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Lately, the problem of cell formation (CF) has gained a lot of attention in the industrial engineering literature. Since it was
formulated (more than 50 years ago), the problem has incorporated additional industrial factors and constraints while its
solution methods have been constantly improving in terms of the solution quality and CPU times. However, despite all the
efforts made, the available solution methods (including those for a popular model based on the p-median problem, PMP)
are prone to two major types of errors. The first error (the modeling one) occurs when the intended objective function
of the CF (as a rule, verbally formulated) is substituted by the objective function of the PMP. The second error (the
algorithmic one) occurs as a direct result of applying a heuristic for solving the PMP. In this paper we show that for
instances that make sense in practice, the modeling error induced by the PMP is negligible. We exclude the algorithmic
error completely by solving the adjusted pseudo-Boolean formulation of the PMP exactly, which takes less than one second
on a general-purpose PC and software. Our experimental study shows that the PMP-based model produces high-quality
cells and in most cases outperforms several contemporary approaches.
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1. Introduction
Cell formation (CF), a popular concept in industrial engi-
neering, suggests grouping machines into manufacturing
cells and parts into product families so that each family
is processed mainly within one cell. The problem of opti-
mal (usually with respect to the volume of intercell move-
ment) cell formation has been studied by many researchers.
An overview can be found in Selim et al. (1998), Yin and
Yasuda (2006), and recently in Bhatnagar and Saddikuti
(2010). The p-median problem (PMP) was frequently used
in the past as a modeling tool for cell formation problems
(Kusiak and Chow 1987, Wang and Roze 1997, Deutsch
et al. 1998, Won and Lee 2004, Ashayeri et al. 2005,
Won and Currie 2006). Because it is well known (see
Kariv and Hakimi 1979) that the PMP is computationally
difficult (NP-hard), all the research applying the PMP to
cell formation has been concentrating on different types of
heuristic solutions. Hence, two types of errors have been
incorporated in the solution procedure for CF problems
based on the PMP. First, the modeling error is caused by
an approximation that instead of the intended, and some-
times only, verbally formulated objective function of the
CF uses the objective function of the p-median problem.

That is, solutions that are optimal to the created model
may be suboptimal to the original CF problem. Second,
heuristic methods for solving the PMP itself give rise to the
algorithmic error—heuristics do not guarantee optimality
of the solutions and often produce suboptimal ones.

In this paper, we adjust a recently suggested compact
PMP formulation by AlBdaiwi et al. (2011) (of which the
compactness is evaluated by Goldengorin and Krushinsky
2011) to the needs of cell formation problems and show
that even large-size CF instances may be solved to opti-
mality in the framework of the PMP by using a general
purpose software, such as CPLEX, Xpress, etc., within one
second. Moreover, by means of a computational study we
show that the modeling error introduced by a PMP-based
model is negligible for instances that may be realized in
a real-world industrial system. Finally, we show that our
approach outperforms several contemporary ones in terms
of widely used performance measures.

This paper is organized as follows. The next section
describes the p-median approach to the cell formation
problem, including a general formulation of the PMP,
its interpretation in terms of cell formation, our efficient
MILP formulation, and an analysis of the modeling error
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and computational efficiency. Section 3 considers alternate
ways of extending the model with additional constraints in
order to illustrate its practical applicability. In §4 we pro-
vide results of computational experiments with the largest
instances used in recent papers (Won and Lee 2004, Yang
and Yang 2008, Ahi et al. 2009, Bhatnagar and Saddikuti
2010). Finally, §5 summarizes the paper and outlines pos-
sible directions for future research.

2. The p-Median Approach to
Cell Formation

The p-median problem has been applied to cell forma-
tion in group technology by a number of researchers
(Won and Lee 2004, Deutsch et al. 1998, and references
within). However, to the best of our knowledge, in all CF-
related papers the PMP is solved by some heuristic method.
At the same time, there exist efficient formulations for the
p-median problem (the most recent one derived in Elloumi
2010) that allow solving medium and large-size instances
to optimality. In this paper we utilize an innovative model
for the PMP that represents an instance in an even more
compact way, thus leading to a smaller MILP formulation
compared to Elloumi (2010). This allows solving large-
scale CF problems to optimality within a second.

The PMP is one of well-known minisum location-
allocation problems. A detailed introduction to this prob-
lem and solution methods appears in Reese (2006) and
Mladenovic et al. (2007). For a directed weighted graph
G = 4V 1A1C5 with �V � vertices, set of arcs 4i1 j5 ∈ A ⊆

V × V and weights (distances, dissimilarities, etc.) C =

8cij 2 4i1 j5 ∈A9, the PMP consists of determining p vertices
(the median vertices, 1 ¶ p ¶ �V �) in such a way that the
sum of weights of arcs joining any other vertex and one of
these p vertices is minimized (see Figure 1).

In terms of cell formation, vertices represent machines
and weights cij represent dissimilarities between machines
i and j . These dissimilarities can be derived from the sets
of parts that are being processed by either of the machines
(e.g., if two machines process almost the same set of parts,
they have a small dissimilarity and are likely to be in the
same cell) or from any other desired characteristics (e.g.,
workers’ skill matrix, operational sequences, etc.). More-
over, usually there is no need to invent a dissimilarity

Figure 1. The p-median problem: minimize the total
weight of solid edges.

measure because it can be derived from one of the avail-
able similarity measures using an expression d4i1 j5= c −

s4i1 j5, where d4 · 1 · 5/s4 · 1 · 5 is a dis/similarity measure
and c—some constant large enough to keep all dissimilari-
ties nonnegative. As can be seen from the literature, several
similarity measures were proposed and the particular choice
can influence results of cell formation. For our experiments
we have chosen one of the most widely used—the “com-
monality score” of Wei and Kern (1989)—and derived our
dissimilarity measure as

d4i1j5=r ·4r−15−
r
∑

k=1

â4aik1ajk51 i1 j ∈8110001m91 (1)

where

â4aik1 ajk5=











4r − 151 if aik = ajk = 13

11 if aik = ajk = 03

01 if aik 6= ajk3

(2)

m and r are the numbers of machines and parts, respec-
tively; aik—entries of the machine-part incidence matrix—
an m × r Boolean matrix, aik = 1 only if part k needs
machine i at some step of its manufacturing process.

Thus, when applied to cell formation, the p-median prob-
lem means finding p machines that are best representatives
(centers) of p manufacturing cells, so that the sum over
all cells of dissimilarities between such a center and all
other machines within the cell is minimized. Once p central
machines are found, the cells are produced by assigning
each other machine to the central one, minimizing the dis-
similarity. Note that the desired number of cells p is part of
the input for the model and should be known beforehand.
Otherwise, it is possible to solve the problem for several
numbers of cells and pick the best solution.

Further, for the sake of clarity for those familiar with
the PMP, we will follow the terminology inherited from
location-allocation applications and represent the set of ver-
tices V as a union of two, possibly intersecting, sets I
and J , so that �I � = m, �J � = n. We will call the elements
of I—locations-and those of J—clients. Moreover, we treat
weights cij as costs of serving client j (j ∈ J ) from loca-
tion i (i ∈ I). In terms of cell formation, the set of loca-
tions I contains potential centers of the cells and the set
of clients J contains all machines. Clearly, in the case of
cell formation, sets I and J coincide because any machine,
potentially, can be a center of a cell. This implies that
the PMP applied to cell formation has a symmetric costs
matrix.

2.1. The MBpBM Formulation

Our approach is based on a compact MILP formulation
for PMP—the Mixed-Boolean pseudo-Boolean formula-
tion (MBpBM)—discussed in detail in Goldengorin and
Krushinsky (2011). The interested reader is referred to this
paper, and here we briefly describe the major idea behind
the formulation, which is needed for the further analysis.
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The MBpBM formulation is derived from the so-called
pseudo-Boolean formulation of PMP (see AlBdaiwi et al.
2011, Goldengorin and Krushinsky 2011) that associates
with a cost matrix C a permutation matrix ç, a dif-
ferences matrix ã, and a vector of Boolean variables
y= 4y11 0 0 0 1 ym5, reflecting opened (yi = 0) and closed
(yi = 1) locations. Each column of ç is a permutation that
sorts the entries from the corresponding column of C in a
nondecreasing order; each column of ã contains differences
between consecutive sorted entries of C. It can be shown
that the PMP can be expressed in terms of a polynomial
in Boolean variables, abbreviated as BC1p4y5, with only
one constraint requiring exactly p locations to be opened:
∑m

i=1 yi = m− p. The pseudo-Boolean formulation can be
linearized by introducing for each product of y-variables in
BC1p4y5 a nonnegative z-variable and a constraint reflect-
ing the relation between z- and y-variables. The resulting
MBpBM formulation can be expressed as follows:

f 4y5= �0 +

m
∑

r=1

�ryr +

�B�
∑

r=m+1

�rzr → min

s.t.
m
∑

i=1

yi =m−p1

zr ¾
∑

i∈Tr

yi − �Tr � + 11 r =m+ 11 0 0 0 1 �B�1

zr ¾ 01 r =m+ 11 0 0 0 1 �B�1

y ∈ 80119m1

where �r are coefficients of BC1p4y5, �B� denotes the num-
ber of monomials in BC1p4y5, and Tr is the set of variable
indices in monomial r , that is, zr =

∏

i∈Tr
yi.

The following example demonstrates how our formula-
tion works for a small CF instance.

Example 1. Consider an instance of the cell formation
problem defined via the following machine-part incidence
matrix

parts

machines

1 2 3 4 5
1 1 1 1
2 1 1
3 1 1
4 1 1

(3)

with four machines and five parts (zero entries are skipped
for better visualization). One can construct the machine-
machine dissimilarity matrix C by applying the defined
above dissimilarity measure (1):

C =















6 20 10 20

20 9 19 9

10 19 9 19

20 9 19 9















0 (4)

For example, the left top entry a11 is obtained in the fol-
lowing way:

a11 = r4r − 15−

r
∑

k=1

â4a1k1 a1k5

= 545 − 15− â40105− â41115− â40105

− â41115− â41115

= 20 − 1 − 4 − 1 − 4 − 4 = 60 (5)

The possible permutation and differences matrices for the
costs matrix (4) are:

ç=















1 2 3 2

3 4 1 4

2 3 2 3

4 1 4 1















1 ã=















6 9 9 9

4 0 1 0

10 10 10 10

0 1 0 1















0 (6)

For example, the first column of the costs matrix
C1 = 461201101205T leads to the following column of
ç411312145T because 6 ¶ 10 ¶ 20 ¶ 20; that is, the first
entry is the smallest, then goes the third entry, then the sec-
ond and the fourth. The first column ã1 of ã is obtained
as follows: the first entry is equal to the smallest ele-
ment in the first column C1, the second entry is the differ-
ence between the smallest and the second-smallest element
in C1, etc. That is, ã1 = 46110 − 6120 − 10120 − 205T =

4614110105T .
The above ç and ã lead to the following pseudo-

Boolean polynomial BC4y5:

BC4y5= 33 + 4y1 + 1y3 + 20y1y3 + 20y2y4 + 2y2y3y40 (7)

If one is interested in having two manufacturing cells, then
the number of medians p in the formulation should be set
to 2 and the pseudo-Boolean polynomial can be truncated
to the degree of 4m−p5= 2:

BC1p=24y5= 33 + 4y1 + 1y3 + 20y1y3 + 20y2y40 (8)

The obtained polynomial has two nonlinear terms that
we need to linearize by introducing additional z-variables:
z5 = y1y3 and z6 = y2y4. Now, our MBpBM formulation
allows expressing the given instance of cell formation as
the following mixed-integer LP problem:

f 4y1 z5= 33 + 4y1 + 1y3 + 20z5 + 20z6 −→ min (9)

y1 + y2 + y3 + y4 = 21 (10)

z5 ¾ y1 + y3 − 2 + 11 (11)

z6 ¾ y2 + y4 − 2 + 11 (12)

zi ¾ 01 i = 5161 (13)

yi ∈ 801191 i = 11 0 0 0 140 (14)
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Its solution y = 401011115T , z = 40105T leads to the fol-
lowing cells:

parts

machines

2 4 5 1 3
1 1 1 1
3 1 1
2 1 1
4 1 1

0 (15)

2.2. Compactness of the MBpBM Formulation

Taking into account that there is a one-to-one corres-
pondence between nonlinear monomials in BC1p4y5 and
nonnegative variables and constraints in MBpBM, the prop-
erties of BC1p directly apply to the MBpBM formulation.

The fundamental property of the pseudo-Boolean formu-
lation is that for real-world instances the number of mono-
mials in BC1p4y5 can be essentially reduced, as compared
to the number of entries in the initial costs matrix. In par-
ticular, the following three reductions take place:

• only pairwise different elements in each column of the
costs matrix play a role;

• all equal column subpermutations in ç contribute to a
single monomial in BC1p4y5;

• the degree of BC1p4y5 is at most m − p, i.e., only
m−p+ 1 smallest different entries in each column of the
costs matrix are meaningful (“p-truncation,” see AlBdaiwi
et al. 2011).
The cell formation application supports these reductions.
Consider, for example, an instance with p perfect cells; its
machine-part incidence matrix can be transformed into an
ideal block-diagonal form with p blocks. In this case, each
column of the corresponding costs matrix for PMP has no
more than p different entries, which is normally much less
then m − p + 1. Next, the number of different subpermu-
tations of each length is also equal to p. Thus, in case of
p perfect cells the objective has at most p × p monomi-
als, irrespective of the number of machines and parts. This
results in an MBpBM formulation with at most p× 4p−15
nonnegative variables and corresponding constraints, irre-
spective of the number of machines and parts. Of course,
perfect cells are uncommon in practice and the problem
becomes larger; however, these considerations demonstrate
that the size (and, therefore, complexity) of the model is
tightly biased to the complexity of the instance. It should
be noticed that the classical formulation of the PMP (which
is most widely used, see, e.g., Won and Lee 2004) contains
all m×m coefficients in the objective function.

To illustrate the computational efficiency, we performed
a number of experiments. A 200 × 200 block-diagonal
matrix with 5 ideal blocks was generated and then grad-
ually perturbed by adding random flips (change 1 within
a diagonal block into 0, or 0 outside a block into 1). For
each obtained instance, we estimated the number of coef-
ficients in the objective of the MBpBM formulation and
the solution time (using Xpress as a MILP solver). The

Figure 2. Performance of a PMP-based model for CF
(m= 200, r = 200, p = 5).
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size of the instance (200 machines) is intentionally chosen
larger than is usual in practice: we could not find instances
with more than 50 machines in the literature, although the
number of parts does not influence the formulation. This
was done in order to show that the performance of our
model does not deteriorate with an increase in the instance
size. The experimental results are presented in Figure 2,
where the numbers of coefficients in the objective func-
tion and CPU times are plotted against the amount of flips,
expressed as a percentage of the total number of elements
in the input matrix. Only the cases with less than 15% of
flips are considered, because otherwise the potential inter-
cell movement becomes too large and the CF itself does not
make sense. As can be seen from the figure, even for the
instances with 200 machines the computing times are nor-
mally below 1 second, except rare cases (85 out of 6,000)
when up to 10 minutes were needed. We believe that these
outliers are caused by the MILP solver due to an “imper-
fect” branching.

Speaking more generally, MBpBM contains all known
reductions for PMP not involving presolving the instance,
unlike other MILP formulations for PMP. For example,
the formulation from Elloumi (2010) does not use the
p-truncation. On the other hand, it is possible to reduce the
size of the MBpBM formulation further by involving esti-
mation of lower bounds on the subspaces of feasible solu-
tions (a possible framework is described in Goldengorin
and Krushinsky 2011).

2.3. A Note on Optimality of PMP-Based Models

Note that the PMP does not explicitly optimize the goal
of cell formation. In particular, the modeling error can be
explained by the fact that each machine is assigned to a
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cell based on the similarity between itself and the median
machine, without taking into account other machines from
this cell. This means that even having solved the PMP (after
finding median machines), there is some space for improve-
ment at a stage of assigning other machines to cells. How-
ever, here we analyze the quality of solutions produced
by a standard PMP-based model using the dissimilarity
measure (1).

Let us first consider the case of a manufacturing system
in which p perfect cells are possible. It is not hard to under-
stand that a PMP model equipped with a reasonable dissim-
ilarity measure (like the one described in (1)) will discover
those p cells, thus producing optimal results. In practice,
however, perfect cellular structure is distorted to some
extent. If input data are given in a form of a machine-part
incidence matrix, then there are two types of distortions:
voids—zeros in diagonal blocks, and exceptions—ones out-
side the diagonal blocks.

The following propositions provide sufficient conditions
for optimality of the obtained solution.

Proposition 1. Suppose a block structure without excep-
tions exists (only voids are allowed). In this case, a PMP-
based model produces an optimal solution if in each cell
there is at least one machine that is needed for all parts
from the corresponding part family.

Proof of Proposition 1. First we prove that only
machines needed for all parts in the cells can become
medians. Observe that the dissimilarity measure (1) is
designed in such a way that for any two machines (rows
of the machine-part incidence matrix), each coinciding one
weighs more than any number of zeros. This implies that
only the machine that is needed for all parts assigned to
a cell will “cover” the maximum number of ones and will
be selected as a median. As soon as medians are defined,
all other machines are uniquely assigned to the cells where
they are needed—assumption of the proposition implies
that a structure where each machine is needed in exactly
one cell is possible. As a result, completely independent
cells will be obtained. �

Proposition 2. Suppose, a solution with a block structure
without exceptions (only voids are allowed) is found by a
PMP model. If in each cell the median machine has at least
one part in common with any other machine in a cell, then
this solution is optimal to CF.

Proof of Proposition 2. Straightforward, because mov-
ing any machine to a different cell will create at least one
exception. �

Proposition 3. Suppose a solution with a block structure
without voids is found (only exceptions are allowed). If the
number of exceptions in each row is strictly less than the
number of within-block ones in this row, then the solution
is optimal.

Proof of Proposition 3. Absence of voids in the blocks
guarantees that the assignment of machines (rows) to cells
(blocks) is not sensitive to a particular choice of medians.
At the same time, a limited number of exceptions induced
by any machine guarantees that its current position is opti-
mal, irrespective of the configuration of other blocks. This
is due to the fact that moving a machine to the other cell
will reduce the number of matching ones, and this cannot
be compensated with any increase in the number of match-
ing zeros, due to the used dissimilarity measure (1). �

Proposition 3 can be generalized to allow for both voids
and exceptions.

Proposition 4. If there exists an optimal solution to the
CF problem satisfying the following requirement, then it
will be found by a PMP-based model: for any two machines
(rows) i and j belonging to the same cell (block) k the
total number of voids in rows i and j is strictly less than the
difference between the number of parts (columns) assigned
to cell k and the number of exceptions in either of the
rows i and j . The inverse is also true: if such a solution is
found, then it is optimal.

Proof of Proposition 4. The condition ensures that any
machine (row) has more matching ones with any other
machine from the same cell (by the pigeonhole principle)
than with a machine from another cell. This guarantees that
the assignment of machines (rows) to cells (blocks) is not
sensitive to a particular choice of medians. The rest of the
reasoning is similar to the proof of Proposition 3. �

As can be observed from Propositions 1–4, presence of
dense blocks is critical for an optimality unless exceptional
elements can be avoided. These propositions assume some
properties of the optimal solution; thus, they can only be
used for a posterior assessment of optimality. However, as
our numerical experiments show, the solution time for our
model is very small, and it is reasonable to solve the prob-
lem and then check the optimality of the obtained solution.

As the conditions of Propositions 1–4 are not always
met, we performed an experimental study on the possi-
ble modeling error introduced by the PMP models for CF.
We generated input matrices with an ideal block-diagonal
structure and then gradually destroyed it by adding (unbi-
ased) random flips (change 1 within a diagonal block into
0, or 0 outside a block into 1). For each instance we com-
pared the performance of the original configuration of the
cells and the one discovered by our PMP-based model in
terms of the number of exceptions (expressed as a per-
centage of the total number of ones in the matrix). The
latter quantity is exactly the volume of intercell movement.
The typical behavior of a PMP-based model is presented in
Figure 3, where the number of flips is expressed as a per-
centage of the total number of elements m× r in the input
matrix and each data point is averaged for about 1,000 tri-
als. As the figure shows, the average error is quite low and
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Figure 3. Solution quality of a PMP-based model for
CF (m = 25, r = 50, p = 4; cell sizes vary
from 4 × 9 to 8 × 15).
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does not exceed 1%. The maximum error in our exper-
iments was also quite limited and did not exceed 10%.
Clearly, as the number of flips gets larger, the initial con-
figuration of cells is no more optimal and becomes domi-
nated. It can be easily checked that as the amount of flips
approaches 50%, the matrix approaches a completely ran-
dom one (i.e., each element is 1 with probability 0.5). It is
also important to understand that in this case the CF prob-
lem itself does not make sense because the underlying sys-
tem does not possess a cellular structure and cannot be
decomposed in a reasonable way. In fact, cellular decompo-
sition of the manufacturing system makes sense in practice
only if the resulting volume of intercell movement (excep-
tions in the block-diagonalized matrix) is below 10%–15%;
in these cases, the maximum modeling error in our experi-
ments does not exceed 4%, whereas the average error is of
the order 10−3%.

3. Possible Extensions of the Model
In this section we would like to discuss the possibilities
of introducing additional real-life factors and constraints
into the model. Thus, we are not interested here in describ-
ing all constraints that can be incorporated, but rather
in demonstrating the possibility of extending the model
appropriately.

Clearly, our model has three places in which additional
factors can be incorporated:

• dissimilarity coefficients
• objective function (structure)
• constraints
The use of dissimilarity coefficients can be illustrated,

for example, as follows. The availability of skills in a
manufacturing system can be represented by a machine-
worker skills matrix, in a way very similar to the input
for machine-part grouping. This means that any available

machine-machine (dis)similarity measure can be applied to
this skills matrix. Plugged into a similarity-based cell for-
mation approach, this measure minimizes the number of
workers that can operate a machine outside of their cell,
or, equivalently, maximizes the number of machines that
each worker can operate within his cell. Similarities based
on either of these data can be combined in a number of
ways (e.g., linearly or multiplicatively). The case of a linear
combination with equal weighting coefficients is equivalent
to having one aggregated incidence matrix where each col-
umn corresponds either to a part or to a worker. It should
be mentioned that the same approach is used in Bhatnagar
and Saddikuti (2010) for what they call a concurrent model.
In their paper it is also demonstrated that such an approach
gives better results than two-stage procedures that make
cells and assign workers consecutively.

The objective function can be extended, for example, by
penalizing assignments of some machines to the same cell.
In this way an issue of equivalent machines (the ones with
similar functionality) can be resolved by forcing them to
different cells. Another example is the use of manufacturing
sequences: terms accounting for multiple transits of a part
between the cells can be added to the objective.

Finally, a wide variety of linear constraints can be
included. These range from simple variable fixing con-
straints, to capacity, workload balancing, etc. For example,
simply by fixing some z-variables one can force or pro-
hibit the assignment of some machines to the same cells—
this could be necessary because of safety, engineering, or
managerial considerations. Although it may be complex to
linearize some constraints, those normally occurring in CF
are capacity-like, and therefore linear.

We would like to conclude the section by stating that the
reductions making our model efficient are based exclusively
on the properties of the underlying clustering model and
assume nothing about its further extension. This implies
that any additional constraints expressed in a linear form
can be added to our compact formulation.

4. Experimental Results
The aim of our numerical experiments is twofold. First, we
would like to show that the model based on PMP produces
high-quality cells and in most cases outperforms other con-
temporary approaches, thus making their use questionable.
Second, by showing that computation times are negligibly
small, we argue the use of heuristics for solving PMP itself.

Up to this point, one basic notion remained undefined in
this paper—the quality measure of the obtained decomposi-
tion into cells. We used two most widely used measures so
as to ensure consistent comparison of results. The first one,
the group capability index (GCI) proposed by Hsu (1990),
can be calculated as follows:

GCI=1−
number of exceptional elements

total number of ones
×100%1 (16)
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where exceptional elements are the nonzero entries of the
block-diagonalized machine-parts coincidence matrix that
lie outside of the blocks and the total number of ones is
the total number of nonzero entries in the machine-parts
incidence matrix. It should be mentioned that this measure
does not account for zeros inside the blocks, i.e., it does
not take into account density of intracell flows. The sec-
ond quality measure, group efficiency (�), was proposed by
Chandrasekharan and Rajagopalan (1986) and is a weighted
sum of two factors �1 and �2:

� =��1 + 41 −�5�2 × 100%0 (17)

In turn, �1 and �2 are expressed as:

�1 =
o− e

o− e+ v
1

�2 =
mr − o− v

mr − o− v+ e
1

where m—number of machines, r—number of parts, o—
number of ones in the part-machine matrix, e—number
of exceptional elements, v—number of zeros in diagonal
blocks. The weighting factor � is usually set to 0.5, and
we used this value.

For the instance considered above (15), these perfor-
mance measures have the following values: GCI = 100%,

� = 005 ·

(

9 − 0
9 − 0 + 1

+
20 − 9 − 1

20 − 9 − 1 + 0

)

× 100% = 95%0

It should be mentioned that the sum of voids and exceptions
4v+ e5 sometimes is used as a performance measure (see,
e.g., Bhatnagar and Saddikuti 2010).

Taking into account the aim of our experiments, we com-
pared our results with those reported in four recent papers
and an earlier paper by Chen and Heragu (1999). The
main focus was on the largest instances. The first paper is
by Won and Lee (2004) and, similar to our study, uses a
p-median approach but solves PMP with a heuristic pro-
cedure. They use the similarity measure of Wei and Kern
(1989) and GCI (16) as a quality measure. We were not
able to derive the value of � because solutions are not
provided in their paper. The second paper by Yang and
Yang (2008) applies the ART1 neural network to cell for-
mation, thus using a completely different approach. The
authors used �-measure (17) to estimate solution qual-
ity and included solutions (block-diagonalized matrices) in
their paper, making it possible for us to compute GCI and to
fill in the gaps in the following Table 1, which summarizes
results of our comparative experiments. The third paper is
by Ahi et al. (2009) and demonstrates an application of a
decision-making technique (TOPSIS) to the cell formation
problem. The authors report values of group efficiency �,
and we derived the values of GCI from their solutions.

Table 1 contains data on computational experiments
with instances used in the three papers mentioned above

Table 1. Experimental comparison with Won and Lee
(2004), Yang and Yang (2008), and Ahi et al.
(2009).

Source m× r p GCI GCIour � �our

Won and Lee 30 × 41 3 9202 9503 59038
(2004)

4 9300 9300 64039
5 9104 9104 72014
6 8908 9006 75025
7 8103 8908 77093

30 × 50 3 7702 7703 59053
4 7409 7601 62014

30 × 90 3 7909 7705 61000
40 × 100 2 7905 9306 55061

3 9301 9105 59059
4 8908 8808 63084
5 8903 8704 69033
6 8903 8801 75077
7 8706 8806 81038
8 8505 8901 85066

50 × 150 2 9605 9605 57049
3 8604 9001 62063
4 8804 9207 69005
5 8907 9105 76044
6 8703 9301 81089

Yang and Yang 28 × 35 6 7307 7307 90068 90074
(2008) 46 × 105 7 8401 8409 87054 87057

Ahi et al. (2009) 8 × 20 3 8306 8306 92011 98008
12 × 19 4 6602 6602 80010 77009
20 × 20 6 6701 8203 87089 90011
18 × 35 4 7702 7702 74010 81026
25 × 40 7 6105 7602 68002 85043
20 × 51 6 6708 7702 82062 82007

(Won and Lee 2004, Yang and Yang 2008, Ahi et al.
2009). Column “source” indicates the source of the cell
formation instance and of the performance data. The next
two columns contain information on the size of input,
such as the number of machines m, the number of parts
r , and the number of cells to be made p. The last four
columns indicate the quality of solutions (in terms of GCI
and �) reported in the discussed papers and obtained by us,
correspondingly.

As can be seen from Table 1, in most of the consid-
ered cases our results outperform those reported in liter-
ature. On the other hand, there exist scarce instances for
which our model is dominated by other heuristics. This
can be explained by the fact that even though we solve
PMP to optimality, the p-median problem itself is not
explicitly an exact model to optimize any of the quality
measures of cell decomposition used above (their appro-
priateness can also be debated). Consequently, any model
based on the p-median problem is of a heuristic nature.
However, unlike most of the other heuristics, it grasps the
clustering nature of cell formation and presents a flexi-
ble framework by allowing additional constraints reflect-
ing real-world manufacturing systems to be introduced.
Such flexibility is inherent, in particular, to mathematical
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programming approaches, but in contrast to them, for the
PMP we have found an efficient formulation (see §2.1).

The most recent paper considered in our computational
experiments is by Bhatnagar and Saddikuti (2010). It uses
a model that is very similar to the p-median problem
but differs in the following detail: a restriction specifying
the number of cells is replaced by a constraint ensuring
that each cell has at least two machines. However, in our
opinion, this model has a potential drawback because it
tends to split “reasonable” cells as can be seen from its
objective function (taking into account that for similarities
holds s4i1 i5¾ s4i1 j5 for any two machines i1 j). We imple-
mented the models for machine cell formation and part
assignment from Bhatnagar and Saddikuti (2010) in Xpress
and performed a number of experiments with the largest
instances available in literature. As in the previous cases,
we used only machine-part incidence matrices as an input,
and the (dis)similarity measure of Wei and Kern’s (1989).
Taking into account that the model from Bhatnagar and
Saddikuti (2010) automatically defines the best number of
cells, we had to solve our PMP-based model for all possible
values of p and pick the best results.

Finally, we compared performance of our model and the
one from Chen and Heragu (1999), which we implemented
in Xpress. Because this model, like ours, does not define
the optimal number of cells, we tried to solve it for all
possible values of p. However, this was not always possible

Table 2. Experimental comparison of our model and those from Bhatnagar and Saddikuti (2010) and
Chen and Heragu (1999).

4e+ v5 �4%5 Time (s)

No. Source m× r [BS10] [CH99] Our [BS10] [CH99] Our [CH99]

1 Sandbothe (1998)∗ 20 × 10 16 9 11 95040 94029 95093 2
2 Ahi et al. (2009) 20 × 20 34 26 26 92062 90070 93085 21385
3 Mosier and Taube (1985)∗ 20 × 20 79 74 77 85063 79051 88071 361000
4 Boe and Cheng (1991)∗ 20 × 35 87 77 83 88031 84044 88005 241724
5 Carrie (1973)∗ 20 × 35 46 40 41 90076 88093 95064 110
6 Ahi et al. (2009) 20 × 51 111 96 83 87086 83018 94011 361000
7 Chandrasekharan and Rajagopalan (1989)∗ 24 × 40 20 0 0 98082 100000 100000 2
8 Chandrasekharan and Rajagopalan (1989)∗ 24 × 40 37 21 21 95033 95020 97048 11363
9 Chandrasekharan and Rajagopalan (1989)∗ 24 × 40 55 40 39 93078 91016 96036 291009

10 Chandrasekharan and Rajagopalan (1989)∗ 24 × 40 86 122 81 87092 74038 94032 141890
11 Chandrasekharan and Rajagopalan (1989)∗ 24 × 40 96 112 89 84095 77068 94021 101968
12 Chandrasekharan and Rajagopalan (1989)∗ 24 × 40 94 118 89 85006 75029 92032 161906
13 Nair and Narendran (1996)∗ 24 × 40 40 194 25 96044 69090 97039 361000
14 Nair and Narendran (1996)∗ 24 × 40 39 27 26 92035 92027 95074 31575
15 Nair and Narendran (1996)∗ 24 × 40 60 50 50 93025 90056 95070 361000
16 Nair and Narendran (1996)∗ 24 × 40 59 109 50 91011 78008 96040 361000
17 Ahi et al. (2009) 25 × 40 59 63 56 91009 86000 95052 361000
18 Yang and Yang (2008) 28 × 35 108 72 71 93043 91021 93082 361000
19 Kumar and Vanelli (1987)∗ 30 × 41 63 61 54 90066 86078 97022 161967
20 Stanfel (1985)∗ 30 × 50 99 115 93 88017 81058 96048 361000
21 King and Nakornchai (1982)∗ 30 × 90 228 202 206 83018 83025 94062 361000
22 Chandrasekharan and Rajagopalan (1987)∗ 40 × 100 136 72 72 94075 95091 95091 361000
23 Yang and Yang (2008) 46 × 105 376 268 271 90098 87012 95020 361000
24 Zolfaghari and Liang (1997)∗ 50 × 150 544 502 470 93005 82000 92092 361000

Notes. [BS10]—results for the model from Bhatnagar and Saddikuti (2010). [CH99]—results for the model from Chen and Heragu (1999).
∗A reference to the original source of the instance can be found in Bhatnagar and Saddikuti (2010).

due to the complexity of the model. We limited the CPU
time of the model by 10 hours, and provided the best results
that we could obtain. These results can be suboptimal for
two reasons: either (i) a solution process was interrupted
after the time limit was reached, or (ii) a solution is opti-
mal for a particular value of p, but is not globally optimal
(for other values of p case (i) takes place and gives even
worse solutions). Note that the formulation does not use a
dissimilarity measure and deals directly with machine-part
relations. This makes the applicability of the model ques-
tionable, because in real systems the number of parts can
be estimated in thousands, leading to a huge formulation
even though the number of machines is small. For example,
an instance with 4,415 parts was considered by Park and
Suresh (2003), and we experienced even larger ones in the
industry.

The results for our model and the ones from Bhatnagar
and Saddikuti (2010) and Chen and Heragu (1999) are
summarized in Table 2, where the first column enumer-
ates the test instances, the second one refers to the origi-
nal source of the instance, and the next column shows the
number of machines and parts. The following six columns
report the quality of solutions obtained by the three mod-
els. The last column indicates the time spent (in sec-
onds) by the model from Chen and Heragu (1999). As can
be seen from Table 2, our model considerably outper-
forms the model from Bhatnagar and Saddikuti (2010).
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Also, our computational experiments show that in terms of
the group efficiency criterion (17), the PMP-based model
essentially outperforms Chen and Heragu’s results but is
slightly dominated in 6 out of 24 benchmark instances in
terms of the less widely used 4e + v5 criterion. This can
be explained by the fact that their model explicitly opti-
mizes the latter criterion. Our and Chen’s and Heragu’s
(1999) average CPU times are within 1 sec and many hours,
respectively, and this distinction cannot be attributed to the
operational system, or to the hardware used in experiments.
The difference in the CPU times can be explained by the
adaptability of our model to the input data. Consider, for
example, instance 7 from Table 2 that has a perfect cellu-
lar structure with 7 cells. For this instance, our MBpBM
formulation has 42 variables, 19 constraints, and 19 coef-
ficients in the objective, whereas for the model from Chen
and Heragu (1999) these numbers are 7,168, 6,851, and
20,224. At the same time, for instances with perfect cells
our model provides provably optimal solutions! This can
be verified using any of Propositions 1–4.

We have also considered a few other models, such as the
one from Doulabi et al. (2009); these all were dominated
by our model.

Concerning the solution times of our PMP-based model,
each of the considered instances was solved within one
second on a PC with 2.3 GHz Intel processor, 2 GB RAM,
and Xpress as a MILP solver. In our opinion, even if some
heuristic can work faster, the difference in computing times
is negligibly small.

5. Summary and Future Research
As can be seen from the available literature, the models for
cell formation tend to become more and more complicated.
Such complication has two negative side effects. First of
all, a sophisticated structure of the model usually prohibits
its extension to additional factors and/or constraints taking
place in real manufacturing systems. Secondly, a compli-
cated model that was designed in order to improve the qual-
ity of the obtained solutions usually raises a problem of
computational intractability. This forces the use of heuris-
tics for solving not the initial cell formation problem but an
approximating model of it. Suboptimality of these heuris-
tics can overwhelm the advantages of the model, making
its use doubtful.

In this paper we showed that these negative side effects
can be avoided by efficiently reformulating the cell for-
mation problem in terms of a compact representation of
the p-median problem (PMP). Our reformulation is flexi-
ble enough to accept additional real-life constraints, such
as capacities, operational sequences, etc. At the same time,
the computational experiments show that our model is com-
putationally efficient and the corresponding problem can be
solved to optimality within one second on a standard PC
by means of general-purpose software, such as CPLEX or
Xpress. A computational study shows that in most cases our

cell formation model provides better solutions than other
contemporary approaches (in terms of widely used qual-
ity measures) while having shorter CPU times. Finally, by
means of computational experiments we demonstrated that
the modeling error of a PMP-based model is quite lim-
ited with an average of 1%, and solution times stay within
one second in 99% of the cases, even for instances with
200 machines, i.e., larger than those occurring in practice.

Taking into account that the current trend is towards
introducing additional real-world factors into CF models,
a possible future research direction is to incorporate addi-
tional constraints into our model, such as an availabil-
ity of several equivalent machines, alternative operational
sequences, setup and processing times, etc. Because our
MBpBM formulation is optimal in the number of coeffi-
cients in the objective function and the number of linear
constraints, insertion of new (linear) constraints will pre-
serve its tractability and will make it possible to create
a flexible and efficient model for cell formation based on
the p-median problem, in our opinion. The issue of effi-
ciency (low computing times) is becoming important from
the perspective of virtual cell manufacturing (VCM, see
Nomden et al. 2006)—a paradigm that becomes more and
more promising nowadays. Slomp et al. (2005) suggest that
the VCM concept needs a periodic (e.g., weekly) solution
for the CF problem. At the same time, our computational
results show that in the case of an uncapacitated functional
grouping, our fast model is a competitive candidate for the
creation of virtual cells.

To summarize, all ideas and attempts to extend the deci-
sion making for cell formation in group technology based on
the classical p-median model might be revised and essen-
tially improved by using the MBpBM reformulation and
adding practically motivated additional constraints reflect-
ing the specific manufacturing environment. Finally, we
would like to stress the importance of the model choice and
to conclude by asserting that the above considerations on the
problem complexity and errors involved can also be valid
for other applied operations research problems (especially
for those that can be modeled as variations of the PMP).
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