 + e−(v+25)/2.5). The following parameters were fixed
throughout the computation gNa = 100, gK = 80, gCa =
1, gL = 0.1 (in mS/cm2), EL = −67, ENa = 50,
EK = −100 ECa = 120 (in mV), and τCa = 80 ms,
εCa = 0.002 (in μM (ms μA)−1cm2 ). In our simulations
we omitted the ICa current in the current balance equa-
tion as its presence seemed to have no qualitative effect
on the presence of clustering. The maximal conductance
of the adaptation current, gAHP and the external drive Iapp

were varied, as reported in the article. The AHP current
has the effect of extending the relative refractory period.
This means that the neuron does not respond to input in
the early stage of the cycle. This feature is reflected in the
PRC, which is almost 0 in the first part of the cycle, see
Fig. 2, panel A, showing the PRC with three different values
of gAHP .

2.2 The MT PING model

The MT PING model is a network consisting of a population
of MT cells (E-cells) and a population of QIF neurons (I
cells), given by the following system of equations:

dve,j

dt
= Iapp − IL(ve,j )− IK(ve,j , nj )− INa(ve,j , nj )

−ICa(ve,j )− IAHP (ve,j , Ca2,j )

−gee

(
1

Ne

Ne∑
k=1

se,k

)
(ve,j −Eei

rev)

−gie

⎛
⎝ 1

Ni

Ni∑
k=1

si,k

⎞
⎠ (ve,j −Eei

rev)

dvi,l

dt
= 2vi,l(vi,l − 1)+ Iint

−gei

(
1

Ne

Ne∑
k=1

se,k

)
(vi,l −Eie

rev)

−gii

⎛
⎝ 1

Ni

Ni∑
k=1

si,k

⎞
⎠ (ve,j −Eii

rev)

(2)
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Fig. 2 A PRC of the Miles-Traub model with I = 0.8 and with differ-
ent strengths of the AHP current, gAHP = 0.5 (blue curve), gAHP = 1
(black curve) and gAHP = 1.5 (red curve), respectively. The MT cell
has an inactive phase, at the beginning of the cycle (after the spike),
and an active phase, at the end of the cycle. This is reflected in the PRC
which is almost 0 in the early stage of the cycle and is bell shaped at

the end of the cycle. As gAHP increases the flat part is longer, while
the bell-shaped part remains almost unchanged. B The graph of the
coupling function f ((θ − 1)/ω+T0) of Eq. (3) plotted along the solu-
tion θ(t) = ωt , which exists in the absence of inhibition.The values of
ω corresponding to different colors are ω = 0.0125 (blue), ω = 0.01
(black) and ω = 1/120 (red)

with j = 1, . . . Ne and l = 1, . . . Ni . The variables vi,j
(dimensionless) varied between 0 and 1 and were reset to
0 when they reached 1 (this corresponds to a spike). The
synaptic variables se,k (respectively si,k) vary between 0 and
1. They were set to 1 after each spike of the corresponding
E-cell (respectively I-cell) after a delay δE (respectively δI )
and decayed exponentially with time constant τE (respec-
tively τI ). The values of the delays were δE = δI = 1ms

and the values of the time constants were τE = 1ms and
τI = 9ms. The maximal conductances of the synaptic cur-
rents varied; gii and gie between 1 and 2, gei between 0.1
and 0.2 and gee between 0 and 0.05. The reversal poten-
tial Eei

rev was either −80 mV (hyperpolarizing inhibition)
or −65 mV (shunting inhibition). The values of the other
reversal potentials were: Eee

rev = 50 mV, Eie
rev = 6.5,

Eii
rev = −0.25. N.B. The latter two reversal potentials

are for synapses onto the QIF model of the inhibitory
inter-neuron, where the voltage is a non-dimensionalized
variable. Hence the reversal values are also non-dimensional
and are scaled with respect to the corresponding biophysical
values. The value of the drive to the I-cells was Iint = 0.5
(corresponding to the saddle-node bifurcation). Since the
role of interneurons in our model is intended to be very sim-
ple, and a QIF neuron is one of the the simplest models of
excitable cells, we decided to use a network of QIF neurons.

2.3 PING with phase oscillators as E-cells (phase PING)

As a toy model we used a PING network with E-cells given
by phase oscillators, defined by the following equations:

dθl

dt
= ω − gief ((θl − θleft)/ω)

⎛
⎝ 1

Ni

Ni∑
j=1

sl,j

⎞
⎠

dvj

dt
= 2vj (vj − 1)+ I0 − gei

(
1

Ne

Ne∑
i=1

se,i

)
(vj − Eie

rev)

−gii

⎛
⎝ 1

Ni

NI∑
l=1

si,l

⎞
⎠ (vj −Eii

rev), (3)

with θl and vj reset to 0 after reaching 1 (corresponding
to a spike), l = 1, . . . Ne, j = 1, . . .Ni The treatment of
the synaptic variables was the same as for MT PING. The
maximal synaptic conductances had the following values:
gii = 0.5, gei = 0.2, with gie used as a parameter. The
constant θleft is defined as

θleft = 1 − ωT0, (4)

where T0 is set to 20 ms. The meaning of θleft and T0 will
be discussed in Section 3.2.
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In the absence of the coupling term θl is a phase oscilla-
tor, with frequencyω. As we will argue later changing ω has
the same effect as changing gAHP . We assume that f (t) is
positive on an interval (0, T0) and equal to 0 elsewhere. In
addition we assume that f ′(t) is monotonically decreasing
for t ∈ (0, T0); these assumptions imply the existence of a
unique maximum at some tM ∈ (0, T0). In a rigorous phase
reduction the coupling function is the PRC of the oscilla-
tor to which the reduction is applied. Here we choose an
idealized coupling function whose form is motivated by the
PRCs of the Miles-Traub model; more specifically, if gAHP

is increased the period of the oscillation increases, but the
length of the time interval in which the PRC is significantly
different from 0 remains approximately constant, see Fig. 2,
panel A. Similarly, if we change ω in Eq. (3), the period of
the solution existing in the absence of inhibition increases
but the time interval when the coupling function is active
stays constant, see Fig. 2, panel B.

The first component of Eq. (3) is similar to the phase
model of oscillator death used by Ermentrout and Kopell
(1990) to model a transition from oscillation to equilib-
rium behavior. In our model this transition is transient and
corresponds to the action of inhibition; after inhibition has
sufficiently worn off the system returns to the oscillatory
state.

We have also considered the modified phase PING model
to mimic the effect of shunting inhibition. This modification
consisted of multiplying the coupling term in the RHS of
the θl equation by the following sigmoidal function:

σ(θ) = 1

1 + exp(20(0.9 − θ))
. (5)

Note that σ(θ) close to 0 in the initial part of the cycle and
near 1 for θ near 1. This idea of modeling shunting inhi-
bition was already introduced in Jeong and Gutkin (2007)
and is based on the following observation. The voltage vari-
able of the Miles-Traub cell with adaptation increases very
slowly in the initial part of the cycle but becomes much
faster as it passes near the value of the inhibition reversal
potential, so that inhibition grows very quickly from 0 to to
a near maximum value in the last stage of the cycle.

3 Results

3.1 MT PING

3.1.1 Simulations with hyperpolarizing inhibition

Börgers and Kopell (2003) describe gamma oscillations
in PING models for which both the E-cells and the
I-cells oscillate in synchrony at gamma frequency. The

fundamental assumption of PING is that the rhythm is
driven by external input coming into the E-cells and that
the I cells do not receive enough drive to fire at gamma
frequency. The mechanism of the oscillation can be briefly
described as follows. The E-cells fire first and excite the
I-cells. Excitation from the E-cells causes spikes of the I-
cells, releasing a volley of inhibition. As a result no cells
in the network can fire until the inhibition has sufficiently
decayed. Inhibition not only delays the next spike but also
synchronizes the population of the E-cells and leads to a
tighter synchrony in the I-cells.

On the other hand it is known from some experiments
that pyramidal cells can fire at a much lower frequency than
the frequency of the rhythm (Cunningham et al. 2004). The
simplest way that this can occur is if the pyramidal cells
fire in clusters. Here we identify one mechanism how such
firing in clusters can come about, namely a long refractory
period of the E- cells (inactive phase). In our MT model this
is caused by the AHP current. The main idea behind our
work is that E-cells spike very slowly, so that their period
is much larger than the time constant of inhibition, and that
the cells are not sensitive to input in the early phase of of
the cycle, so that the synchronization effect is present for a
part of the phase only.

In Fig. 3 we show some simulations of clustered MT
PING. The first of the two raster plots shows a solution with
two clusters, with I = 7, gie = 1.5 and gAHP = 1.2. The
solution is obtained from an initial condition of the MT cells
distributed evenly in the phase of their uncoupled oscilla-
tion with I = 7 and gAHP = 1.2. The panel on the right
shows a similarly obtained solution, now with three clus-
ters, for gAHP = 2.3. This example supports the results of
Kilpatrick and Ermentrout (2011) that increasing gAHP

leads to the occurrence of more clusters.
The effect of varying inhibition is the main focus of

this work. In Section 3.2, in the context of phase PING
we give some analytic results illustrating this effect. In
the context of MT PING our evidence consists of sim-
ulations, see Fig. 4, where we show that the number of
clusters can significantly decrease if gie is decreased. In
order to better explain this effect, based on heuristic con-
siderations, we design an expression which approximates
the the maximal number of clusters (see Eq. (6)), and dis-
cuss its dependance on gie. Our numerical computations
(see Figs. 7 and 8), give a comparison of the predictions (6)
and the changes in the number of clusters obtained by direct
simulation.

The effect of changing gAHP is illustrated in Fig. 3 as well
as in Fig. 5, panels A and B.

Another parameter strongly influencing the number of
clusters is Iapp (the drive to the E-cells). Our simulations
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Fig. 3 Clustered gamma oscillations of the PING model with hyper-
polarizing inhibition for the maximal conductance of inhibition gie =
1.5 and the drive to the E-cells I = 7. A A solution with two

clusters, corresponding gAHP = 1.2 (maximal conductance of
the AHP current). B A solution with three clusters, corresponding
gAHP = 2.3

Fig. 4 Increased inhibition leads to the reduction of the number of clusters. A Five clusters with I = 4, gAHP = 2.3, gie = 0.5. B Four clusters
with I = 4, gAHP = 2.3, gie = 1.8 . C Three clusters with I = 4, gAHP = 2.3, gie = 1.8
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Fig. 5 The effect of changing gAHP, I and gei . All solutions are com-
puted starting from the same initial condition. A A five cluster solution
for gAHP = 2, IAHP = 4 and gei = 0.3. B A four cluster solution

for gAHP = 1.5, IAHP = 4 and gei = 0.3. C A four cluster solution
for gAHP = 2, IAHP = 5 and gei = 0.3. D A five cluster solution for
gAHP = 2, IAHP = 4 and gei = 0.2

show that raising Iapp decreases the number of clusters see
Fig. 5, panels A and C. Our heuristic argument in support of
this point is as follows: if Iapp is increased then T decreases
as well as the refractory period introduced by the AHP cur-
rent. Hence inhibition has a simultaneous effect on a larger
portion of the cells, leading to fewer clusters (see below for
an explanation of this point using the ‘river picture’).

Finally, the number of clusters is also controlled by
gei , i.e. the strength of the projection from the E-cells
to the I-cells. If gei is small then many E-cells have to
spike approximately at the same time to produce a spike of
the I-cells. This rules out the possibility of small clusters.
Figure 5, panels A and D, shows that decreasing gei can lead
to the occurrence of fewer clusters.

The main goal of this paper is to study the combined
effect of inhibition (controlled by gie) and adaptation (con-
trolled by gAHP) on the existence and stability of clustered
solutions. To understand the role of gAHP and gie we have

computed the time-to-spike function T T S, which is defined
as follows. Let t∗ ∈ [0, T ] be the time elapsed from the last
spike of the spiking solution of the MT cell, with T corre-
sponding to the period. Then T T S(t∗) is the time it takes to
the next spike given that a pulse of slowly decaying inhibi-
tion was applied at t∗. In Fig. 6 we show the graphs of T T S
corresponding to the parameter values of Fig. 4.

Some properties of the T T S function in relation to the
parameter gie can be easily deduced. If gie = 0 then
T T S(t) = T − t , i.e. the graph of T T S is a straight line
with slope −1. For gie > 0 the slope is strictly between
−1 and 0 and becomes close to 0 in the final stage of the
cycle, where the PRC is positive and therefore the ’river
argument’ of Börgers and Kopell (2003) implies that the
time of spike is almost constant, equal to some constant Tmin

(the river argument will be reviewed in Section 3.2). At the
very end of the cycle, due to the finite width of the spike,
the T T S function drops sharply to 0. The T T S function is
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Fig. 6 Time-to-spike (TTS) function for the MT cell with adaptation.
The TTS function (blue curve) assigns to the phase of the cell (wrt the
natural period) the time to the next spike given that a pulse of inhibi-
tion arrives at the given value of the phase. For larger values of gAHP

the TTS function is close to the function h(t) = T − t (black line with

slope −1) at the earlier stage but its slope becomes much closer to 0
at the later stage, indicating contraction.This feature leads to a higher
level of clustering, see Fig. 3. A TTS function with gAHP = 1.2,
gie = 1.5 and I = 7. B TTS function with gAHP = 2.3, gie = 1.5 and
I = 7. C TTS function with gAHP = 2.3, gie = 1.5 and I = 4

decreasing, hence its maximal value Tmax corresponds to
t∗ = 0. Our heuristic picture of the clustering is as fol-
lows. Different E-cells can be identified with the different
time instances along the oscillation of the MT cell with-
out inhibition. Suppose we divide the interval [0, Tmax] into
intervals of length Tmin, starting from the right. All the cells
that are in the last interval of length Tmin at the moment
of the arrival of inhibition will be synchronized, due to the
’river picture’, and will spike after approximately Tmin, giv-
ing rise to the first cluster. During this period, the cells in
the second last interval of length Tmin will continue to the
last interval of length Tmin, without feeling much inhibition.
When the second volley of inhibition arrives, these cells
form a cluster, etc. Now suppose that the interval [0, Tmax]
can be covered by k − 1 copies of interval of length Tmin

plus a remaining interval of length smaller than Tmin (except
for special cases). By the argument above, the number of
clusters should be given by k.

Expressing this by a formula, we have the following
estimate for the existence of a solutions with k clusters:

(k − 1)Tmin + k(δE + δI ) < Tmax. (6)

(recall that δE (resp. δI ) are the delay of the arrival of excita-
tion (inhibition)). Note that the maximal number of clusters
corresponds to the largest k satisfying (6), but solutions with
fewer clusters are not excluded. We define:

kmax = Tmax − δE − δI

Tmin + (δE + δI )
+ 1. (7)

Inequality (6) is now equivalent to k < kmax.
We have done a number of simulations and compared

them with the predictions of Eq. (6). In most simulations the
estimate is too low, but we have found some situations when
it is too high. We found that for many parameter values
there exist multiple clustered states. We can obtain some of
them by using nearby initial conditions for which a similar
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cluster state exists. Other solutions are obtained from
a phase distributed initial condition, obtained by taking
a solution of a single MT cell, with the natural time
parametrization (which we often refer to as phase), and
translating the time variable by small intervals to obtain
initial conditions for different cells in Eq. (2).

As mentioned, for solutions obtained from nearby initial
conditions (6) typically underestimates the maximal number

of clusters. A possible explanation for this is that the slope
of the T T S function is very close to 0 only for a very small
range of the natural time variable of the MT cell, which
increases the possibility of small clusters. To see this imag-
ine a group of E-cells loosely arranged in a cluster. Suppose
the leading cells spike, causing a volley of inhibition. If
inhibition arrives soon enough then the cells that were
behind are stopped from spiking– this leads to two or more

Fig. 7 The prediction of Eq. (6) was compared to the value of gie for
which the change in the number of clusters actually occurs. The solu-
tions in panels A and B were computed from an initial condition given
by an existing clustered solution for a lower value of gie. Dashed red
line in panel C marks the transition from four to three clusters for this
type of solutions. For this choice of parameters (6) gives a pretty close,
but too low estimate of the number of clusters. The solutions in pan-
els D and E were computed from a phase distributed initial condition,

same for all parameter values. Dashed black line in panel C marks the
transition from four to three clusters for this type of solutions. For this
choice of parameters (6) gives an overestimate of the number of clus-
ters. A A four cluster solution for gAHP = 2.3, I = 4 and gie = 0.9.
B A three cluster solution for for gAHP = 2.3, I = 4 and gie = 1.
C The expression kmax, defined by Eq. (7), computed as a function of
gie, with Tmax and Tmin evaluated numerically
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separate clusters. If inhibition comes later then all the cells
in the loosely organized cluster can spike before it arrives –
in this case just one cluster is formed. By varying parame-
ters to increase the delay between the spikes of the E cells
and the arrival of inhibition (e.g. increasing δI ) one can
improve the accuracy of Eq. (6). In Fig. 7 we show a plot
of kmax (panel C). This plot predicts a change from four
to three clusters at gie ≈ 0.8, however simulations show
that for solutions obtained from nearby initial conditions the
change actually occurs for gie ≈ 1. The estimate given (6)

is close, but too low. To obtain Fig. 8 we decreased δI . The
number of clusters is now significantly larger than predicted
by Eq. (6). For this simulation the effect of varying gie is
more pronounced, i.e. as gie is varied there are more possi-
bilities for clustered solutions. Summarizing, the larger the
delay of the arrival of inhibition after a spike of E-cells, the
more accurate the formula. On the other hand the effect of
changing gie on the maximal number of clusters becomes
stronger when the delay of the arrival of inhibition is
smaller.

Fig. 8 In this simulation we decreased the value δE + δI as well the
drive to the I cells Ii . We used δE = δI = 0.1 and Ii = 0.5 as
opposed to δE = 0.1, δI = 0.2 and Ii = 0.52, used in the sim-
ulations shown in Fig. 7. All solutions were computed from initial
conditions given by a clustered solution existing for a nearby parame-
ter setting. Changing the parameters resulted in the occurrence of more
clusters and in the reduction of the accuracy of Eq. (6). A A five cluster

solution for gAHP = 2.3, I = 4 and gie = 0.8. B A four cluster solu-
tion for gAHP = 2.3, I = 4 and gie = 0.9. C The expression kmax
computed as a function of gie, with Tmax and Tmin evaluated numeri-
cally. The changes from a five cluster to four cluster and from a four
cluster to three clusters are marked by red lines. D A four cluster solu-
tion for gAHP = 2.3, I = 4 and gie = 1.7. E A three cluster solution
for gAHP = 2.3, I = 4 and gie = 1.8
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For solutions obtained from phase distributed initial con-
ditions (6) typically overestimates the maximal number of
clusters, see Fig. 7, panels D and E. One possible explana-
tion is that the assumption of a rapid change of the slope of
the T T S function from near 0 to near −1 is not accurate.
In fact the slope of the T T S function increases fairly grad-
ually (see Fig. 6), so that even cells that are far away from
spiking are still affected by inhibition. This is due to the fact
that inhibition, no matter in which stage of the cycle, adds
to the leakiness of the cell, and hence increases the value of
the T T S function. Hence inhibition is effective over a larger
range of the phase variable (natural time variable of the MT
cell) than given by Tmin.

The arguments presented in this section are heuristic as
we are not able to obtain rigorous results in the context of
Eq. (2). In Section 3.2, where we study phase PING, i.e.
system (3), we obtain more rigorous results. In particular
we derive asymptotic estimates for Tmin and Tmax, which,
in combination with Eq. (6) gives an estimate of the num-
ber of clusters as a function of the key parameters of the
model. This estimate depends not just on the parameters
of the adaptation current, but also on inhibition. Using a
limit obtained by letting adaptation and inhibition simulta-
neously increase towards ∞ in such a way that the number
of clusters predicted by Eq. (6) is constant, we prove that
Eq. (6) gives a sharp estimate, see Theorem 1 for a precise
statement.

3.2 Phase PING

Phase PING (see Section 2.3, system (3)) is a toy model in
which we have replaced the MT cells with phase oscillators
and introduced the coupling function θ �→ f ((θ−θleft)/ω),
where θleft is given by Eq. (4), T0 is a fixed constant, f (t) =
0 for t 	∈ (0, T0) and is quadratic on (0, T0) (with value
T0 = 20). An accurate computation of the PRC was carried
out in Kilpatrick and Ermentrout (2011). The choice of the
coupling function (PRC) which we made here is motivated
by the wish to simplify the arguments. Our results could,
however, be extendend to the case of a more accurate PRC.
Finally, note that the parameter ω in Eq. (3) plays a similar
role as gAHP for Eq. (2).

For this model it is possible to get good analytic esti-
mates for Tmax and Tmin. We will also determine when
and with what rate the phases representing different cells
approach each other. Finally, in a limit consisting of simul-
taneously letting ω → 0 and g → ∞ in such a way
that the number of clusters predicted by Eq. (6) remains
constant, we prove that Eq. (6) is an optimal estimate,
i.e. there exists a stable periodic solution with k clus-
ters, with k maximal given by Eq. (6) and there is no
such solution with more than k clusters. In this section we
have focused on the two parameters ω and g, and on the

dependence of the two derived quantities Tmin and Tmax on
these parameters.

As our arguments are based on the ’river picture’ of
Börgers and Kopell (2003), we begin by reviewing this
approach in the context of Eq. (3).

3.2.1 Review of the ’river picture’ of Börgers and Kopell
(2003)

Börgers and Kopell (2003) consider a PING model with
both E-cells and I-cells given by theta neurons. They study
the existence of oscillations in which all the E-cells as
well as all the I-cells fire in synchrony (with slight delay
between the E-cells and the I-cells). In the simplest case
they assume that the E-cells are not coupled to each other,
so that each E-cell can be considered independently, i.e. as
a single cell receiving a volley of inhibition. Before we go
on let us point out two differences between our approach.
First, we use phase oscillators, rather than theta neurons,
which, we feel, simplifies the presentation, although, as
shown by Kilpatrick and Ermentrout (2011), theta neurons
can also be used, leading to analytic solutions. Reduction
to phase oscillators can be made in a rather general con-
text (Ermentrout and Kopell 1991), which means that the
applicability of our approach is quite general. The sec-
ond difference is that, rather than using the concept of
’river’, we use Fenichel slow manifold (Fenichel 1979).
These two concepts have a similar meaning, however ’river’
was introduced using non-standard analysis, so that its
precise meaning is not accessible to the authors of this
paper.

For ω = 1/T0 system (3) has properties analogous to
those of the model studied by Börgers and Kopell (2003).
In this case θleft = 0, so that the coupling function (PRC)
is non-zero on the entire interval [0, 1]. Following the foot-
steps of Börgers and Kopell (2003) we study the dynamics
of a single E-cell in the presence of inhibition. In the con-
text of Eq. (3) with ω = 1/T0 this equation is given
by

dθ

dt
= ω − gsf (θ/ω)

ds

dt
= −εs; s(0) = 1. (8)

Recall that f has a parabolic shape with maximal value fM .
We will assume that inhibition is sufficiently strong, i.e. the
condition

ω < gfM (9)

is satisfied. System (8) is slow/fast and all solutions starting
with s = 1 and arbitrary θ are exponentially attracted to a
Fenichel slow manifold, which is one dimensional, locally
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invariant, and, in this case, parametrized by a solution. The
phase portrait of Eq. (8) is given in Fig. 9. The idea is
now that all solutions, with initial conditions corresponding
to the states of different E-cells at the time of the arrival
of inhibition, are strongly attracted to each other, i.e. their
θ components quickly approach each other (the s compo-
nents are already equal). The Fenichel slow manifold can
be thought of as a river attracting all the nearby solutions.
Any two solutions are extremely close to each other at the
time when they reach the vicinity of the critical point of
f , thus the cells they represent spike almost at the same
time.

We end this section on few remarks concerning the use of
singular perturbation theory. The fact that ε is the inverse of
the time constant of inhibition, which equals approximately
9 ms, may cast a doubt on the relevance of singular pertur-
bation theory. Another point is that the inverse of the time
constant of adaptation is a much smaller parameter (used
by Kilpatrick and Ermentrout (2011) in their perturbation
analysis). We feel that our approach is an interesting alter-
native, for the following reasons. First, the hallmark feature
of singular perturbation theory is the presence of strong con-
traction and the synchronization brought about by inhibition
(river picture) is precisely that. Second, even though sin-
gular perturbation only works, mathematically, in the limit
of ε → 0, its predictions often extend to ε not so close to
0. The reason for this is that strong contraction/expansion
can be present even when ε is not so small. For example,
ε = 0.1 may give (positive or negative) eigenvalues of the
order of e10. Simulations of the toy model with ε = 0.1 (see
Figs. 11 and 10) were in reasonable agreement with the
singular perturbation estimates.

Fig. 9 The ’river effect’. The curve of quasi stationary points (blue)
and two solutions (black and red)

3.2.2 Extension of the ’river picture’

We now consider the general case of ω 
 1/T0. The system
corresponding to an E-cell subjected to a spike of inhibition
(generalization of Eq. (8) now has the form:

dθ

dt
= ω − gsf ((θ − θleft)/ω)

ds

dt
= −εs; s(0) = 1, (10)

where f is as defined in Section 2.3, i.e. f is quadratic on
the interval (0, T0), and 0 otherwise. For Eq. (10) the picture
is more complicated than for Eq. (8). We distinguish three
cases:

θleft < θ < 1 Here the ’river picture’ fully applies, so
that any two cells with initial condition satisfying this
condition are attracted to each other and fire almost
instantenously.

1 − ωTmin < θ As mentioned earlier, due to inhibition,
there exists a minimal time needed for any initial
condition (10) to reach a spike. We denote this time by
Tmin. Solutions satisfying 1 − ωTmin < θ experience a
delay to spike and there is some contraction between any
two solutions starting in this region. In the sequel we will
show that, in the aforementioned limit of ω approaching 0
with g adjusted simultaneously so thatω(Tmin+ωδ) stays
fixed, trajectories starting in this region can be attracted
to each other to form a a cluster.

θ < 1 − ωTmin Solutions starting at θ are not affected
by inhibition and therefore spike at approximately the
same time as they would have if inhibition had not been
present. Given solutions with initial conditions θ1 and θ2,
with θ1 or θ2 satisfying θ < 1−ωTmin, the corresponding
solutions are not attracted to each other.

The T T S function is determined by the solutions of Eq. (10)
and assigns to every θ0 the time needed for the solution of
Eq. (10) with θ(0) = θ0 to reach the firing threshold θ = 1.

3.2.3 Computation of Tmin and the contraction rate

Let

sM = ω

gfM
. (11)

By Eq. (9) sM < 1.
To fix ideas we use a specific definition for f , namely:

f (t) = 4t (t − T0)

T 2
0

. (12)

We will argue that the approximate value of Tmin is:

Tmin ≈ −1

ε
ln(sM)−
0

(
T 2

0

4ε

)1/3

(13)
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Fig. 10 The TTS function for phase PING shows the validity of the approximation of Tmin by Eq. (13) for ω = 0.0075 and ε = 0.1. The red
horizontal line corresponds to the value of Tmin as predicted by Eq. (13) with gie = 0.3 in panel A and gie = 0.5 in panel B

where 
0 ≈ −2.34 is a universal constant whose meaning
will be explained in the Appendix.

Figure 10 shows examples of the application of Eq. (13).
We will now show how Eq. (10) can be transformed to

a slow/fast system for which estimate (13) can be obtained
from existing results. We first rewrite Eq. (13) as a sum of
two terms

Tmin = TSN + Tesc TSN = −1

ε
ln(sM),

Tesc = −
0

(
T 2

0

4ε

)1/3

The time TSN is defined as the time needed for s to decrease
from 1 to sM . If s is treated as a constant (ε = 0 limit
in Eq. (10)) then sM is a point of saddle-node bifurcation.
For ε > 0, while s > sM , there is an attracting Fenichel
slow manifold close to the curve (s, θ(s)), where θ(s) is a
solution of

0 = ω − gsf ((θ − θleft)/ω),

and every other solution has to follow the slow manifold.
This implies that the time it needs to reach the vicinity of
fM is approximately log(1/sM).

To get the estimate of Tesc we begin by a transformation:

x = θ − θleft

ω
, s = sM s̃.

In the new coordinates Eq. (10) becomes

dx

dt
= 1 − s̃f (x)

ds̃

dt
= −εs̃; s̃(0) = 1. (14)

Note that the term gsfM/ω is less than 1 for s > sM . We
replacing x by x̃ + 1 and Taylor expand at (x̃, s̃) = (0, 1),
which, at lowest order, gives the followng system:

dx̃

dt
= (1 − s̃)− Bx̃2

ds

dt
= −ε, (15)

where B = 4/T 2
0 . Based on a result of Krupa and Szmolyan

(2001) (a review of this result with precise references will
be given in the Appendix) we can give an estimate

Tesc = −
0(Bε)1/3 = −
0

(
T 2

0

4ε

)1/3

(16)

3.2.4 Estimate of Tmax

The value of Tmax equals the time it takes for a solution of
Eq. (10) with θ(0) = 0 to reach θ = 1. Note that Tmax >

1/ω, but when ω is sufficiently small then the following
holds. If the inhibition comes at the beginning of the cycle it
decays to negligible size by the time the phase advances to
the regime where inhibition could have an effect. Hence, in
this case

Tmax ≈ 1

ω
. (17)

For ω larger Tmax can be significantly larger than 1/ω, but
the maximal value it can reach is

Tmax ≈ 1

ω
+ Tmin. (18)

Also, a rise in gie could lead to a loss of accuracy of
Eq. (18).
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Fig. 11 Changes in the number of clusters as a function of gie and the
estimate Eq. (19). All solutions were computed from initial conditions
given by a clustered solution existing for a nearby parameter setting.
A A 5-cluster solution for ω = 0.006, gie = 0.58, ε = 0.1. B A 4-
cluster solution for ω = 0.006, gie = 0.59, ε = 0.1. C Graph of kmax

(defined by Eq. (29) ) as a function of gie with transitions between
regimes of different numbers of clusters marked by dashed red lines. D
A 4-cluster solution for ω = 0.006, gie = 2.52, ε = 0.1. E A 3-cluster
solution for ω = 0.006, gie = 2.53, ε = 0.1

3.2.5 Existence and stability of clustered solutions

Recall condition Eq. (6) which gave an estimate for the max-
imal number of clusters. Combining Eqs. (6), (13) and (17)
we derive an explicit estimate for the toy model:

(k − 1)(Tmin + δE + δI ) < 1/ω − (δE + δI ), (19)

where Tmin is given by Eq. (13). Note that Eq. (19) depends
in a very significant way on ω, but it also depends on the
maximal conductance of inhibition gie and on the decay
time constant of inhibition τ . There are many reasons why
Eq.(19) would give a too high estimate. One such reason is

that clusters should be sufficiently large to cause a spike of
the I cells. The estimate can also be too low if Eq. (17) is
not accurate. The strength of inhibition may also have an
influence on the stability of clustered solutions. Inhibition
has the effect of bringing together the cells in each cluster.
In other words, sufficient inhibition is necessary for stabil-
ity of clustered solutions (see Eq. (23)). Hence if gie is too
small, the rhythm may be unstable.

In the sequel of this section we consider the limit of ω
going to 0 with g simultaneously adjusted to keep the quan-
tity ω(Tmin + δE + δI ) constant. Heuristically, this means
that we keep the number of clusters constant but increase
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the strength of inhibition and thus the strength of the ‘river
effect’.

The phase space of Eq. (3) is given by points of the form
(θ1, . . . , θN, w1, . . . , wM), where N is the number of E-
cells and M the number of I-cells (for simplicity of notation
we suppress the dependence of phase points on synaptic
variables). In this work we assume that the I-cells are in the
excitable regime but very close to the firing threshold so that
they fire as soon as the spike from the E-cells arrives. We
will also assume that there is no delay of the arrival of the
inhibition to the E-cells (δI = 0). On the other hand we will
keep the delay of the arrival of excitation as positive. This
is necessary to ensure that the E-cells that are very close
can form clusters (the cell slightly behind can spike without
being stopped by inhibition). To simplify the notation we
will write δ = δE > 0. We also only consider the value of k
which is maximal to satisfy Eq. (19). With these convention
we re-write Eq. (19) to obtain

ωδ < 1 − (k − 1)ω(Tmin + δ)) < ω(Tmin + δ)+ ωδ. (20)

We define θmin = ω(Tmin + δ) and re-write Eq. (20) in
the form:

ωδ < 1 − (k − 1)θmin < θmin + ωδ. (21)

Note that for fixed θmin and ω estimate (21) defines a unique
k, except for the cases when one of the inequalities becomes
an equality for some integer k.

We now introduce the subset Ck of the phase space cor-
responding to k-cluster states. Elements of Ck are defined
as follows: for each p = (θ1, θ2, . . . θN , w1, . . .wM) ∈ Ck

there exist θc1 , . . . θ
c
k , and indices 1 = j1 < j2 < . . . <

jk < jk+1 = N such that θj = θcl for jl ≤ l < jl+1. Note
that jl+1 − jl gives the number of elements in cluster j and
θl is the common value of θ corresponding to each cluster.
Thus defined clusters are ordered but for non-ordered clus-
tered one could apply the same arguments by re-numbering
the equations.

Theorem 1 Let k be an integer satisfying (21). Then, pro-
vided that ω is sufficiently small and g is adjusted so that
θmin stays constant, system (2) has a stable k-cluster peri-
odic solution and does not have a periodic solution with
more than k clusters.

Proof We define sections �j by the condition θj = ωδ

(the j th neuron is at time δ after its reset value, which cor-
responds to the moment of the arrival of inhibition). We will
search for cluster states as fixed points of the return map
from �1 to itself. By definition, points in �1 have the form
(ωδ, θ2, . . . θN, w1, . . . , wM), points in �2 have the form
(θ1, ωδ, . . . θN, w1, . . . , wM), etc. We consider firing maps
π
f
j,l mapping �j to �l ; these maps are defined for states

in �j for which cell l will be the first one to fire, with the

image given by the solution at t = δ after the spike of the l-
th cell. We look for cluster states obtained by application of
composition of firing maps corresponding to different clus-
ters. For an initial condition in �1 ∩ Ck we assume that
the k-th cluster fires first, then cluster k − 1, and so on,
in decreasing order. An argument for firing events occur-
ring in in a different order is similar and will be omitted.
We identify elements of Ck with the sequences (θc1 , ..., θ

c
k )

and (j1, . . . , jk+1). We define firing maps π
f
l as π

f
jl+1,jl

(N + 1 ≡ 1 and k + 1 ≡ 1), i.e. cluster l − 1 fires after
cluster l.

Let pl = (θ
c,l
1 , . . . , θ

c,l
m ), m ≥ k be a sequence of cluster

states corresponding to a fixed point of the return map, i.e.
p2 = π

f

k (p1), p3 = π
f

k−1(p2), . . ., pm = π
f

2 (pm−1) and

p1 = π
f

2 (pm). Note that θc,j1 ≥ ωδ + jω(Tmin + δ), since
the time between consecutive firings is at least Tmin + δ.
By Eq. (20) cluster 1 must be the one to fire next, see
Proposition 1. Hence a cluster with more than k states
cannot exist.

We now prove that Eq. (20) is sufficient for the existence
of k clusters. We consider the sequence (θc1 , . . . , θ

c
k ) satisfy-

ing θcj = ωδ+ (j−1)θmin, j = 1, . . . , k−1, and consider a
state p with k clusters (approximately the same size) defined
by this sequence, with w1 = w2 = . . . wM = we, where we

is the excitable equilibrium of the QIF model governing the
dynamics of the I-cells. By Eq. (21), θck is the only one of
the θcj ’s to satisfy 1 − θmin < θck < 1, hence the kth cluster
will be the first one to fire. By Proposition 1 the spike will
happen approximately at t ≈ Tmin and the time cluster k

reaches section �k will be t ≈ Tmin + δ. Let p2 = π
f

k (p) =
(θ

c,2
1 , . . . , θ

c,2
k−1, ωδ). Clearly θ

c,2
k−1 ≈ ωδ + (k − 1)θmin. By

the same argument cluster k − 1 fires next and we can con-
struct the point p3 = π

f

k−1(p2), etc., until we obtain pk

equal to the image of p by π
f

1 π
f

2 . . . π
f

k and very close to
p. Let V be a small neighborhood of p in the phase space. If
V is small enough than the return map restricted to V equals
π
f

1 π
f

2 . . . π
f
k , and is a contraction, by Proposition 2. Hence,

by the contraction mapping theorem, a stable k-cluster state
exists.

Proposition 1 Fix θ∗ satisfying

1 − ωTmin < θ∗ < 1.

Suppose that ω converges to 0 with g increased simultane-
ously so that ωTmin stays fixed. Let T∗ be the time needed for
the solution of Eq. (10) with θ(0) = θ∗ to reach the firing
threshold. Then T∗ converges to Tmin as ω approaches 0.

Proof Let θ(t) denote the solution of Eq. (10) with
θ(0) = θ∗. Let

T1 = 1 − θ∗
ω

.
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If T1 < TSN then s(T1) > sM . In this case, by Proposi-
tion 2, the solution θ(t) will be attracted to the solution of
Eq. (10) with initial condition θl = (1−ωT0) and will spike
at T ≈ Tmin. By definition of θ∗ we have (1− θ∗) < ωTmin.
Since Tesc does not depend on ω and g, ω(TSN −Tmin) → 0
as ω approaches 0 with g adjusted so that ωTmin stays fixed.
It follows that, for ω sufficiently small (1 − θ∗) < ωTSN.
The result follows.

Proposition 2 Let θ1(t) and θ2(t) be two trajectories of
Eq. (10) and suppose that there exists 0 < t1 < TSN with
θl < θj (t1) < θM , j = 1, 2, where θl = 1 − ωT0. Suppose
that s1 = s(t1) > sM .The following estimate holds at the
time of the spike:

|θ1(t)− θ2(t)| ≈ C|θ1(0)− θ2(0)| (22)

where

C = e
− 1

ε

∫ s1
sM

f ′((θ0(σ ))/ω−1+T0)dσ , (23)

and θ0(s) is the parametrization of the curve ω−sf (θ) = 0.

Proof By Fenichel theory (Fenichel 1979) there exists a
slow manifold of Eq. (10) which is O(ε) close to the curve
ω − sf (θ) = 0. Such a slow manifold is sometimes called
river, see Börgers and Kopell (2003). Let θε,0 be such that
(θε,0, 1) is on the slow manifold and let (θε(t), s(t)) be the
solution of Eq. (10) satisfying (θ(t), s(t)) = (θε, 1). Note
that (θε(t), s(t)) parametrizes the Fenichel slow manifold.
The linearization of Eq. (10) is given as follows:

dv

ds
= −sf ′(θ0(s))v

ds

dt
= −εs; s(0) = 1; (24)

or

dv

ds
= 1

ε
f ′(θε(s))v (25)

Fig. 12 Clustered solutions coexisting for the same parameter val-
ues A MT PING, solution with four clusters, existing for I = 4,
gAHP = 2.3 and gie = 1.7. B MT PING, solution with three clusters,

existing for I = 4, gAHP = 2.3 and gie = 1.7. C Phase PING, solu-
tion with four clusters, existing for ω = 0.006, gi.e. = 2.1. D Phase
PING, solution with three clusters, existing for ω = 0.006, gi.e. = 2.1
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We replace θε(s) by θ0(s), which is the the curve obtained
by solving the equation ω− sf (θ) = 0 for θ as a function of
s. We replace θε(s) by θ0(s) in Eq. (25), this incurs an error
of O(ε). We obtain

dv

ds
= 1

ε
f ′(θ0(s))v (26)

A solution to Eq. (26) on an interval [s1, s2] is given by

v(s) = v0e
− 1

ε

∫ s2
s1

f ′(θ0(σ ))dσ (27)

In other words the vector v(s) contracts with the rate

C(s1, s2) = e
− 1

ε

∫ s2
s1

f ′(θ0(σ ))dσ . (28)

Now note that all the solutions of Eq. (10) starting in the
interval [θl, 1], with s < smax are attracted to the Fenichel
slow manifold, hence any two such solutions have to attract
each other with the rate given approximately by Eq. (28).

In Fig. 11 we show a transition between the regimes of
5-cluster, 4-cluster and 3-cluster oscillations. Let

kmax = 1/ω − (δE + δI )

Tmin + δE + δI
+ 1. (29)

Clearly, the condition (19) is equivalent to k < kmax.
For the example shown in Fig. 11 the transition from five
to four clusters occurs for kmax ≈ 5.09 and the transi-
tion from four to three clusters occurs for kmax ≈ 4.09.

Hence, for these parameter values, the condition (19) gives
a quite precise approximation of the maximal number of
clusters.

3.2.6 Co-existence of cluster solutions and the effect
of E → E connections

Estimate Eq. (6) does not exclude the existence of multi-
ple stable cluster solutions. In fact there can exist solutions
which have fewer clusters than given by the maximal k sat-
isfying Eq. (6). Solutions with different number of clusters,
co-existing for the same parameter values, are shown in
Fig. 12 for both MT PING and phase PING.

The situation is even more complicated if E → E con-
nections are included in the model (gee > 0). Figure 13,
panel A shows a solution of the MT PING model in the
presence of E → E connections and in the absence of
inhibition (gie = 0) resulting from a simulation starting at
a phase distributed initial condition. Clearly the E cells all
spike at approximately the same time. If inhibition is ’turned
on’, i.e. the simulation is restarted with gie > 0, this solu-
tion remains stable, as inhibition arriving after the spike of
the E-cells will have decayed before the E-cells return to
the region where they can be affected by inhibition. How-
ever, if we perturb the synchronous state by adding a random
perturbation then the resulting solution converges to a clus-
tered state arising due to the action of the river mechanism
as described at the end of Section 3.1.1 and in the proof
of Theorem 1. Such a cluster solution is shown in Fig. 13,
panel B.

Fig. 13 E → E connections (gee > 0) provide a synchronization
mechanism complementary to the river picture, enabling coexistence
of stable solutions with full synchronization of E-cells and cluster solu-
tions. A Solution of the MT PING model obtained for gee = 0.3
and gie = 0. The simulation was started at phase-distributed initial

condition. B Four cluster solution of the MT PING model obtained for
gee = 0.3 and gie = 0.5. The initial condition was obtained by a (suf-
ficiently large) random perturbation of the solution shown in panel A.
A synchronized solution still exists, (not shown) but has a small basin
of attraction
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Fig. 14 Clustered solutions of the MT PING model with shunting
inhibition, with vrev = −65, gie = 1.5 and the drive to the E-
cells I = 1.1. The left panel shows a solution with three clusters,

corresponding gAHP = 0.35 (maximal conductance of the AHP
current) and the right panel shows a solution with four clusters,
corresponding gAHP = 0.45

3.3 Effects of shunting inhibition, MT PING

Since GABA-ergic inhibition can be shunting or partially
depolarizing, with the reversal potential possibly close to
or above the resting voltage of the cell, we have carried
out simulations with EGABA = −65mV . We expected that
introducing shunting inhibition would reduce the interval
of voltage values for which inhibition is effective, adding

robustness to to the clustering effect, but the extent to which
this was true was a surprise. Clustered solutions could be
found at much lower values of gAHP than for the hyper-
polarizing case, see captions of Figs. 3 and 14. Moreover,
oscillations with many clusters (four or five) could easily be
found; thus the firing rate of individual pyramidal cells was
less than 10 Hz for relatively small values of gAHP. Raster-
grams for rhythms with three and four clusters are shown in

Fig. 15 Clustered solutions of the phase PING model with ω = 0.0075, gie = 0.3, ε = 0.1. A Shunting inhibition. B Hyperpolarizing inhibition
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Fig. 14. We note that the same strength of adaptation for the
hyperpolarizing inhibition case leads to 0 clusters (global
synchrony).

3.4 Effects of shunting inhibition, phase PING

Recall that to introduce the effect of shunting inhibition
we modify the phase PING model by replacing the term
f ((θl−θleft)/ω) in the first equation of Eq. (3) with f ((θl−
θleft)/ω)σ(θ), where σ is given by Eq. (5) (see end of
Section 2.3 for the explanation of our modeling approach).

In Fig. 15 we show two oscillations, one for the phase
model with shunting inhibition, as introduced above, and
one for the original model. Note that ω is very low, yet in the
case of shunting inhibition, an oscillation with fairly large
gamma frequency is obtained.

4 Discussion

In this paper we have studied a PING model of gamma
rhythm allowing for the existence of a rhythm with the exci-
tatory (pyramidal) cells firing in clusters. We have shown
how biophysical parameters, like the strength of the adap-
tation current, the strength of inhibition and the amount of
external input can facilitate a transition between a rhythm
where the pyramidal cells are synchronized and a clus-
tered gamma, which we associate with weak gamma. Our
work concerns the case of strong inhibition, as presented in
Börgers and Kopell (2003). We have also shown that clus-
tered gamma is more likely to arise if inhibition is shunting
rather than hyperpolarizing.

In a recent study, Kilpatrick and Ermentrout (2011) also
considered the clustered gamma oscillations, but concen-
trated mainly on the effect of the adaptation current. In our
paper we obtain complementary results, exploring the effect
that inhibition has on the formation on clusters and sta-
bility of clustered oscillations. We follow the approach of
Börgers and Kopell (2003, 2005), using the fact that the time
constant of inhibition is large as compared to the excita-
tion. In addition, we rely on the assumption that the period
of the pyramidal cell is very large, much larger than the
time constant of inhibition. Thus there are three timescales
in the system, with the ratio, approximately, 2:10:50.
These assumptions form the basis of our perturbation
analysis.

We focus on describing how the parameters of the sys-
tem mediate the transitions between synchronous and clus-
tered states. These parameters correspond to biophysical
factors: the strength and the reversal potential of inhibi-
tion, the strength of the external input and the strength
of the adaptation current. Various neuromodulators (as, for
example acetylcholine, (Stiefel et al. 2009)) influence these

parameters and could influence the type of gamma oscil-
lation occurring at a particular moment. We know that
adaptation currents are decreased by increasing the lev-
els of acetylcholine (Stiefel et al. 2009). During bouts of
increased cholinergic modulation one could expect seeing
gamma with decreased number of clusters (increased syn-
chronization). Other factors, like the cortical area where the
oscillation is taking place, could also be a factor, since the
cellular properties of pyramidal cells and interneurons as
well as the synaptic properties could differ.

In this paper we considered a PING model with pyrami-
dal cells being oscillators and interneurons being excitable.
Complementary model of gamma oscillations is called ING,
where the interneurons are oscillators. In the context of
ING it is assumed that the drive feeds into the interneu-
ron network and the projections from the pyramidal cells
are negligible. Therefore an ING model consists only of
interneurons. Bartos et al. (2007) showed that shunting inhi-
bition plays an important role in stabilizing the synchronous
oscillation, whereas Jeong and Gutkin (2007) suggested that
for weak coupling shunting inhibition can promote cluster-
ing. It is an interesting question what happens to clustering
in a population of pyramidal cells which receive input from
such an interneuron network. As a follow-up of this work we
intend to investigate clustered oscillations in such pyramidal
cell networks.
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Appendix: Review of the result of Krupa
and Szmolyan (2001) and the estimate of Tesc

Consider
dx

dt
= f (x, y) = −y + x2 +O(xy, x2)

dy

dt
= −ε(1 +O(x, y)). (30)

Note that system (30) has the same form as system (2.5)
in Krupa and Szmolyan (2001). The following estimate is
a consequence of Theorem 2.1 and Remark 2.11 in Krupa
and Szmolyan (2001). Let 
0 be the smallest positive zero
of the function

J−1/3

(
2z2/3

3

)
+ J1/3

(
2z2/3

3

)
,
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where J−1/3 (resp. J1/3) are Bessel functions of the first
kind.

Proposition 3 Let y0 ≥ 0 and x0 < 0 satisfy f (x0, y0) = 0.
Also fix δ > 0. Consider a family of solutions of Eq. (30)
with initial conditions x(0) = x0 + O(ε) and y(0) = y0.
Let (δ, h(ε)) be the intersection point of this trajectory with
the line x = δ. Then, for sufficiently small δ,

h(ε) = 
0ε
2/3 +O(ε ln ε). (31)

Now let T be the time needed for a trajectory with initial
condition x0 < 0, y0 = 0. It follows from Eq. (31) and the
form of Eq. (30) that εT ≈ −
0ε

2/3. It follows that

T ≈ −
0ε
−1/3. (32)

By scaling the variables and time (30) can be brought to the
form Eq. (15) and estimate Eq. (16) can be obtained.
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