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INTERACTION OF SHORT SINGLE-COMPONENT VECTOR SOLITONS

N.V.Aseeva, ∗ E.M.Gromov, and V.V.Tyutin UDC 537.86

We study interaction of different-polarization single-component vector solitons of the envelope
function in anisotropic media within the framework of the system of two coupled third-order
nonlinear Schrödinger equations which allow for the third-order linear dispersion, nonlinear
dispersion, nonlinear cross-phase modulation, and cross-nonlinear dispersion. The regimes of
mutual reflection, passage, and asymptotic approach of the solitons are obtained. It is shown
that the character of interaction of such solitons is determined by the initial relationship of
their amplitudes and phases. The stationary mutual locations of interacting solitons and their
coupled, the so-called breather states are discussed. The roles of the cubic nonlinearity, cubic
cross-nonlinearity, and cross-nonlinear dispersion during interaction of solitons are studied.

1. INTRODUCTION

The studies of the stationary nonlinear wave packets, i.e., solitons, attract significant interest at
present. This interest is related to the fact that solitons can propagate to large distances without distortions
in their shape and energy loss and may be used, in particular, as information carriers, e.g., in nonlinear
fiber-optic communication lines. The soliton solutions exist for many nonlinear differential equations which
appear in various parts of physics when studying the propagation of intense wave fields in nonlinear dispersive
media, i.e., optical pulses in fiber optics, electromagnetic waves in plasmas, surface waves in deep water [1–4],
etc.

2. SOLITON CLASSIFICATION

2.1. Scalar solitons

The dynamics of the high-frequency wave packets U(ξ, t) = exp(iωt − ikξ) with a short envelope
is described in the third order of the nonlinear dispersion theory with respect to the wave amplitude,
which takes into account both the second- and the third-order infinitesimal terms, i.e., the third-order
linear and nonlinear dispersion [5]. In this case, by a small quantity we mean Δ ∼ 1/L ∼ ∂/∂ξ ∼ U ,
where L is the wave-packet length. Correspondingly, the quantities 1/L2 ∼ ∂2/∂ξ2 ∼ U2 ∼ Δ2 and
U2/L ∼ U2∂/∂ξ ∼ 1/L3 ∼ ∂3/∂ξ3 ∼ Δ3 are the second- and third-order infinitesimal terms, respectively.
In this case, the basic model equation for describing the wave propagation in isotropic media is the third-
order nonlinear Schrödinger equation [6–13]

2i
∂U

∂t
+ 2iβ

∂(|U |2 U)

∂ξ
+ q

∂2U

∂ξ2
+ 2α |U |2 U + iγ

∂3U

∂ξ3
= 0, (1)

∗ naseeva@hse.ru

National Research University “Higher School of Economics,” Nizhny Novgorod, Russia. Translated from
Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 55, No. 3, pp. 203–217, March 2012. Original article
submitted December 26, 2011; accepted March 26, 2012.

184 0033-8443/12/5503-0184 c© 2012 Springer Science+Business Media, Inc.



where q = −∂2ω/∂k2 and γ = −∂3ω/(3 ∂k3) are the parameters describing the second and third-order linear
dispersion, α = ∂ω/∂(|U2|) is the cubic-nonlinearity parameter, ω = ω(k, |U2|) is the nonlinear dispersion
relation, and β is the nonlinear-dispersion coefficient.

For γ = β = 0, Eq. (1) is reduced to the classical nonlinear Schrödinger equation [14, 15], which
has a solution in the form of a soliton [14] resulting from the balance of dispersive spreading and nonlinear
compression of a wave packet if αq > 0. The dynamics and interaction of such solitons were studied in detail
in, e.g., [14, 16–18].

In the presence of all terms, Eq. (1) has a solution in the form of a short scalar soliton of the envelope
function. Such a solution exists as a result of the balance of the third-order linear dispersion and nonlinear
dispersion. It is shown in [12] that such short scalar solitons are stable for γβ > 0. Since their length
is determined by the ratio β/γ, short solitons, which differ from the solitons of the classical Schrödinger
equation, exist even for small γ and β. Interaction of such solitons is described in detail in [10–12].

As was shown in the full-scale experiments for deep-water waves [19, 20], a nonstationary wave
packet with a small length of 2–5 wavelengths during its propagation at the distances exceeding five wave
packet widths exhibits effects such as nonlinear aberration of the wave packet, which are well described by
Eq. (1), but cannot be explained by the classical Schrödinger equation. Similar results, which confirmed the
correctness of using Eq. (1) to describe short wave packets, were also obtained for electromagnetic waves in,
e.g., [21, 22].

2.2. Vector solitons

Propagation of the vector wave field E = e1U(ξ, t) exp(iωt − ikuξ) + e2W (ξ, t) exp(iωt − ikwξ) with
short envelope functions U and W and the mutually orthogonal polarization components in an anisotropic
nonlinear dispersive medium is correctly described in the third-order (aberration) approximation of the
theory of dispersion of nonlinear waves in anisotropic media [2]. Here, e1 ⊥ e2 are the mutually orthogonal
unit-length vectors which determine the directions of the different-polarization wave-field components U
and W . This approximation allows for the third-order nonlinear cross terms [23–25]. In this approximation,
for a small difference between the wave numbers of the polarization components (|ku − kw| � ku), the
slowly varying envelope functions U and W are described by the model system of two coupled third-order
Schrödinger equations [3]
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where U∗ and W ∗ are the quantities which are complex conjugate with respect to U and W , σα is the
parameter of the nonlinear cross-phase modulation, and σβ is the parameter of the cross-nonlinear dispersion.
For γ = β = 0, this system is reduced to two coupled classical nonlinear Schrödinger equations which have
a solution in the form of extended vector solitons [1, 16, 26–28].

Let us find the energy variation rate of the components U and W . Multiply Eq. (1) by U∗ and add
the obtained equation and its complex-conjugate analog. Then integrate the resulting equation over ξ from
−∞ to +∞ with allowance for zero conditions at infinity (U,W )ξ→±∞ → 0. As a result, we obtain the

185



expression
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for the energy variation rate of the component U . By analogy, Eq. (3) for W yields
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Equations (4) and (5) show that the different-polarization wave fields interact with each other. Adding
Eqs. (4) and (5), we obtain the law of conservation for the total energy of the vector wave packet:

d

dt

+∞∫
−∞

(|U |2 + |W |2) dξ = 0. (6)

On the other hand, subtracting Eq. (4) from Eq. (5) and taking into account that U = |U | exp(iϕu)
and W = |W | exp(iϕw), we obtain the following expression for the variation rate of the difference of the
component energies:
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The first three terms on the right-hand side of Eq. (7) correspond to the effects of cross-nonlinear dispersion,
while the last term corresponds to the effect of cross-phase modulation. The first term on the right-hand
side of Eq. (7) describes the amplitude effect of interaction between the polarization components of the wave
field, while the other terms in this equation describe the phase effects of the interaction.

The system of Eqs. (2) and (3) has a solution in the form of a two-component soliton [3]

U(ξ, t) =
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√
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2
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3

2
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)
A2

0 −
αγ

2β
K2

are the additional frequencies of the components of a short vector soliton, K = (qβ − αγ)/(2βγ) is the

186



soliton wave number which is the same for the components U and W , and

Vu,w =
β

2

(
1 +

3

2
σα

)
A2

0 +Kq − 3

2
γK2

is the soliton velocity.

On the other hand, the system of Eqs. (2) and (3) has two solutions in the form of short single-
component vector solitons with different polarizations [3]

U(ξ, t) =
Au

cosh[Au

√
β/γ (ξ − Vut)]

exp(iΩut+ iKξ), W = 0;

W (ξ, t) =
Aw

cosh[Aw

√
β/γ (ξ − Vwt)]

exp(iΩwt+ iKξ), U = 0,

where Au and Aw are the amplitudes of the single-component vector solitons with different polarizations,
Ωx = A2

xαγ/2 −K2αγ/(2β) and Vx = A2
xβ/2 +Kq − 3γK2/2 are the additional frequencies and velocities

of the solitons, and the subscript x denotes u or w. These soliton solutions taken separately are the exact
solutions of the scalar uncoupled third-order nonlinear Schrödinger equation given by Eq. (1) [10–12]. It is
shown in [12] that such single-component solitons are stable with respect to small perturbations under the
condition γβ > 0. In our further studies, we will consider only the cases where this condition is satisfied.

In this work, the interaction of single-component solitons is studied for the arbitrary parameters σα
and σβ. The study is performed analytically in the adiabatic approximation and numerically. Some results
for σα = σβ were obtained in [29].

3. INTERACTION OF SHORT SINGLE-COMPONENT VECTOR SOLITONS

Let us consider the initial value problem of interaction between two short single-component different-
polarization vector solitons of the envelope function. Let two different-amplitude solitons be present in
anisotropic medium at the initial time t = 0 at the distance ξ0 from each other:

U(ξ, t = 0) =
A1(0) exp(iKξ)

cosh[A1(0)ε (ξ − ξ0)]
, W (ξ, t = 0) =

A2(0) exp(iKξ)

cosh[A2(0)εξ]
, (8)

where the constant ε =
√

β/γ. Assume that the soliton parameters vary slowly during the interaction, so
that their evolution for t > 0 can be described in the adiabatic approximation:

U(ξ, t) = A1(t) exp

⎡
⎣i

t∫
0

Ωu(t̃) dt̃+ iKξ

⎤
⎦
/

cosh

⎡
⎣A1(t)ε

⎛
⎝ξ − ξ0 −

t∫
0

Vu(t̃) dt̃

⎞
⎠
⎤
⎦,

W (ξ, t) = A2(t) exp

⎡
⎣i

t∫
0

Ωw(t̃) dt̃+ iKξ

⎤
⎦
/

cosh

⎡
⎣A2(t)ε

⎛
⎝ξ −

t∫
0

Vw(t̃) dt̃

⎞
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where Ωu(t) = A2
1αγ/2 −K2αγ/(2β) and Ωw(t) = A2

2αγ/2 −K2αγ/(2β) are the additional frequencies of
the interacting vector solitons, and Vu(t) = A2

1β/2 +Kq − 3γK2/2 and Vw(t) = A2
2β/2 +Kq − 3γK2/2 are

their velocities. The distance between the centers of the interacting solitons vary by the law

Δξ = ξ0 +

t∫
0

[Vu(t̃)− Vw(t̃)] dt̃ = ξ0 +
βC0

2

t∫
0

ΔA(t̃) dt̃, (10)
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where ΔA = A1 − A2 is the difference between the amplitudes of the interacting single-component solitons
and the notation C0 is specified in Eq. (12).

The phase difference of these solitons is written as

ϕu − ϕw =

t∫
0

[Ωu(t̃)− Ωw(t̃)] dt̃ =
αγC0

2

t∫
0

ΔA(t̃) dt̃ =
αγ

β
(Δξ − ξ0). (11)

Substituting Eqs. (8) into the energy-conservation law given by Eq. (6), we obtain the relationship for the
amplitudes of the interacting solitons

A1(t) +A2(t) = A1(0) +A2(0) = C0. (12)

Differentiating Eq. (10) with respect to time, substituting the result into Eq. (7), and introducing the
notation D = A1/A2 = (C0 +ΔA)/(C0 −ΔA), we obtain the system

dΔA
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= I1

3εβσβ [C
2
0 − (ΔA)2]

16 cosh2[(C0 +ΔA) εΔξ/2]

[
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(
2αγ
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)]

+ I2
ασα
8
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C2
0 − (ΔA)2

]2
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[
2αγ

β
(Δξ − ξ0)

]
, (13)

dΔξ
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=

βC0

2
ΔA, (14)

where

I1 =

+∞∫
−∞

tanh(η) d(tanh η)

cosh2(Dη)
{
1− tanh(Dη) tanh[(C0 +ΔA) εΔξ/2]

}2 ,

I2 =

+∞∫
−∞

dξ

cosh2[(C0 −ΔA) εξ/2] cosh2[(C0 +ΔA) ε(ξ −Δξ)/2]
.

In what follows, we consider the interaction of the short single-component solitons with a small
amplitude difference |ΔA| � C0. In this case, assuming that the parameter D ≈ 1 on the right-hand side
of Eq. (13), we obtain the system of equations

da

dτ
= σβ

3ρ− 3 tanh ρ− ρ tanh2 ρ

tanh4(ρ) cosh2(ρ)

{
6− 4 sin2 p [ρ0 − ρ)]

}− σαp
4 (ρ− tanh ρ)

tanh3(ρ) cosh2(ρ)
sin[2p (ρ0 − ρ)], (15)

dρ

dτ
= a, (16)

where ρ = A0εΔξ, ρ0 = A0εξ0, τ = tA3
0εβ, a = ΔA/A0, and p = αγ/(A0εβ).

3.1. Interaction of the vector solitons without allowance for the phase effects

Under the condition p = 0, the terms allowing for the soliton phases in Eq. (15) disappear. Then
after the introduction of new variables τ ′ = τ

√
σβ and a′ = a/

√
σβ (the primes are omitted in what follows),

the system of Eqs. (15) and (16) takes the form

da

dτ
= 6

3ρ− 3 tanh ρ− ρ tanh2 ρ

tanh4(ρ) cosh2(ρ)
, (17)
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dρ

dτ
= a. (18)

The phase trajectories of the system of Eqs. (17) and (18) can explicitly be described by the equation

a2 + 12
ρ− tanh ρ

cosh2(ρ) tanh3(ρ)
= a2±∞, (19)

where a±∞ is the initial difference between the amplitudes of the interacting single-component solitons at a
sufficiently large distance |ρ| 
 1. Figure 1 shows the phase plane of the system of Eqs. (17) and (18). It is
evident that a single equilibrium state a = 0 exists for this system, while ρ = 0 is the saddle point.

Curves 1 correspond to the mutual passage of the

Fig. 1. The phase plane for the system of Eqs. (17)
and (18).

interacting solitons through each other and curves 2 are
the saddle separatrices and correspond to the infinitely
long approach of the interacting solitons with their am-
plitudes equalized, which is realized for the critical value
ac = a∞. Due to Eq. (19), the critical difference of the
initial amplitudes ac = a∞, i.e., the mutual-reflection in-
terval equals 2 (in terms of the absolute value). Curves 3
correspond to the mutual reflection of solitons from each
other.

Note that the inequality |a| � 1, which restricts
the correct use of Eqs. (15) and (16), is assumed in this
work. However, the numerical-simulation results shown
below qualitatively coincide with the corresponding an-
alytical results and also confirm the possibility of using
analytical expressions for moderate values of |a| ∼ 1. This remark is valid for all the analyzed cases.

In the case of mutual reflection, we can determine the minimum distance to which the solitons
approach by analyzing Eq. (19). Taking into account that the difference of the soliton amplitudes is a = 0
for the minimum distance ρ = ρmin, we consider two limiting cases.

If |a±∞| ∼ ac = 2, but a±∞ < ac (the case of mutual reflection), one can assume that the minimum
distance ρmin � 1 and use the Taylor–Maclaurin asymptotic series expansion in Eq. (19). Then, using
Eq. (19), we obtain ρ2min = 5 (4 − a2±∞)/12, e.g., |ρmin| ≈ 0.4 for |a±∞| = 1.9.

For small |a±∞| � 1, we can assume that |ρmin| 
 1 and use in Eq. (19) the limiting expressions
which lead to the equality 48 (ρ − 1)/ exp(2ρ) = a2±∞. Here, |ρmin| → 1 for |a±∞| → 0, e.g., |ρmin| ≈ 5 for
|a±∞| = 0.1 or |ρmin| ≈ 7.5 for |a±∞| = 0.01.

3.2. Interaction of the vector solitons without the cross-phase modulation

If σβ = 0, then after the introduction of the new variables τ ′ = τ
√
σβ and a′ = a/

√
σβ (the primes

are omitted in what follows), the system of Eqs. (15) and (16) is reduced to the form

da

dτ
= 6

3ρ− 3 tanh ρ− ρ tanh2 ρ

tanh4(ρ) cosh2(ρ)
− 4 sin2[p (ρ0 − ρ)]

3ρ− 3 tanh ρ− ρ tanh2 ρ

tanh4(ρ) cosh2(ρ)
, (20)

dρ

dτ
= a. (21)

It has the only saddle-type equilibrium state at a = 0, and ρ = 0. Figure 2 shows the phase plane of Eqs. (20)
and (21) for p = 1 and various values of the initial difference of the soliton phases: pρ0 = 0, π/4, π/2, and
3π/4.
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Fig. 2. The phase plane for the system of Eqs. (20) and (21) for p = 1 and various values of the parameter
pρ0 = 0 (a), π/4 (b), π/2 (c), and 3π/4 (d).

Variation in pρ0 leads only to variation in the “re-

Fig. 3. Function a2+(p, ρ0) for various values of
2pρ0: curves 1, 2,3, and 4 correspond to 2pρ0 =
0, 2pρ0 = π/2, 2pρ0 = π, and 2pρ0 = 3π/2,
respectively. The quantities a2− are equal to a2+ for
the following replacements of the parameter 2pρ0:
0 → 0, π/2 → 3π/2, π → π, and 3π/2 → π/2.

flection intervals,” i.e., the maximum distance from the
saddle separatrices to the horizontal axis.

Depending on the initial conditions, the cases of
the mutual reflection of solitons, soliton passage through
each other, and the infinitely long approach of the solitons
are possible.

Integrating the system of Eqs. (20) and (21) un-
der the condition of equality of the soliton amplitudes in
the equilibrium state, i.e., a(ρ = 0) = 0, we determine
the “reflection intervals,” i.e., the distances from the sep-
aratrices (separately for ρ → +∞ and ρ → −∞) to the
horizontal axis:

a2±∞ = 4−8

±∞∫
0

sin2[p (ρ0−ρ)]
3ρ− 3 tanh ρ− ρ tanh2 ρ

tanh4(ρ) cosh2(ρ)
dρ.

The dependences a2+(p, ρ0) are plotted in Fig. 3 for various
values of the parameters 2pρ0 = 0, π/2, π, and 3π/2.

The values of a2±(2pρ0) are limited and approximately tend to 2.66 for p → +∞. Therefore, the
inequality |a±∞| < 2 always holds, i.e., the reflection interval is smaller than that described in Sec. 3.1
for p = 0 and approximately tends to 1.63 for large p. In particular, in the cases shown in Fig. 2 we have
|a±∞| ≈ 1.53 for 2pρ0 = 0, |a+∞| ≈ 1.72 for 2pρ0 = π/2, |a±∞| ≈ 1.73 for 2pρ0 = π, and |a+∞| ≈ 1.54 for
2pρ0 = 3π/2.

In the case of mutual reflection, integrating Eqs. (20) and (21), one can determine the minimum
distance ρmin of the soliton approach. If the soliton amplitudes are identical for the minimum approach
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Fig. 4. The phase plane of the system of Eqs. (22) and (23) for p = 1 and various values of pρ0 = 0 (a),
π/2 (b), π (c), and 3π/2 (d). Out of the equilibrium states, only the saddles which are close to the origin of
coordinates are shown.

distance, i.e., for a(ρmin), then integrating Eqs. (20) and (21) from ρ±min to ±∞, we obtain

a2±∞,lim = 12
ρ±min − tanh(ρ±min)

tanh3(ρ±min) cosh
2(ρ±min)

− 8

±∞∫
ρ±min

sin2[p (ρ0 − ρ)]
3ρ− 3 tanh ρ− ρ tanh2 ρ

tanh4(ρ) cosh2(ρ)
dρ.

Herefrom, e.g., for the cases shown in Fig. 2 we obtain for |ρ±min| = 0.1 that |a±∞,lim| ≈ 1.53 for
2pρ0 = 0, |a+∞,lim| ≈ 1.71 and |a−∞,lim| ≈ 1.54, for 2pρ0 = π/2 |a±∞,lim| ≈ 1.72 for 2pρ0 = π, and
|a+∞,lim| ≈ 1.54 and |a−∞,lim| ≈ 1.71 for 2pρ0 = 3π/2.

3.3. Interaction of vector solitons without cross-nonlinear dispersion

If σβ = 0, then after introducing the new variables τ ′ = τ
√
σα and a′ = a/

√
σα (the primes are

omitted in what follows), the system of Eqs. (15) and (16) takes the form

da

dτ
= −4p sin[2p (ρ0 − ρ)]

ρ− tanh ρ

tanh3(ρ) cosh2(ρ)
, (22)

dρ

dτ
= a. (23)

It has infinitely many equidistant equilibrium states at a = 0 and ρ = 2kπ/(2p) + ρ0 of the saddle
type and at a = 0 and ρ = (2k + 1)π/(2p) + ρ0 of the center type (here, k ∈ Z is any integer). Figure 4
shows the phase plane for the system of Eqs. (22) and (23) for p = 1 and various values 2pρ0 = 0, π/2 of
the initial difference of the soliton phases, π, and 3π/2. The center-type equilibrium states exist inside the
existing separatrix loops or bundles.

Variation in p proportionally changes only the equilibrium-state coordinates and the “reflection in-
terval” value without a qualitative changer in the system-trajectory behavior.

As is evident from the above phase portraits, only one qualitatively distinguished equilibrium state
exists, namely, the so-called B-saddle which is the closest to the origin of coordinates and has no separatrix
loops. Only for 2pρ0 = π (Fig. 4c), there are two such saddles and having common coupled separatrices.
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If the initial conditions are between the corresponding separatrices, then all saddles determine the
limiting distance of the soliton approach. However, the distinguished saddle determines the least limiting
approach distance. In the cases where the B-saddle deviates from the origin of coordinates, it is possible
that this distance has the other sign compared with the initial distance. Therefore, during mutual reflection,
the solitons can approach each other and interact, pass through each other, separate to a certain distance,
and again start approaching, pass through each other in the opposite direction, and finally reflect. Such
behavior is possible if, e.g., 2pρ0 = π/2 (see Fig. 4b) during the motion along the phase trajectories between
the B-saddle separatrices from the region of negative ρ.

If the initial difference in the amplitudes of interacting solitons exceeds the corresponding value for
the B-saddle separatrix, the solitons pass through each other.

For the initial conditions at the separatrix of any saddle, the solitons approach each other for an
infinitely long time. In this case, after the solitons are separated by a distance which is equal to the saddle
coordinate, they proceed to move without changing their mutual location. However, such a “separatrix-
type” interaction mechanism is unstable with respect to small perturbations. Such perturbations due to
external influence are evidently possible since the soliton approach time is infinitely long. Therefore, the
interaction mechanism is not structurally stable.

If the initial conditions are specified exactly at a saddle, the solitons remain at a distance equal to
the saddle coordinate and then continue to move with the same amplitudes without changing the mutual
location. Therefore, it is possible to realize the coupled, but nonperiodic (non-breather) state of the vector
single-component solitons interacting at some distance. However, it is expedient to consider such a “saddle-
type” mechanism of soliton interaction in actual media only for finite times since it is not structurally stable
for the above-mentioned reasons.

It is worthy of note that the initial conditions are

Fig. 5. Function a2+(p, ρ0) for various values of
2pρ0: curves 1, 2, 3, and 4 correspond to 2pρ0 =
0, 2pρ0 = π/2, 2pρ0 = π, and 2pρ0 = 3π/2,
respectively. The quantities a2− are equal to a2+ for
the following replacements of the parameter 2pρ0:
0 → 0, π/2 → 3π/2, π → π, and 3π/2 → π/2.

specified by the quantity ρ0 or, more exactly, by ρ0+πn/p
due to the periodicity of the function in Eq. (22). There-
fore, the initial distance always coincides with the coor-
dinates of one of the saddles in the phase plane. Thus,
specifying the initial conditions, it is impossible to choose
the trajectory located on or inside some separatrix loop or
inside the separatrix bundle. If a choice of such a closed
trajectory were possible, this would correspond to mu-
tual periodic motion of interacting solitons at a certain
distance from each other. This would result in realization
of a breather of different-polarization vector solitons lo-
cated at a certain distance from each other, i.e., solitons
which never overlap. Such breathers can appear only due
to random external actions for long times in the case of
the “saddle” coupled state of solitons.

In the cases under consideration, integrating the
system of Eqs. (22) and (23) under the condition a(B −
saddle) = 0, one can determine the “reflection intervals,”
i.e., the maximum distances from the specified-saddle sep-
aratrices (separately for ρ → +∞ and ρ → −∞) to the

horizontal axis. These distances are described by the expression

a2±∞ = −8p

±∞∫
ρ(B−saddle)

sin2[2p (ρ0 − ρ)]
ρ− tanh ρ

tanh3(ρ) cosh2(ρ)
dρ.

The plots of a2+(p, ρ0) for 2pρ0 = 0, π/2, π, and 3π/2 are shown in Fig. 5. The value of a2+(p, ρ0) is always
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Fig. 6. The phase plane for the system of Eqs. (24) and (25) for δ = 1, p = 1, and various values of 2pρ0 = 0
(a), π/2 (b), π (c), and 3π/2 (d). Out of the equilibrium state, only the saddles which are close to the origin
of coordinates are shown.

limited and approximately tends to 1.33 for p → +∞. Namely, in the cases shown in Fig. 4 we have
|a±∞| ≈ 1.28 for 2pρ0 = 0, |a+∞| ≈ 0.99 for 2pρ0 = π/2, |a±∞| ≈ 0.64 for 2pρ0 = π, and |a+∞| ≈ 1.26 for
2pρ0 = 3π/2. By analogy, we can also determine the “reflection intervals” for any saddle.

3.4. General case of allowance for all nonlinear effects of interaction

If all nonlinear coupling parameters are simultaneously present in the model equations, then, using
the new variables τ ′ = τ

√
σβ and a′ = a/

√
σβ and the notation σα/σβ = δ (the primes are omitted in what

follows), the system of Eqs. (15) and (16) can be reduced to the form

da

dτ
= 6

3ρ− 3 tanh ρ− ρ tanh2 ρ

tanh4(ρ) cosh2(ρ)
− 4 sin2[p (ρ0 − ρ)]

3ρ− 3 tanh ρ− ρ tanh2 ρ

tanh4(ρ) cosh2(ρ)

− δ
4p (ρ− tanh ρ)

tanh3(ρ) cosh2(ρ)
sin[2p (ρ0 − ρ)], (24)

dρ

dτ
= a. (25)

This system of equations has at least one equilibrium state. Figure 6 shows the phase plane for the
system of Eqs. (24) and (25) for p = 1 and δ = 1 and various values of 2pρ0 = 0, π/2, π, and 3π/2.

Comparing the phase portraits for different values of the parameter δ = σα/σβ , we see that its increase
leads to an increase in the number of saddles and the corresponding number of centers inside the separatrix
loops, as well as an increase in both the distance between the saddles and the “reflection interval.” An
increase in p leads to an increase in the number of saddles and the “reflection interval,” but to a decrease
in the distance between the existing saddles.

As is evident from the above phase portraits, only one qualitatively distinguished equilibrium state
(B-saddle) exists. This saddle is the closest to the origin of coordinates and has no separatrix loops. Only
for 2pρ0 = π (Fig. 6c), we have two such saddles which are coupled by the separatrix bundles.

The mutual passages of the vector solitons through each other, the “separatrix-type” interaction with
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Fig. 7. The quantity a2+ for various δ = 1/2 (a), 1 (b) and 2 (c) and 2pρ0. Curves 1,2, 3, and 4 correspond
to 2pρ0 = 0, 2pρ0 = π/2, 2pρ0 = π, and 2pρ0 = 3π/2, respectively. The values of a2− are equal to the values
of a2+ for the following replacements of the parameter 2pρ0: 0 → 0, π/2 → 3π/2, π → π, and 3π/2 → π/2.

an infinitely slow equalization of the soliton amplitudes, and the mutual reflection of solitons from each other
are the main interactions of the vector solitons. If the B-saddle is displaced off the origin of the phase-space
coordinates, then the mutual reflection with double passage of solitons through each other is possible by
analogy with the case described in Sec. 3.2.

In the cases studied, integrating the system of Eqs. (24) and (25) under the condition of equality of
the soliton amplitudes in the distinguished saddle equilibrium state a(B−saddle) = 0, one can determine the
“reflection intervals,” i.e., the maximum distances from the B-saddle separatrices (separately for ρ → +∞
and for ρ → −∞) to the horizontal axis. These distances are described by the expression

a2±∞ =
12 [ρ(B − saddle)− tanh[ρ(B− saddle)]

tanh3[ρ(B− saddle)] cosh2[ρ(B− saddle)]
− 8δρ

±∞∫
ρ(B− saddle)

sin[2p (ρ0 − ρ)]
ρ− tanh ρ

tanh3(ρ) cosh2(ρ)
dρ

− 8

±∞∫
ρ(B−saddle)

sin2[p (ρ0 − ρ)]
3ρ− 3 tanh ρ− ρ tanh2 ρ

tanh4(ρ) cosh2(ρ)
dρ.

The plots of the functions a2+ for ρ → +∞ are shown in Fig. 7 for various values of 2pρ0 = 0, π/2, π, and
3π/2 and various values of δ = 1/2, 1 and 2. In any of these cases, the values of a2+ become constant
(dependent on δ, but independent of 2pρ0) for p → +∞.

Note that location of any saddle is determined by the quantities δ, 2pρ0, and p. When analyzing the
coordinates of various saddles, it was obtained that the dependences of these coordinates on the parameter p
for its large values asymptotically tend to hyperbolic ones from below for any values of δ and 2pρ0. However,
the initial conditions for the distance between the solitons are given by the quantity ρ0 or more exact, by the
quantity ρ0+πn/p due to the periodicity of the functions in Eqs. (24) and (25), while the initial coordinate
in the phase plane depends on the parameter p according to the hyperbolic law. Therefore, the initial
point in phase space is always located at a somewhat longer distance from the origin of coordinates on
the horizontal direction than the distinguished or undistinguished saddle. As a result, by specifying the
initial conditions, we cannot choose the trajectory which is located on or inside the separatrix loop (bundle)
or directly at a saddle. Therefore, apart from the cases of the soliton reflection and passage, only the
“separatrix” (structurally stable) cases of their interaction are possible, As a result, the breather or at least
the stationary “saddle” state are not realized in the case under consideration.
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3.5. Numerical simulation

To check the correctness of the above-obtained re-

Fig. 8. Distribution of the wave fields of interacting
single-component solitons at various times. Con-
tinuous curves correspond to the distribution of
|U |, while the dash curves correspond to the dis-
tribution of |W |.

sults, we consider numerically the dynamics of the wave
packets described by Eq. (8) within the framework of
the system of Eqs. (2) and (3) under the condition α =
q = β = γ = 1 for different values of the nonlinear-
coupling parameters σα = σβ, and different initial am-
plitudes A1(0) and A2(0) of interacting single-component
solitons.

As an example, Fig. 8 shows the distribution of the
wave fields |U | and |W | of the interacting solitons at var-
ious times for the initial distance ξ = −π between them
and σα = σβ = 1/16, A1(0) = 1.7, and A2(0) = 1. As is
evident from this distribution, the single-component mu-
tually orthogonal vector wave packets retain the soliton-
like shape during the interaction, although the interaction
is accompanied by weak linear radiation of a part of the
wave fields. This result confirms the correctness of the
adiabatic approximation when describing the interaction
of the considered solitons.

Figure 9 shows the results of numerical simulation of interaction of the single-component solitons. In
particular, we present the relative difference

anum =
2√
σ

max(|U |)−max(|W |)
max(|U |) + max(|W |) ≈ 2 (A1 −A2)√

σ (A1 +A2)

of the maximum amplitudes of the interacting polarization components as a function of the distance Δξ =
ξmax |u| − ξmax |w| in space between the maxima under the condition A2(0) = 1 for different values of A1(0)
and different initial distances ξ0 between the solitons.

Curve 1 in Fig. 9a describes the passage of interacting solitons through each other for A1(0) = 1.75
(anum(−π) = 2.18), curve 2 corresponds to the “separatrix” type of interaction forA1(0) = 1.65 (anum(−π) =
1.93), and curve 3 describes mutual reflection of the solitons for A1(0) = 1.55 (anum(−π) = 1.73). Figure 9a
corresponds to the phase plane for the system of Eqs. (24) and (25) for ρ0 = πk (i.e., an analog of Fig. 6a).
The interval of mutual reflection for ρ0 = πk is numerically obtained equal to (anum)c ≈ 1.93 (the distance
from curve 2 to the horizontal axis for Δξ = −π), which differs only slightly from the corresponding value
in the adiabatic approximation. The difference between the analytical and numerical results appears due
to radiation of a part of the wave field during the interaction of solitons, which was not allowed for in the
analytical consideration.

Curve 1 in Fig. 9b describes the passage of solitons through each other for A1(0) = 1.55 (anum(−π) =
1.73), curve 2 describes the “separatrix” type of interaction for A1(0) = 1.45 (anum(−π) = 1.43), and curve 3
describes mutual reflection of the solitons for A1(0) = 1.35 (anum(−π) = 1.19). Figure 9b corresponds to the
phase plane for the system of Eqs. (24) and (25) for ρ0 = πk + π/4 (see Fig. 6c). The interval of mutual
reflection for ρ0 = πk+π/4 is numerically obtained equal to (anum)c ≈ 1.45, which differs only slightly from
a similar value obtained analytically.

Note that in the analytical part of this work, we assumed the inequality |a| � 1, which limited the
correct use of analytical solutions. However, the results of numerical simulation qualitatively coincide with
the corresponding analytical results and confirm the possibility of using analytical expressions for moderate
values |a| ∼ 1.

It shall also be noted that similarity of the analytical and numerical results is influenced by the values
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Fig. 9. Results of numerical calculation (solid curves) that are analogs of Figs. 6a and 6c. Panels a andb
correspond to the conditions ξ0 = −π and ξ0 = −5π/4, respectively. The dash curve show the corresponding
phase trajectories obtained analytically.

of the nonlinear-coupling parameters σα and σβ. With increasing these parameters, the character of the
soliton interaction is retained, but their amplitude variation becomes more pronounced as a result of the
interaction. This leads to a larger difference of analytical results from numerical simulation results.

4. CONCLUSIONS

In this work, we have analyzed the phase effects of interaction of short vector single-component soli-
tons. Interaction of solitons was considered within the framework of a pair of coupled third-order nonlinear
Schrödinger equations in the absence of stimulated Raman’s scattering. The analytical and numerical re-
sults, which were obtained in the adiabatic approximation and numerical results are in good agreement for
small parameters {σα, σβ} � 1 of mutual nonlinear coupling of the different-polarization components of the
vector wave packet. The regimes of the passage solitons through each other, their mutual repulsion, and
asymptotically slow approach are described. We have discussed the possibility of existence of the quasi-
stationary states of interacting solitons known as breathers, i.e., solitons which do not completely overlap
and are always located at a certain (variable) distance from each other, as well as the “saddle” interaction
during which the coupled solitons are always located at a certain (constant) distance from each other. We
have also described the regime of mutual reflection of interacting solitons with the double passage through
each other. With increasing parameters σα and σβ, the character of interaction of the single-component
vector solitons is retained, but the soliton amplitude changes to a greater extent during the interaction.
If p = 0, i.e., in the absence of cubic nonlinearity, the trajectories of the relative motion of solitons are
described explicitly. For p �= 0, the interaction character of solitons depends on their initial phase difference.

This work was supported by the Russian Foundation for Basic Research (project No. 12–02–00436–
a) and contains the results obtained during implementations of the project No. 11–01–0066 within the
framework of the program of the Scientific Foundation of the National Research University “Higher School
of Economics” in 2012–2013.
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