
Resilient Quicksort and Selection

Maxim Babenko1,2,� and Ivan Pouzyrevsky1,2,��

1 Moscow State University, Russia
2 Yandex, Russia

Abstract. We consider the problem of sorting a sequence of n keys in a
RAM-like environment where memory faults are possible. An algorithm
is said to be δ-resilient if it can tolerate up to δ memory faults during its
execution. A resilient sorting algorithm must produce a sequence where
every pair of uncorrupted keys is ordered correctly. Finocchi, Grandoni,
and Italiano devised a δ-resilient deterministic mergesort algorithm that
runs in O(n log n + δ2) time. We present a δ-resilient randomized al-
gorithm (based on quicksort) that runs in O(n log n + δ

√
n log n) ex-

pected time and its deterministic variation that runs in O(n log n +
δ
√
n log n) worst-case time. This improves the previous known result

for δ >
√
n log n.

Our deterministric sorting relies on the notion of an approximate k-
th order statistic. For this auxiliary problem, we devise a deterministic
algorithm that runs in O(n + δ

√
n) time and produces a key (either

corrupted or not) whose order rank differs from k by at most O(δ).

1 Introduction

1.1 Preliminaries

Recent trends in algorithm engineering indicate a rising demand for reliable
computations. Applications that make use of large memory capacities at low cost
face problems of memory faults [18,15]. Indeed, unpredictable failures known as
soft memory errors tend to happen more often with the increase in memory size
and speed [13,16]. Contemporary memory devices such as SRAM and DRAM
units are unreliable due to a number of factors such as power failures, radiation,
cosmic rays etc. The content of a cell in an unreliable memory can be silently
altered and for standard memory circuits there is no direct way for detecting
these types of corruptions.

Corrupted content in memory cells can affect many standard algorithms. For
instance, during a typical binary search in a sorted array a single corruption
encountered in an early stage of the search can cause the search path to endΩ(N)
locations away from its correct position. Data replication can help to combat
corruptions but is not always feasible since time and space overheads incurred
by storing and fetching replicated values can be significant. Memory corruptions

� maxim.babenko@gmail.com
�� ivan.pouzyrevsky@gmail.com

E. Hirsch et al. (Eds.): CSR 2012, LNCS 7353, pp. 6–17, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Resilient Quicksort and Selection 7

are of particular concern for applications dealing with massive amounts of data
since such applications typically run for very long periods of time and are thus
more likely to encounter memory cells containing corrupted data.

To design an algorithm that is provably resilient to memory corruptions,
Finocchi and Italiano [12] introduced the faulty memory random access machine,
which is based on a traditional RAM model. In this faulty model, memory cor-
ruptions can occur at any time and at any place in memory during the execution
of an algorithm, and corrupted memory cells cannot be distinguished from un-
corrupted cells. It is assumed that there is an adaptive adversary that chooses
how, where, and when corruptions occur. This model has a parameter δ that is
an upper bound on the number of corruptions the adversary can perform during
a single run of the algorithm. Motivated by the fact that processor registers are
considered incorruptible, O(1) reliable memory locations are provided.

This model also extends to randomized computations, where, as defined in [11],
the adversary does not see the random bits used by an algorithm. An algorithm
is said to be resilient if it works correctly despite memory faults. The notion of
correctness is stated explicitly for each possible kind of problem. For instance,
a correct resilient sorting algorithm must output all uncorrupted elements in
sorted order (while corrupted elements can appear at arbitrary positions in the
output).

Throughout the paper we use the notion of a trivially resilient storage, which
keeps its values in unreliable memory but still guarantees safety. This is achieved
by replicating each stored value in 2δ + 1 consecutive cells. Since at most δ of
copies can be corrupted, the majority of these 2δ + 1 elements remain uncor-
rupted. The correct value can be retrieved in O(δ) time and O(1) space with the
majority algorithm given [1] (which scans the copies keeping a single majority
candidate and a counter in a reliable memory).

The above notion of trivial resiliency is extended to algorithms. Each algo-
rithm that operates in a usual, non-faulty RAM model can be run in a faulty
environment and produce correct results. To this aim all its memory (containing
the input, the output, and the intermediate data) is kept in a trivially resilient
storage. This trick, however, comes at a cost — it multiplies the complexity by δ.
We shall be interested in alternative approaches that do not incur the δ-factor
overhead.

1.2 Previous Work

Several important results were achieved in the faulty RAM model [9]. Concerning
resilient dynamic data structures, search trees that support searches, insertions
and deletions in O(log n+δ2) amortized time were introduced in [10]. A resilient
priority queue was proposed in [14] supporting both insert and delete-min op-
erations in O(log n+ δ) amortized time. Furthermore, in [2] a resilient dynamic
dictionary implementing search, insert and delete operations in O(log n+ δ) ex-
pected amortized time was developed. Recently, Brodal et al. in [4] addressed
the counting problem in faulty memory proposing a number of algorithms with
various tradeoffs and guarantees.

8 M. Babenko and I. Pouzyrevsky

For the sorting problem, the following definition is crucial (cf.[12,11]).

Definition 1. A sequence is faithfully ordered if all its uncorrupted keys are
sorted.

Given a sequence S, a correct δ-resilient sorting algorithm must tolerate up to
δ faults, i.e. produce a faithfully ordered sequence obtained by permuting the
elements of S. (In presence of memory corruptions, getting a faithfully ordered
sequence is the best we can hope for.) In [11] Finocchi and Italiano devised
a deterministic δ-resilient algorithm that sorts n keys in O(n log n + δ2) time.
They also proved in [12] that under certain additional assumptions a resilient
comparison-based sorting algorithm must perform at least Ω(n logn + δ2−ε)
comparisons to sort a sequence of length n when up to δ ≤ n2/(3−2ε) (for ε ∈
[0, 1/2]) corruptions may happen.

In [17,7,8] a number of empirical studies were conducted showing that resilient
algorithms are of practical interest. The problem of combining external memory
and resilient algorithms is considered in [3].

1.3 Our Contribution

Firstly, we address sorting problem. In contrast to a merge-based approach de-
veloped by Finocchi, Grandoni, and Italiano, we investigate how the divide-and-
conquer strategy fits in the faulty memory model. In Section 2 we propose an
O(n log n + δ

√
n logn)-time randomized δ-resilient algorithm that sorts n keys

and its deterministic variation that runs in O(n log n + δ
√
n logn) worst-case

time. For δ >
√
n logn, the method we propose is asymptotically faster than

one in [11].
It may seem suspicious that our running time beats the lower bound from [12]

but one should not worry since our algorithm employs explicit data replication
and the analysis in [12] does not apply to this case. More details are given in
Appendix. Based on this we stress that there is a possible gap between the actual
complexity of the sorting problem in resilient setting and the bound proved in
[12]. This also indicates that a careful usage of data replication may be a key
to improving performance of resilient algorithms. In our case we were able to
improve performance for large δ.

To devise deterministic variation of quicksort we had to deal with the selection
problem. Hence in Section 3 we consider the problem of approximating the k-th
order statistic in a faulty environment. That is, our selection algorithm runs in
O(n + δ

√
n) deterministic time, tolerates up to δ faults, and produces a key

whose rank is off the desired k by at most O(δ). To the best of our knowledge,
this is the first result of such kind.

2 Randomized Sorting

In this section we develop a randomized resilient sorting algorithm (denoted by
Randomized-Resilient-Sort) that runs in O(n logn + δ

√
n logn) expected

time.

Resilient Quicksort and Selection 9

In contrast to Finocchi et. al. we develop a quicksort-like sorting algorithm.
The main obstacle for an algorithm of such kind is the lack of a resilient stack:
the adversary can mislead the recursive invocation and hence leave a part of
the sequence unsorted or processed more than once. In order to overcome this
problem, one could use a trivially resilient stack (i.e., as earlier, replicate each
pushed value 2δ + 1 times and use majority selection during pops). Quicksort
performs Θ(n) stack operations during its execution, which immediately leads
to Θ(δn) overhead. We propose simple modifications to quicksort that balance
resiliency and running time.

For our purposes the following notion will be of use:

Definition 2. A routine that gets a sequence S of length n and computes some
permuted sequence S′ is said to be a robust sorting algorithm if the following
properties are met: (i) if no memory faults occur during the execution, then the
routine runs in O(n logn) time and returns a sorted sequence (ii) otherwise the
routine still terminates in O(n log n) time (without any guarantees about the
output).

Note that robustness does not imply resilience. In fact, the output of a robust
routine may be arbitrarily off from the desired (due to memory faults).

The standard quicksort sorting algorithm is not robust since it employs re-
cursion. Recursive algorithm may behave unpredictably when run in a faulty
memory environment since a single stack corruption may cause the algorithm to
crash or, even worse, to enter an infinite loop. To overcome this issue, we maintain
a watchdog timer (implemented as a tick counter stored in a reliable memory).
If more than cn logn ticks elapse (where c is a sufficiently large constant chosen
based on the worst-case analysis), the algorithm terminates prematurely. In this
case at least one memory fault had occurred, so case (ii) from the definition
applies. We denote the resulting robust sorting routine by Robust-Sort. An
alternative approach to devise such a routine would be to use a non-recursive
mergesort.

Randomized-Resilient-Sort is recursive; it takes a sequence S of length n
and an additional parameter t. We choose t := �√n/ logn� (where n is the
length of the input at the top-most level of recursion). This t is treated as a
fixed parameter for the rest of the algorithm.

If n ≤ t, then apply Robust-Sort to S and validate its result by iterating
over S and comparing each element with the previous one (keeping the latter
in a reliable memory). If the sequence looks correctly ordered, then terminate
Randomized-Resilient-Sort. Otherwise restart by applying Robust-Sort
again.

Now suppose n > t. Like in a usual randomized quicksort, choose a pivot p
in S (independently and uniformly) and perform Partition of S around p.
Let the resulting subsequences be L (containing the values less than p) and R
(containing the values greater than p). If either |L| < n/4 or |R| < n/4, then
restart by picking another pivot and applying Partition again.

10 M. Babenko and I. Pouzyrevsky

Algorithm 1. Randomized-Resilient-Sort(S, t)

1: Let n := |S|
2: if n ≤ t then
3: repeat
4: S′ := Robust-Sort(S)
5: until S′ is ordered correctly
6: return S′

7: else
8: repeat
9: Choose a random pivot p in S
10: (L,R) := Partition(S, p)
11: until |L| ≥ n/4 and |R| ≥ n/4
12: L′ := Randomized-Resilient-Sort(L, t)
13: R′ := Randomized-Resilient-Sort(R, t)
14: return L′ ◦ (p) ◦ R′

15: end if

Otherwise recurse to L and R to obtain sorted subsequences L′ and R′. Use
trivially resilient storage for storing stack frames during recursive invocations.
Finally output the concatenation of L′, p, and R′.

Theorem 1. Randomized-Resilient-Sort produces a faithfully ordered se-
quence and runs in O(n log n+ δ

√
n logn) expected time.

Proof. The fact that the resulting sequence is faithfully ordered is obvious, so
we shall focus on estimating the time complexity.

Let n be the length of initial sequence S, n′ be the length of current sequence
in recursive invocation and also let n′′ denote the length of the sequence in
the parent call to Randomized-Resilient-Sort (if any). Consider case when
n′ ≤ t, which is handled in Steps 3–6. Note that n′′ > t and Step 11 ensures
that n′ ≥ n′′/4 > t/4. Hence during the whole computation Step 4 is applied
to at most 4n/t distinct and non-overlapping ranges. Not counting restarts due
to failed validation, this takes O(t log t · 4n/t) = O(n log n) time (since t < n).
There are at most δ restarts of Step 4, each taking O(t log t) = O(

√
n logn)

additional time.
Next consider the time spent to maintain the resilient stack. Due to the check

in Step 11 the recursion tree is nearly-balanced. Each leaf deals with a range of
length from t/4 to t, so (as indicated above) there are at most 4n/t leaf calls. The
total number of nodes in the recursion tree is also O(n/t), which is O(

√
n logn).

Therefore Randomized-Resilient-Sort performs O(
√
n logn) push and pop

operations in total, each taking O(δ) time.
It remains to bound the time spent in Steps 8–11. Each single Partition

takes O(n′) time but there may be multiple restarts due to unbalanced sizes of
L and R. Without memory faults, the uniform choice of the pivot ensures that
the correct sizes are observed with probability about 1/2 (see, e.g. [5]). Hence
the expected number of repetitions is constant. When faults are possible, the

Resilient Quicksort and Selection 11

analysis becomes more intricate since the adversary may corrupt keys and thus
force the algorithm to produce unbalanced partitions.

Without corruptions, it takes O(1) attempts to find a pivot p with rank in
[3n′/8, 5n′/8]. Now if the adversary corrupts less than n′/8 keys during this
iteration, p’s rank remains in [n′/4, 3n′/4], so the check in Step 11 succeeds (here
we use the fact that our random bits are unknown to the adversary). Assume
the contrary, i.e. at least α = n′/8 keys are corrupted (perhaps leading to an
unbalanced partition). Such a “large corruption” costs O(n′) = O(α) (sic!) time
(before another good pivot whose rank is in [3n′/8, 5n′/8] is picked). Summing
over all large corruption cases and using the fact that the sum of αs is bounded
by δ, one concludes that the additional overhead incurred by the adversary is
O(δ), which is negligible.

The desired bound of O(n log n+δ
√
n logn) follows by summing up the above

estimates. �	

3 Resilient Selection

In order to devise a deterministic variation of the quicksort we have to learn to
select a good pivot (like a median). From our perspective, following notions will
be of use:

Definition 3. Let S be a sequence of n distinct items. Let rkS(x) = rk(x) denote
the rank of x, i.e. the number of items in S that are less than or equal to x.
The k-th order statistic of S is an element x ∈ S such that rkS(x) = k. For
k = �n/2�, the k-th order statistic is referred to as the median.

In a usual RAM model finding the k-th order statistic in a sequence S of length n
is a widely studied problem. For instance, in [5] one can find a randomized O(n)
expected time algorithm and also a deterministic O(n) worst-case time “median
of medians” algorithm. Other methods are known that achieve better asymptotic
constants for the number of comparisons, see e.g. [6].

In a faulty environment it is impossible to compute the order statistic exactly.
Indeed, the adversary may corrupt keys just before the algorithm stops running
thus destroying the correct answer. To overcome this issue, we relax the notion
as follows:

Definition 4. Let S be a sequence. Then x is a Δ-approximate k-th order statis-
tic if |rkS(x)− k| ≤ Δ.

Note that in the above definition x need not be an element of S. This observation
is important since in the faulty memory model no algorithm can guarantee to
output an item belonging to the initial S (as corrupted and uncorrupted values
are indistinguishable). Extending the above argument one can see that for Δ < δ
computing a Δ-approximate k-th order statistic is impossible since the adversary
can alter an element’s rank for up to δ by corrupting elements less than or greater
than the element.

12 M. Babenko and I. Pouzyrevsky

Algorithm 2. Pivot(S,m)

1: Let n := |S|
2: Split S into k := �n/m� chunks C1, . . . , Ck of length m or m+ 1 each
3: for all chunks Ci do
4: repeat
5: Compute xi := Robust-Median(Ci)
6: until xi passes validation as the median
7: Put xi into a trivially resilient storage
8: end for
9: return Trivially-Resilient-Median(x1, . . . , xk)

There are algorithms for computing a Δ-approximate k-th order statistic.
Trivially resilient approach would be to replicate each element in 2δ + 1 copies
and run the standard linear time algorithm with resilient operations. This would
result in O(δn) time and O(δn) extra space. In particular case of median selec-
tion, we will refer to this algorithm as Trivially-Resilient-Median.

Interestingly, if we allow Δ = O(δ), then it is possible to solve the problem
in O(n+ δ

√
n) worst-case deterministic time and O(δ

√
n) space. Our method is

based on the “median of medians” algorithm [5]. However, extra care is taken
to make the algorithm resilient to memory faults.

As in Section 2 we define an analogous notion of robustness with the same
guarantees. Specifically, robust median selection routine either computes a me-
dian in linear time when there are no memory faults or terminates prematurely
in O(n) time without any guarantees on the output in the presence of memory
faults. To devise robust median selection routine we equip a standard algorithm
with a watchdog timer (as in Section 2). We denote the resulting robust routine
by Robust-Median.

We use Robust-Median (which runs in O(n) time) and also Trivially-
Resilient-Median (which runs in O(δn) time) to construct a new procedure
called Pivot.

Pivot gets a sequence S of length n and computes a value p as follows (a
pseudocode shown in Algorithm 2). The input sequence is divided into k chunks
of length either m or m + 1. This can be achieved by using a Bresenham-like
partitioning of n. We treat m as a parameter and set k := �n/m�. For each
chunk Ci, run Robust-Median, denote its output by xi, and store the latter
in a reliable memory. Due to memory faults xi may differ from the true median.
Run a validation of xi, that is, traverse Ci and count the number of elements
in Ci that are less than xi. If rkCi(xi)
= � 1

2 |Ci|�, then restart Robust-Median
computation for this particular chunk Ci.

Finally we get a value xi that “looks like” a true median of Ci. (Strictly speak-
ing, xi is the median of C′

i, where C
′
i consists of values of Ci that were observed

by the algorithm during the validation pass.) At this point the algorithm stores
xi in a trivially resilient storage (i.e. with replication factor 2δ+1) and proceeds
to the next chunk. When all the chunks are processed, we get a sequence of k

Resilient Quicksort and Selection 13

values x1, . . . , xk (each stored in a trivially resilient storage). The algorithm runs
Trivially-Resilient-Median for these values and outputs the result.

Lemma 1. Let α be the number of memory faults occurred during the execution.
Assuming that 2k + m < n/5, Pivot takes O(n + αm + δn/m) time and the
resulting value p obeys

rkS(p) ≥ n/5− α and rkS(p) ≤ 4n/5 + α (1)

Proof. Pivot takes O(km+δk) = O(n+δn/m) plus the time incurred by failed
validation passes. There are at most α such passes, each taking O(m) time. The
total time bound follows.

To prove (1), consider the chunks C1, . . . , Ck comprising S. For each chunk Ci,
the algorithm computes (and stores in a trivially resilient storage) a value xi,
which is a candidate for the median of Ci that had passed validation. This way,
xi may be viewed as the median of some fixed sequence C′

i (consisting of values
of Ci as they were observed by the algorithm during the validation pass). Such
C′

i is in a sense “virtual”: it may happen that at no moment of time the current
Ci coincides with C′

i. Since |C′
i| is either m or m + 1 there are at least �m/2�

elements in C′
i that are less than or equal to xi.

The returned value p is the median of x1, . . . , xk (the exact one since it is
computed in a trivially resilient fashion). Therefore at least �k/2� values among
x1, . . . , xk are less than or equal to p. Let S′ denote the sequence obtained by
concatenating C′

1, . . . , C
′
k. From the above estimates we can conclude that at

least Δ = �m/2� · �k/2� values in S′ are less than or equal to p. Then Δ ≥
(k− 1)(m− 1)/4 ≥ (n− 2k−m+1)/4 ≥ n/5 (since 2k+m < n/5). Finally note
that S and S′ differ in at most α positions. The proof for lower bound follows.
The proof for upper bound with can be obtained by reversing all inequalities
with proper modifications. �	
Note that in (1) ranks are considered w.r.t. the initial sequence S (before any
corruptions took place). However one can easily see that (1) remains true if S
denotes the values of the input sequence as they were observed at some (possibly
different) moments of time. Indeed, in the above proof S and S′ still differ in at
most α positions (since each mismatch corresponds to a memory fault).

Corollary 1. A pivot p satisfying (1) can be found in O(n+ δ
√
n) time.

Proof. Choose m := �√n�. Observe that k = O(
√
n) and α ≤ δ. We may assume

that n is large enough so 2k +m < n/5 and Lemma 1 applies. �	
Now we are ready to present Resilient-Select (see Algorithm 3 for a pseu-
docode). It takes a sequence S of length n (which is assumed to be large enough),
a parameter number k, and finds, in O(n+δ

√
n) time, an O(δ)-approximate k-th

order statistic in S.
Three cases are to be considered, depending on the magnitude of n.

1. Tiny case: n ≤ 5δ. The algorithm outputs an arbitrary key, e.g. S[1].

14 M. Babenko and I. Pouzyrevsky

Algorithm 3. Resilient-Select(S, k)

1: Let n := |S|, m := �√n	
2: if n ≤ 5δ then {tiny case}
3: return S[1]
4: else if 5δ < n ≤ 20δ then {small case}
5: return Pivot(S,m)
6: else {large case}
7: p := Pivot(S,m)
8: (L,R) := Partition(S, p)
9: if |L| ≤ k then
10: return Resilient-Select(L, k)
11: else
12: return Resilient-Select(R,k − |L|)
13: end if
14: end if

2. Small case: 5δ < n ≤ 20δ. Apply Pivot to S (using m := �√n�) and
output the resulting value.

3. Large case: n > 20δ. First, invoke Pivot (using, as above, m := �√n�) and
denote the resulting value by p. Second, perform Partition of S around p
into subsequences L and R; that is, enumerate the elements of S and put
those not exceeding p into L and the others into R. (For simplicity’s sake, we
assume that all elements are distinct. For coinciding elements, a more careful
choice between L and R is needed to avoid unbalanced partitions. These
details are quite technical and we omit them due to the lack of space.) These
two new sequences L and R are stored in the usual, faulty memory. Their
lengths |L| and |R|, however, are stored in reliable (safe) memory. Third, if
k ≤ |L|, then recurse to L. Otherwise reset k := k − |L| and recurse to R.
(These steps are standard for divide-and-conquer selection algorithms.) The
tail recursion in Resilient-Select can be easily eliminated, hence there is
no need for a stack.

Theorem 2. Resilient-Select runs in O(n+δ
√
n) time and returns an O(δ)-

approximate k-th order statistic.

Proof. Let S be the input sequence where an approximate k-th order statistic is
to be found. Due to memory faults the sequence may be altered during execution;
we shall denote its current state by S′.

For the tiny case, any returned value would satisfy as approximation. For the
small and large case we use induction to show that the returned value p is indeed
a 20δ-approximate k-order statistic. Specifically, we claim that two inequalities
hold (where α is the number of faults occurred during the invocation):

minS ≤ p ≤ maxS and |rkS −k| ≤ 20α.

The small case is an inductive base. It follows from Lemma 1 and Corollary 1
that rkS(p) ≥ n/5 − α ≥ 1 and rkS(p) ≤ 4n/5 + α < 20δ ≤ n. Hence p is

Resilient Quicksort and Selection 15

between minS and maxS. For any x ∈ S, |rkS(p)− rkS(x)| ≤ 4n/5 + α ≤ 20α.
In particular |rkS(p)− k| ≤ 20α, as desired.

Now consider a large case. Note that Partition reads each element of S
exactly once. Hence one may imagine a sequence S′ consisting of values in S as
they were observed by Partition. Also we may assume that L and R form a
partition of S′ (not S) around p. Indeed, all memory faults that occur in L or
R and affect the values written by Partition may be effectively “postponed”
until Resilient-Select calls itself recursively. In other words, these faults are
regarded as occurring in the latter recursive invocation.

Let γ (respectively β) be the total number of faults occurred in Resilient-
Select from start until the recursive invocation is made (respectively during the
recursive invocation). Suppose Resilient-Select recurses to L. Then by the
inductive assumption the returned value x satisfies |rkL(x)− k| ≤ 20β. Observe
the equality rkL(x) = rkS′(x) (here we use the fact that minL ≤ x ≤ maxL).
Altogether this implies |rkS′(x)− k| ≤ 20β.

Sequences S and S′ differ by at most γ elements (the latter is the upper
bound for the number of memory faults occurred during Resilient-Select
not counting the recursion). Therefore |rkS(x)− rkS′(x)| ≤ γ, so |rkS(x)− k| ≤
20β + γ ≤ 20(β + γ) = 20δ.

The case when Resilient-Select recurses to R is analogous.
Finally let us estimate the complexity of Resilient-Select. The i-th level

of recursion, which is applied to a sequence of length ni, takes O(ni+δ
√
ni) time

(see Corollary 1). Summing over all levels one gets O
(∑

i ni + δ
∑

i

√
ni

)
. Each

recursive call reduces the current length ni to ni+1 ≤ 4ni/5+δ ≤ 4ni/5+ni/20 =
17ni/20. Since the decrease is exponential, the estimate becomes O(n + δ

√
n),

as claimed. �	
Corollary 2. There exists a deterministic O(n)-time O(δ)-approximate median
selection algorithm that tolerates up to δ = O(

√
n) memory faults.

4 Deterministic Sorting

Now we are ready to present a deterministic variation of quicksort (denoted
by Deterministic-Resilient-Sort) with O(n log n + δ

√
n logn) worst-case

running time. We effectively combine ideas from Section 2 and Section 3.
Let n be the length of the input sequence (which is assumed to be sufficiently

large). The outline is the same as in the randomized algorithm in Section 2 ex-
cept for three aspects. First, at the top level we choose t := �√n� (in contrast to
t := �√n/ logn� in the randomized approach). Second, instead of selecting a ran-
dom pivot we use deterministic Pivot procedure in conjunction with Partition
to ensure that resulting partition is nearly-balanced (i.e. there are at least 1/10
of elements in each part). Third, we perform a fallback to Robust-Sort when
the length of the current segment becomes smaller than 15t rather than t. The
latter is done to satisfy the preconditions of Lemma 1, namely, to make sure that

16 M. Babenko and I. Pouzyrevsky

Algorithm 4. Deterministic-Resilient-Sort(S, t)

1: Let n := |S|
2: if n ≤ 15t then
3: repeat
4: S′ := Robust-Sort(S)
5: until S′ is ordered correctly
6: return S′

7: else
8: repeat
9: Let p := Pivot(S, t)
10: (L,R) := Partition(S, p)
11: until |L| ≥ n/10 and |R| ≥ n/10
12: L′ := Deterministic-Resilient-Sort(L, t)
13: R′ := Deterministic-Resilient-Sort(R, t)
14: return L′ ◦ (p) ◦ R′

15: end if

2t + �n′/t� < n′/5 for the current length n′. (Indeed, 2t + �n′/t� ≤ 3t < n′/5
when n′ > 15t.) For a pseudocode, see Algorithm 4.

Theorem 3. Deterministic-Resilient-Sort produces a faithfully ordered se-
quence and runs in O(n log n+ δ

√
n logn) deterministic time.

Proof. Once again, the fact that the resulting sequence is faithfully ordered is
obvious, so we focus on estimating the time complexity.

Consider the recursion tree of Deterministic-Resilient-Sort. The latter
is nearly-balanced (by the same argument as in the proof of Theorem 1) and thus
contains O(n/t) leaves. Hence Robust-Sort, which is invoked at the bottom
level, costs O(n/t · t log t+ δt log t) time.

At each level of the recursion tree some calls to Pivot and Partition are
made. Since Partition takes linear time, it contributes O(n log n) plus the time
spent in additional restarts incurred by failed validations. To estimate Pivot’s
total time, let N be the total length of segments for which Pivot is invoked.
Clearly N = O(n log n) (since the tree is nearly-balanced). Then by Lemma 1
all Pivots take O(N + δt+ δN/t) time (not counting additional restarts).

Consider additional restarts occurring in Steps 8–11. As in in the proof of
Theorem 1, without corruptions Pivot returns p whose rank is in [n′/5, 4n′/5]
(where n′ is the current length of the segment). Now if the adversary corrupts
less than n′/10 keys during the iteration, p’s rank remains in [n′/10, 9n′/10],
so the check in Step 11 succeeds. Assume the contrary, i.e. at least α = n′/10
keys are corrupted (perhaps leading to an unbalanced partition). Such a “large
corruption” increases N by 10α, which adds up to O(δ). Hence the overhead is
O(δ + δ2/t), which is negligible.

Summing up these estimates and plugging in t =
√
n yields the desired time

bound. �	

Resilient Quicksort and Selection 17

References

1. Boyer, R.S., Moore, J.S.: MJRTY - A Fast Majority Vote Algorithm (1982)
2. Brodal, G.S., Fagerberg, R., Finocchi, I., Grandoni, F., Italiano, G.F., Jørgensen,

A.G., Moruz, G., Mølhave, T.: Optimal Resilient Dynamic Dictionaries. In: Arge,
L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 347–358.
Springer, Heidelberg (2007)

3. Brodal, G.S., Jørgensen, A.G., Mølhave, T.: Fault Tolerant External Memory Al-
gorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009.
LNCS, vol. 5664, pp. 411–422. Springer, Heidelberg (2009)

4. Brodal, G.S., Jørgensen, A.G., Moruz, G., Mølhave, T.: Counting in the Presence
of Memory Faults. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 842–851. Springer, Heidelberg (2009)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd revised edn. The MIT Press (2001)

6. Dor, D.: Selection Algorithms. Ph.D. thesis, Tel-Aviv University (1995)
7. Ferraro-Petrillo, U., Finocchi, I., Italiano, G.: Experimental Study of Resilient Al-

gorithms and Data Structures. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
1–12. Springer, Heidelberg (2010)

8. Ferraro-Petrillo, U., Grandoni, F., Italiano, G.: Data Structures Resilient to Mem-
ory Faults: An Experimental Study of Dictionaries. In: Festa, P. (ed.) SEA 2010.
LNCS, vol. 6049, pp. 398–410. Springer, Heidelberg (2010)

9. Finocchi, I., Grandoni, F., Italiano, G.: Designing reliable algorithms in unreliable
memories. Computer Science Review 1(2), 77–87 (2007)

10. Finocchi, I., Grandoni, F., Italiano, G.F.: Resilient search trees. In: Proc. SODA
2007, pp. 547–553. Society for Industrial and Applied Mathematics (2007)

11. Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal resilient sorting and searching
in the presence of memory faults. Theor. Comput. Sci. 410, 4457–4470 (2009)

12. Finocchi, I., Italiano, G.F.: Sorting and searching in the presence of memory faults
(without redundancy). In: Proc. STOC 2004, pp. 101–110. ACM (2004)

13. Hamdioui, S., Ars, Z.A., Van De Goor, A.J., Rodgers, M.: Dynamic Faults in
Random-Access-Memories: Concept, Fault Models and Tests. J. Electron. Test. 19,
195–205 (2003)

14. Jørgensen, A.G., Moruz, G., Mølhave, T.: Priority Queues Resilient to Memory
Faults. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619,
pp. 127–138. Springer, Heidelberg (2007)

15. Li, X., Huang, M.C., Shen, K., Chu, L.: A realistic evaluation of memory hard-
ware errors and software system susceptibility. In: Proc. USENIX 2010. USENIX
Association (2010)

16. May, T.C., Woods, M.H.: Alpha-particle-induced soft errors in dynamic memories.
IEEE Transactions on Electron Devices 26(1), 2–9 (1979)

17. Ferraro-Petrillo, U., Finocchi, I., Italiano, G.F.: The Price of Resiliency: A Case
Study on Sorting with Memory Faults. In: Azar, Y., Erlebach, T. (eds.) ESA 2006.
LNCS, vol. 4168, pp. 768–779. Springer, Heidelberg (2006)

18. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance
computing systems. In: DSN 2006: Proceedings of the International Conference
on Dependable Systems and Networks (DSN 2006), pp. 249–258. IEEE Computer
Society, Los Alamitos (2006)

	Resilient Quicksort and Selection
	Introduction
	Preliminaries
	Previous Work
	Our Contribution

	Randomized Sorting
	Resilient Selection
	Deterministic Sorting
	References

