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Abstract. We discuss two examples of classical mechanical systems which can become quan-
tum either because of degeneracy of an integral of motion or because of tuning parameters
at resonance. In both examples, the commutativity of the symmetry algebra is breaking, and
noncommutative symmetries arise. Over the new noncommutative algebra, the system can re-
veal its quantum behavior including the tunneling effect. The important role is played by the
creation-annihilation regime for the perturbation or anharmonism. Activation of this regime
sometimes needs in an additional resonance deformation (Cartan subalgebra breaking).
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1. INTRODUCTION

All systems are quantum. In this paradigm the term “quantization” can be understood as “mak-
ing the quantum behavior visible”.

Usage of classical mechanics instead of quantum one is possible only due to smallness of the
effective Planck scale of the system, when the quantum properties are ignorable.

Let us consider such a classical system and introduce a small smooth distortion into it. Would
the system remain to be classical?

If the effective Planck scale is comparable with the scale of distortion, then the answer to this
question is, in general, “no”. Simple examples (which we demonstrate below) show that the classical
behavior of the system can change dramatically and the hidden quantum behavior can reveal itself.

For instance, some trajectories of the system can be damped by the decay of quantum probability
or can be translocated by quantum tunneling, the discrete spectrum of some observable can become
“visible”, etc.

A source (a mechanism) of such a quantum incarnation is the breaking of commutative symme-
try and the bearing of a noncommutative symmetry structure. This can happen if the energy of
the system degenerates near some values of integrals of motion. In this case, deviations and per-
turbations along the degeneracy directions decelerate the dynamics (make de Broglie wavelength
bigger) and become responsible for quantum transfers due to creation-annihilation process over the
symmetry algebra factorized by its Cartan subalgebra.

Another mechanism is switched on if the parameters controlling the system occur to be at
resonance values. In this case, the quantum behavior of the system is revealed under an additional
symmetry breaking which works similarly to the Higgs boson in the standard model: it breaks
the symmetry Cartan subalgebra and turns the anharmonism and perturbations into the creation-
annihilation regime.

2. FIRST EXAMPLE: DECELERATION IMPLYING QUANTIZATION

Let us consider a particle with two degrees of freedom described by the Hamiltonian

H =
1

2
(p2x + p2y) + V (x) + ε2W (y, x) (2.1)
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over the phase space with canonical Poisson brackets {px, x} = {py, y} = 1. The potential V is
assumed to be a well so that all trajectories of the Hamiltonian

H0 =
1

2
p2x + V (x) (2.2)

are periodic over a certain interval of energies; for instance, H0 can be just an oscillator. The
perturbation potential W in (2.1) is assumed to be negative and have a compact support. It
generates a wobbling of the oscillator trajectories.

Until the values of the momentum py are not small, the influence of the perturbation ε2W
in (2.1) is insignificant. But in the domain where py = O(ε), the wobbling potential can significantly
decelerate the particle in the y-direction making its de Broglie wave length 1/ε times bigger. Thus
if the small scale ε correlates with the scale of the effective Planck constant h, then the particle
becomes a wave in the y-direction.

Mathematically, we have to consider the quantum version of (2.1) by replacing p → p̂ = −ih∇,
where ∇ = (∇x,∇y), and set ε = h. The Hamiltonian becomes

Ĥ = Ĥ0 + ε2
(
− 1

2

∂2

∂y2
+W (y, x)

)
, (2.3)

where
Ĥ0 =

1

2
p̂2x + V (x), p̂x = −iε

∂

∂x
. (2.4)

One can see that in y-direction the Hamiltonian does not contain any small parameter at the

kinetic energy term − 1
2

∂2

∂y2 . Thus, the properties of this system along the y-direction are purely

quantum (or wave-like).
The properties along the x-direction can still be treated as classical because of presence of a

small parameter ε in the momentum p̂ (2.4).

Note that the x-dependence of the potential W in (2.3) can be replaced by H0-dependence using
the operator averaging transformation [1]. Namely, let us consider a unitary operator

U = exp(−iεĈ − iε2D̂) (2.5)

and choose the generators Ĉ, D̂ in such a way that U−1ĤU commutes with Ĥ0 up to O(ε4). We

can construct Ĉ, D̂ in the form
Ĉ = C(x, p̂x), D̂ = D(x, p̂x), (2.6)

where C(x, px) and D(x, px) are some operators in the y-space depending on x, px as parameters.
Let us compute

U−1ĤU = Ĥ0 + ε2Ĥ2 + ε3Ĥ3 +O(ε4), (2.7)

where

H2 = −1

2

∂2

∂y2
+W − {H0, C}x,px , (2.8)

H3 = i
[
C,−1

2

∂2

∂y2
+W

]
− i

2

[
C, {H0, C}x,px

]
− {H0, D}x,px . (2.9)

Here the brackets {·, ·}x,px are taken by x, px-coordinates, and the commutators [·, ·] are taken over
the y-space.

From (2.8) one can see that, by solving the homological equations

{H0,W
#}x,px

= W −W, {H0,W}x,px
= 0, (2.10)

the operators H2 and C become

H2 = −1

2

∂2

∂y2
+W, C = −1

2

∂2

∂y2
+W#. (2.11)

The function W can be defined by averaging along the trajectories of the Hamiltonian flow
γt
H0

(x, px) in the x, px-space:

W (y,H0)
def
=

1

T

∫ T

0

W (y, γt
H0

(x, px)) dt, (2.12)
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where T = T (H0) is the period of trajectories for the Hamiltonian H0. Under this choice, the
function W# in (2.10) is given by

W#(x, px) =
1

T

∫ T

0

W (y, γt
H0

(x, px))
(
t− T

2

)
dt. (2.13)

In the same way, from (2.9) we choose

H3 = −i
∂W

∂y

∂

∂y
− i

2

∂2W

∂y2
,

D = −i
∂W&

∂y

∂

∂y
− i

2

∂2W&

∂y2
, W& def

=
1

2
W# − (W#)#. (2.14)

Lemma 2.1. By using the operator U (2.5), (2.6) with C and D given by (2.11), (2.13), and
(2.14), one can transform the Hamiltonian (2.3) to the form

U−1ĤU = Ĥ0+ε2
(
− 1

2

∂2

∂y2
+W (y, Ĥ0)

)
+ε3

(
−i

∂W

∂y
(y, Ĥ0)

∂

∂y
− i

2

∂2W

∂y2
(y, Ĥ0)

)
+O(ε4). (2.15)

Here the averaged potential W (y,H0) is determined by (2.12).

It follows from (2.15) that the discrete eigenvalues λE
k of the operator − 1

2
∂2

∂y2 + W (y,E) gen-

erate discrete series of corrections to the (x, px)-classical Hamiltonian: H0 + ε2λH0

k + O(ε3), and
therefore instead of the oscillator frequency wobbling one obtains discrete frequency jumps: 2π

T (1+

ε2∂λH0

k /∂H0 +O(ε3)).

But really dramatic consequence is that the eigenstates dispersion or the tunneling translocations
in the potential well W (y,H0) completely change the classical behavior of the dynamics making it
wave-like or quantum in the y-direction.1

Let us look, for instance, at the Heisenberg equation
∂F̂

∂t
=

i

~
[Ĥ, F̂ ]. (2.16)

In the usual semiclassical approach, the commutator can be replaced by the Poisson brackets
i
~ [·, ·] → {·, ·}+O(h2) (under the Weyl correspondence) and Eq. (2.16) is reduced to

∂F

∂t
= {H,F}+O(h2).

Even on the long-time scale t ∼ 1/h, this equation is well approximated by the classical Liouville
equation. The presence of the perturbation W in (2.1) plays no role in these standard arguments.

But actually in the phase space domain where py = O(h), the commutator i
h [W, F̂ ] differs from

the Poisson brackets {Ŵ, F} significantly, and the presence of the perturbation W does not allow
one to approximate the quantum system by the classical one. The above Lemma 2.1 implies that,
on the 1/h-time scale, the solution of the Heisenberg equation is not approximated by the solution
of the classical Liouville evolution.

Theorem 2.1. On the long-time scale t = τ/h, the asymptotics as h = ε → 0 of the solution
to equation (2.16) with the Hamiltonian (2.1) and the initial distribution F |t=0 = f0(x, y; px, py/h),
where f0 ∈ C∞

0 , is given by

F = fτ (x, y; px, py/h), fτ
def
= γ

τ/h
H0

Γτ
H2

f0 +O(h).

Here γt
H0

is the classical evolution in the (x, px)-space and Γτ
H2

is the quantum Heisenberg evolution
along y-direction with the Hamiltonian H2 (2.11).

Note that the geometric source of this quantization effect originates from the degeneracy of the
Hamiltonian 1

2 (p
2
x + p2y) + V (x) on the hypersurface {py = 0}: at small py, this Hamiltonian is

1Possible physical model: curved wave-guides [11] (in this case, x is the geometrical optics cross-coordinate and y
the quantum mechanics longitudinal coordinate, and the potential W is generated by the curvature).
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approximated by H0 up to O(p2y). Also remark that in the whole phase 4D-space the Hamiltonian
H0 (2.2) has a noncommutative symmetry algebra in contrast to the original one (2.1) at ε = 0
whose symmetry algebra is commutative.

The quantum behavior manifests itself along symplectic leaves of the symmetry algebra of H0.
These leaves open new degrees of freedom which are a priori quantum, but their quantum properties
are indeed activated only if the reduced system over the symmetry algebra is based on a creation-
annihilation process.

3. SECOND EXAMPLE: RESONANCE AND SYMMETRY BREAKING

The main mechanism to obtain a noncommutative symmetry is to tune a system to a reso-
nance. The main mechanism to activate the creation-annihilation process is to distort commutative
symmetry. Resonance plus distortion trigger classical systems to be quantum.

It is well known that, for Hamiltonians like H(q, p̂) (where p̂ = −ih ∂
∂q ) whose eigenvalues Ek

are simple (not degenerate), the asymptotics of Ek as h → 0 can be obtained by the Weyl rule:
1

(2πh)N

∫
H6Ek

dpdq ≈ k,

where 2N is the dimension of the (q, p)-space (see, for instance, in [2], formula (5.28)). In this case,
the typical spectral gap is estimated as

∆E ∼ hN . (3.1)

The estimation (3.1) is applicable out of the degeneracies of H, for instance, out of equilibrium
points near which the creation-annihilation regime is working and multiplicity of eigenvalues can
appear due to resonances.

At the same time, for systems with periodic flow, we have the Planck discretization rule
1

2πh

∮
H=Ek

p dq ≈ k,

where the integral is taken along a closed trajectory belonging to the energy level Ek. In this case,
the spectral gap is estimated as

∆E ∼ h (3.2)
for any dimension N . Of course, the difference in asymptotic estimations (3.1) and (3.2) appears
due to the strong degeneracy of eigenvalues in the periodic case. The degeneracy is related to
the volumes of symplectic leaves of the noncommutative symmetry algebra, So, for systems with
N > 1 degrees of freedom, the periodicity of trajectories becomes a mechanism needed to make the
spectral gaps bigger (against the chaotic case), and thus to make the system “more quantum”. In
the opposite way, small spectral gaps are negligible in experiments and the corresponding system
can be considered as classical, not quantum.

For multidimensional harmonic (oscillator) systems, the periodicity of trajectories appears due to
a resonance between frequencies. Thus, the resonance can trigger the quantum behavior of systems
which are treated as classical out of resonance.

In the situation of real systems which are, in general, not harmonic, their anharmonic parts,
after averaging, play the role of effective quantum Hamiltonians over noncommutative symmetry
algebras related to the resonance harmonic parts. But one has to keep in mind that additional
symmetries are able to erase the resonance effect by arranging the effective Hamiltonians just on
the (commutative) Cartan symmetry subalgebra. In this situation, the noncommutativity can be
saved by specific distortion or symmetry breaking which creates a secondary resonance and places
the effective Hamiltonians to the creation-annihilation regime.

Let us consider, as an example, the electron confined in the planar Penning trap [3–6]. The
trap is formed by a homogeneous magnetic field and by a saddle electric potential generated by
three concentric electrodes placed on a plane. In the usual constructions, the magnetic field is
directed along the perpendicular to the plane. The Hamiltonian has the form of a 3D-harmonic
oscillator plus an anharmonic part of the electric potential. The values of the voltage W on the
band (ring-like) electrode of the trap and the magnetic field strength B determine the frequencies
of the oscillator.

Out of frequency resonance, the energy gaps of the electron in the Penning trap are estimated as
∆E ∼ µB ·h2. Here µ = e~/mc is the Bohr magneton and h is the effective Planck constant related

to the magnetic length ρ0 =
√
~c/eB and the inner scale ρ1 of the band electrode as follows:
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h = (ρ0/ρ1)
2, h ≪ 1.

Even for strong enough magnetic field B ∼ 0.6T (i.e., ρ0 ∼ 30 nm) and even for very micro scale of
the trap ρ1 ∼ 300 nm (i.e., h ∼ 10−2), the spectral gaps in the nonresonance case

∆E ∼ 0.6 · 10−8 eV (3.3)

are “invisible”. Therefore, the nonresonance Penning traps are classical systems.
In the papers [7–9], we have suggested to use the basic hyperbolic resonance 2 : (−1) : 2

in the Penning oscillator. This means the following relation between parameters of the trap:

(ρ1ρ
2
2)

−1/3
√

mc2W
eB2 = 2

3
√
3
.

The Hamiltonian of such a resonance trap looks as
µB

(
L0/3 + ε · cubic + ε2 · quartic +O(ε3)

)
. (3.4)

Here L0 is an action operator (oscillator) with spectrum n0 +1/2 (n0 ∈ Z), and the terms “cubic”,
“quartic”, and the higher ones are obtained from the anharmonic part of the electric potential near
the trap center. The small parameter ε = (ρ1/ρ2)

1/3 in (3.4) is determined by the ratio of the inner
to outer scales of the band electrode. In order to keep the micro scale of the trap, we assume that
ρ2 ∼ 10µm, ε2 ∼ 10−1.

By applying the averaging transformation similar to (2.5), the Hamiltonian (3.4) can be reduced
to

µB
(
L0/3 + ε2h

∑
j,k

cjkLjLk +O(ε4)
)

(3.5)

with mutually commuting action operators Lj and explicitly given coefficients cjk without reso-
nances. The spectral gaps are now estimated as

∆E ∼ µB · ε2h ∼ 0.6 · 10−7 eV. (3.6)

They are still too small and this system can be treated as classical.
Note that the leading resonance action L0 in (3.5) determines the quantum system whose de

Broglie wave length ρ1/3 is comparable with the scale ρ1 of the trap. But this quantum behavior
is erased under interaction with anharmonic parts of the electric potential. Due to this interaction,
the de Broglie wave length becomes ε

√
hρ1 which is much less than the scale ρ1.

The ε2-term in (3.5) is given on the Cartan subalgebra of the symmetry algebra for L0. This
fact places the ε2-term out of the creation-annihilation regime which could decelerate the electron
making its wave length to be ερ1 ∼ ρ1/3 comparable with the scale ρ1.

Note that the commutative structure like (3.5) appears in the Hamiltonian thanks to the presence
of axial symmetry.

Now, following [7–9], let us break this symmetry and deviate the magnetic field at a small angle
θ ∼ ε from the perpendicular to the plane of electrodes. Then the Hamiltonian (3.4) is changed as
follows:

µB
(
L0/3 + ε · quadratic + ε · cubic + ε2 · quartic +O(ε3)

)
. (3.7)

Here the additional “quadratic” term at the ε-order appeared due to contribution of ε-deviation of
the magnetic field.

By averaging the perturbation terms in (3.7), one obtains
µB

(
L0/3 + εf1(M) + ε2f2(M) +O(ε3)

)
, (3.8)

where M = (M1, . . . ,M5) are generators of the symmetry algebra for L0, i.e., [Mj , L0] = 0. Explicit
formulas for Mj and f1, f2 can be found in [9].

Now one could again apply the averaging procedure to (3.8) using f1(M) as the leading term.
But to do this, one needs a resonance in the term f1(M). Such a secondary resonance can be
obtained by a specific choice of the deviation angle θ = s · ε of the magnetic field. By keeping the
notation B for the magnetic field strength, we can take into account the deviation angle just by
perturbing the primary resonance condition as follows:

(ρ1ρ
2
2)

−1/3

√
mc2W

eB2
=

2

3
√
3

(
1− sε

4
− 2s2 − 1

4
ε2
)
. (3.9)

Under this relation, the ε-term in (3.8) reads f1(M) = L1/4 with an action like operator L1 whose
spectrum is 6n1 − n0 + 5/2− s/3, n1 ∈ Z+.
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By applying the averaging at ε2-terms in (3.8), we transform the Hamiltonian to

µB
(1
3
L0 +

ε

4
L1 +

ε2

h
Ê +O(ε3)

)
,

where the operator Ê belongs to the joint symmetry algebra of L0 and L1 (see details in [7–9]).
For fixed quantum numbers n0 and n1, this Hamiltonian is reduced to

µB
(1
3
(n0 +

1

2
) +

ε

4
(6n1 − n0 +

5

2
− s

3
) +

ε2

h
(αX̂ − βÂ2 − γnÂ+ δn) +O(ε3)

)
(3.10)

over the algebra with three generators obeying the commutation relations
[Â, X̂] = 2ihŶ , [Â, Ŷ ] = −2ihX̂,

[X̂, Ŷ ] = −ih(3Â2 + (2dn + 4h)Â+ hdn + 3h2).
(3.11)

All constants in (3.10) are explicitly known, α = 8/3s, β = 1289/1152s2, the constants γn and δn
are linear and quadratic in n = (n0, n1). The constant dn in (3.11) is given by dn = (n0−2n1+1)h.

The algebra (3.11) has the Casimir element

K̂n = X̂2 + Ŷ 2 − Â3 − (dn − 2h)Â2 − (dn + 4)hÂ− (dn + 2h)h2.

The Hamiltonian (3.10) is taken in the irreducible representation in which

K̂n = 0. (3.12)

The system (3.8)–(3.10) has one degree of freedom. The spectral gaps of the reduced Hamiltonian

Ên = αX̂ − βÂ2 − γnÂ+ δn (3.13)

have the other O(h), and thus the spectral gaps of the whole Hamiltonian are estimated as
∆E ∼ µBε2 ∼ 0.6 · 10−5 eV. (3.14)

The operator X̂ in (3.13) is the sum of the creation and annihilation operators in the algebra

with relations (3.11) (and Â is the operator from its Cartan subalgebra).
We have proved the following result.

Theorem 3.1. Let one break the axial symmetry by deviating the magnetic field by the angle
s · ε, and let the bi-resonance condition (3.9) hold for geometric and electromagnetic parameters
of the Penning planar micro-trap. Then the gaps between energy levels of the electron confined by
the trap are estimated by (3.14), i.e., become “visible”. These gaps are 103 times bigger than the
gaps (3.3) out of resonance, and 102 times bigger than the resonance gaps (3.6) without breaking
the axial symmetry. Thus, the symmetry breaking plus tuning at biresonance convert the classical
micro-trap to the quantum one.

Now let us note that if one varies the voltage W on the band electrode of the trap by adding
W + δW , where

δW/W ≈ ε2 · 3r
2s

, (3.15)

then the constant γn in the Hamiltonian (3.13) is replaced by γn + r (as well as an insignificant
constant is added to δn). Thus, varying the voltage W in the order ε2, we can strongly vary the
parameter γn; in particular, we can change its sign.

By making this sign negative and making |γn| big enough, one can obtain the separatrix en-
ergy level of the Hamiltonian En (3.13) on the symplectic leaf Ωn = {X2 + Y 2 = A3 + dnA

2}
corresponding to the irreducible representation (3.12).

Below the separatrix, each energy level {En = λ} consists of two closed curves (trajectories) on
the surface Ωn ⊂ R3. They are candidates for the quantum tunneling and bilocalization of quantum
states. Since En depends on the free parameter r from (3.15), the “avoided crossing” mechanism is
working and the quantum tunneling transfer indeed happens at the same resonance value r = r∗n.

The corresponding classical energy level λ (obeying the Planck–Bohr–Sommerfeld quantization

condition) is split into two eigenvalues of the operator Ên: λ−∆/2 and λ+∆/2 with
∆ ∼ exp{−S/h}, (3.16)

where S is the instanton under barrier action (see in [10]). Although the parameter h ∼ 10−2 is

very small, but if one chooses the energy λ to be
√
h-close to the separatrix level, then the action
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S becomes small as well, and the value of splitting (3.16) can be of order ∆ ∼ h3. In physical units
this value reads µBε2∆/h ∼ µBε2h2 (see in (3.10)). Thus the tunneling time is estimated as

T ∼ π~/µBε2h2 ∼ 10−6sec. (3.17)

Note that our tunneling-related pairs of closed trajectories of En are disposed in
√
h-neighborhood

of the separatrix which is a figure eight curve (its center is the unstable stationary point of En on
Ωn). In the classical approximation one can say that the tunneling effect actually happens between
two loops of this “eight”. The classical time to transfer from one loop of the separatrix to another
one equals to infinity. But the real tunneling time is given by(3.17).

Also note that the surface Ωn and the tunneling-related energy curves of En belong to the
symmetry algebra of the Penning trap Hamiltonian. The blow ups of these curves in the whole
6D-phase space are presented by the Liouville 3D-tori near which the real phase trajectories of
the electron are placed. In the classical limit these tori join to an eight-shape 3D-submanifold.
Two tunneling-related parts of this “3D-separatrix” are mutually intersected by the 2D-torus
corresponding to the separatrix center.

Corollary 3.1. By an additional tuning of the electric voltage W of the Penning trap at order
ε2, as in (3.15): r = r∗n, the quantum tunneling transfer between closed energy curves of En and

the bilocalization of states for the Hamiltonian Ên appear.
Therefore near the separatrix energy, after the double tuning (3.9) plus (3.15)(at r = r∗n), the

electron trajectories start the quantum tunneling transfers from near one part of the 3D-separatrix
to near another part of it in the 6D-phase space of the Penning trap. In the case of biresonance
microtrap described above the tunneling time is at scale of microseconds (3.17).

Thus, the strong quantum behavior of a classical system can arise just by breaking its commu-
tative symmetry and tuning its classical parameters to a resonance.
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