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We consider an equilibrium ensemble of large Erds-Renyi topological random networks with fixed vertex
degree and two types of vertices, black and white, prepared randomly with the bond connection probability p.
The network energy is a sum of all unicolor triples (either black or white), weighted with chemical potential of
triples ;. Minimizing the system energy, we see for some positive u the formation of two predominantly unicolor
clusters, linked by a string of N, black-white bonds. We have demonstrated that the system exhibits critical
behavior manifested in the emergence of a wide plateau on the N, (1) curve, which is relevant to a spinodal
decomposition in first-order phase transitions. In terms of a string theory, the plateau formation can be interpreted
as an entanglement between baby universes in two-dimensional gravity. We conjecture that the observed classical
phenomenon can be considered as a toy model for the chiral condensate formation in quantum chromodynamics.
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I. INTRODUCTION

During past two decades it has been recognized that Landau
classification of phase transitions does not cover all patterns
of symmetry breaking. The fractional quantum Hall effect
and the Levin-Wen string networks [1] provide well known
examples of topological order for so-called gapped states.
Corresponding quantum phase transitions exist at 7 = 0 and
do not have any local order parameters. Some symmetry
aspects of two-dimensional (2D) topological phases with
Z, symmetry were discussed in [2]. Quantities describing
topological phases are (i) the degeneracy of the ground state
(which depends on the topology of the system) and (ii) the
holonomy of the non-Abelian Berry connection. Another way
to identify topologically ordered states is to use the topological
entanglement entropy [3]. In any cases, the topological order
is manifested in the emergence of long-range correlations in
the system. The interplay between some local rules and global
constraints influences the behavior of the whole system and is
responsible for the long-range order.

Colored random networks have become a ubiquitous
paradigm for a wide range of physical and social phenomena in
distributed systems, spread from producer-consumer relations
to string theory and from budding in lipid membranes to
the creation of baby universes in cosmology. Here we study
random black-white vertex networks with the Levin-Wen type
of the Hamiltonian [1], evolving by bond reconnections and
tending to increase the number of unicolor triples under vertex
degree conservation. The local rule is the conservation of the
vertex degree in all nodes of the network, while the global
constraint is an attempt to maximize the number of triples
of the same color. As the energy of the triples increases,
the network breaks into two predominantly unicolor (black
and white) clusters, connected by a bunch of links between
black and white vertices. Unexpectedly, this bunch is stable
in a wide interval of triple energy. We conjecture that this
statistical phenomenon has an origin relevant to quantum
entanglement.
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Ensembles of random Erd6s-Renyi topological graphs
(networks) provide an efficient laboratory for testing vari-
ous collective phenomena in statistical physics of complex
systems, being also tightly linked to random matrix theory.
Besides investigating typical statistical properties of networks,
such as vertex degree distribution, clustering coefficients,
small world structure, and spectra of adjacency matrices,
the past two decades have been marked by rapidly growing
interest in more refined graph characteristics, for example,
the distribution of triadic motifs in oriented networks (small
subgraphs involving different triads of vertices).

Triadic interactions, being the simplest interactions beyond
the free-field theory, play a crucial role in network statis-
tics. Apparently, just the presence of triadic interactions is
responsible for the emergence of phase transitions in complex
distributed systems. The first signature of a phase transition
in a random network, known as the Strauss clustering model
[4], was treated by random matrix theory in [5] and identified
with the first-order phase transition in the framework of a
mean-field cavitylike approach in [6]. Another example of
phase transition is connected with the triadic motif pattern
formation, known as motif superfamilies, in real evolutionary
networks [7]. This problem was theoretically analyzed in
[8], where it was conjectured that stable motif profiles
constituting superfamilies [7] may correspond to stability
islands associated with localized states in the space of motifs.
The localization of states occurs as a first-order transition if the
chemical potential associated with triadic motif energy is large
enough. The critical behavior of triadic motif concentration, as
a function of the chemical potential, has been studied in detail
in [8].

Specifically, in this work we investigate the dependence
of an equilibrium number of links N, connecting black and
white vertices in networks with fixed vertex degree p as a
function of the chemical potential i controlling the number of
unicolor vertex triples (all three vertices are black or all three
are white). The attempt to minimize the energy of unicolor
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triples leads to almost immediate color separation, when at
any infinitesimal positive value of u two clusters with opposite
colors (Z, charges) are formed. A more striking phenomenon
is observed for large enough w: The Ny, (1) curve has a wide
plateau separating two Arrhenius-type dependences at low and
high p. Such a plateau is never seen (for any p) if the energy
of the system is the sum of unicolor vertex pairs (but not
triples) or if the vertex degree is not conserved. We suggest
two parallel interpretations of the phenomenon observed in
our simulations: classical (in terms of classical first-order
transitions) and quantum (in terms of spins interacting with
2D topological gravity). Describing the system in terms of
classical statistical physics, we interpret the plateau emergence
as a spinodal decomposition similar to the vapor-liquid first-
order phase transition.

On the other hand, the quantum gravity language implies
the realization of the network as the triangulation of a 2D
fluctuating surface. Since the network does not involve a
metric, one deals with a purely topological version of 2D
gravity where the chemical potential of unicolor triples u
can be understood as a 2D cosmological constant. The
spin (i.e., color) separation phenomenon is interpreted as
anomalous transport on the string worldsheet due to an axial
anomaly in the gravitational field. In terms of 2D gravity,
it is conjectured that the plateau formation occurs as the
specific entanglement of two baby universes. We propose
a synchronization mechanism of phase transitions in each
universe and suggest that their entanglement results in a sort
of a phase coexistence phenomenon. To describe the phase
coexistence properly, one could try to find gravity counterparts
of thermodynamic variables. This is a subtle issue and we rely
on recent interpretation of (P,V) variables in cosmological
terms [9] dealing with van der Waals thermodynamics of
charged or rotating black holes [10].

We also mention a useful analogy with the chiral symmetry
breaking in the instanton—anti-instanton ensemble in quantum
chromodynamics (QCD) described by the random matrix
model. In this case, the system at small  and low temperature
is in a phase with the spontaneously broken chiral symmetry
characterized by the nonvanishing chiral condensate (¥W).
Staying at T = 0 and increasing the chemical potential &, we
force the system to undergo a quantum phase transition at
some (.. The density of the chiral condensate is proportional
to the number of instanton—anti-instanton connections and the
chiral symmetry restoration signifies the emergence of another
condensate (WW). We conjecture that our two-color network
could be a toy model for the formation of such a condensate.

II. MODEL AND KEY OBSERVATIONS

The setup of the model is as follows. Take N vertices
and label them by integers 1,...,N. Vertices i = 1,...,cN
(0 < ¢ < 1)areblack,i.e., are associated with Ising spins o; =
—1, while vertices i =c¢N + 1,...,N are white and carry
o; = 1. The initial realization of the Erd6s-Renyi network is
prepared by connecting any randomly taken pair of vertices
with the probability p (p > %, i.e., p is above the percolation
threshold). Then one randomly chooses two arbitrary links,
say, between vertices A and B (A-B) and between C and
D (C-D) and reconnects them, getting new links A-C and
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FIG. 1. Dependence of the equilibrium number N, of black-
white bonds on the chemical potential o per each unicolor triple
for a N = 500 vertex random network of probability p = 0.15 with
equal composition of black and white nodes. The typical network
topologies for several values of p along a N,, (u) curve are shown
above the Ny, (1) curve.

B-D (the former connections A-B and C-D are destroyed).
Such reconnection conserves the vertex degree [11]. Now one
applies the standard Metropolis algorithm with the following
rules: (i) If after the reconnection the number of unicolor
vertex triples is increased, a move is accepted; (ii) if the
number of unicolor vertex triples is decreased by A Nyip or
remains unchanged, a move is accepted with the probability
e *ANup We have run the Metropolis algorithm repeatedly for
alarge set of randomly chosen pairs of links, until it converges.
For one-color networks it was proven [12] that such a
Metropolis algorithm converges to the Gibbs measure ¢! in
the equilibrium ensemble of random undirected Erd6s-Renyi
networks with fixed vertex degree. For two-color networks
the convergence has not been proven rigorously, however
extensive numerical tests do not show any pathologies.

The obtained results are as follows. The dependence of the
number of links connecting black and white vertices Np,,(12)
demonstrates for small and large p the Arrhenius activation
kinetics Ny, (1) ~ e PPH where B(p) is some connectivity-
dependent constant. However, the function N, (1) develops
a plateau in a wide region of u, manifesting a kind of a
critical behavior. The corresponding plot for the network of
N = 500 vertices is shown in Fig. 1 for p = 0.15. Analyzing
the clustering structure of the network for different i, one can
see that at small u (u ~ %) the system splits for any p > %
into two clusters of predominantly black and white vertices,
meaning spontaneous Z, symmetry breaking (the clusters are
allocated by a preferential number of links entering it, rather
than going outside). So the plateau is developed in the Z,
broken phase. These results are reproducible for various values
of ¢ (where c is the fraction of black vertices). The same
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behavior is seen for random regular networks, which have a
fixed vertex degree d in all network nodes.

Recall that we consider very dense networks p = O(1), far
above the percolation threshold p = % Certainly, even in this
regime the entire network contains some number of disjoint
clusters, exponentially suppressed in their sizes. In colored
network, weights of different rewirings are color dependent
and could affect the distribution in cluster sizes. We believe
that for dense networks (considered here) the effect of a
color-dependent redistribution in cluster sizes is negligible
against the background of the exponentially suppressed overall
number of disjoint components. However, near the percolation
threshold this effect might be visible and definitely deserves
special attention. The following two key results are the subjects
of our discussion and interpretation in terms of lattice gases
and string theory: immediate spontaneous formation of black
and white clusters (breaking Z, symmetry) at 4 ~ - and the

N
emergence of a wide plateau in the N;,, () dependence.

III. SYMMETRY BREAKING

A. Statistical interpretation

First of all, it is worth pointing out that the Z, symmetry
breaking and the plateau formation are different physical
effects. Separation of clusters is typical phenomenon that can
be understood using naive mean-field arguments. Let N;, and
N, be the number of black and white nodes, respectively
(Np + N, = N). In a mixed system the interaction energy of
one b node (w node) with m randomly chosen other nodes is
up = 5 (No@pp + NuwPpw) [up = 5 (Np@pp + Napup)], where
¢pp and ¢py (¢Pyp) are the b-b and b-w (w-b) interaction
energies. The free energy of the system reads F' = %(Nbub +
Nutw) = kT(NpIn ¢ + Ny In 5). Defining ¢ = ¢pp + dpu
and A = ¢pp — Ppy, passing to concentrations cp, = Now
(cp + ¢ = 1), and introducing the asymmetry of the network
composition n = ¢, — ¢, we can write the network free
energy f = £ as follows:

A
o) = fo+ ’"Trﬁ [(1 = )In(l — )

+ (1 +n)In(1 + )], (D

where fo = 5¢ + kT In2.

The system described by the thermodynamic potential (1)
experiences the standard phase transition with the stationary
states 1, determined by the equations w = 0and % lye >

1 n e
0. Supposing that || < 1, we can expand f(n) up to the fourth
term and get the equation

mA kT
— —kT )p——=n"=0 2
(2 )n 3 2

kT
2

having a single solution n. =0 at m < ’% and exhibiting

spontaneous symmetry breaking into two phases 7%’ =

+,/3(22 — 1 atm > AL,

The mean-field arguments accounting for a plateau are
provided in the next section in terms of lattice gas statistics,
random matrices, and string theories. Being applied to net-
works, the random matrix approach means the discretization

of a two-dimensional string worldsheet embedded in some
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D-dimensional target space. Since the colored (black and
white) vertices can be described by Ising spin variables,
our system is some specific model of matter (Ising spins)
coupled to gravity (a fluctuating surface over an ensemble of
allowed reconnections in the random network). In the matrix
model framework, which parallels the mean-field analysis,
such systems have been considered in [13], however, with an
important difference: In our system Ising spins are quenched,
while in matrix approaches they are typically annealed.

B. Stringy interpretation

Nowadays string theory plays two different roles in funda-
mental physics. First, it is a model of quantum gravity since
the spectrum of closed strings involves a massless graviton.
Second, the string can be regarded as a probe and the physics of
a 2D string worldsheet should reflect all phenomena happening
in the entire target space in which this worldsheet is embedded.
This is the key idea behind the gauge-string duality. Having in
mind these roles of string theory and considering a network as
a discretized string worldsheet, we rephrase in stringy terms
the phenomenon observed in the black-white network.

The spontaneous symmetry breaking and the black-white
cluster separation can be interpreted as occurrences of anoma-
lous transport on the string worldsheet. Anomalous transport
emerges due to the quantum nonconservation of classically
conserved currents in the external gauge or gravitational fields.
The spin separation phenomenon in our problem means that a
nonvanishing axial current takes place on the worldsheet when
the spins in subensembles S = {0 = +1}and S = {0 = —1}
move in opposite directions. Since spins are quenched and do
not fluctuate, the current is induced purely by fluctuations of
the 2D surface. The network is a topological object, hence
it is natural to describe it as the topological 2D gravity
of Jackiw-Teitelboim type which involves the cosmological
constant A,

L= /d%@cb(R + A), (3)

where @ is the scalar dilation field and R is the Ricci curvature
of the two-dimensional metric g. This Lagrangian can be
written as the topological 2D Yang-Mills theory with an
SL(2, R) gauge group (see [14] for a review).

It is known that in the pure 2D gravity the total number
of triangles measures the total area, hence the corresponding
chemical potential p of triples can be interpreted as an effective
2D cosmological constant. For the equation of motion we have
R = —A. There is an axial current due to the chiral anomaly
in an external gravitational field

3,J> =R, 4)

which for the equation of motion equals the cosmological
constant . Thus, for the axial current itself in terms of the
spin connection w, we have

J(f = €4y, X (. 5)

Equation (5) demonstrates the emergence of spin current for
any nonzero chemical potential of triads p, which is the
microscopic mechanism of black and white node separation.
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We describe the Z, spontaneous symmetry breaking in
a colored dynamic network using mean-field statistical ar-
guments and from a more involved viewpoint in terms of
fluctuating surfaces. In what follows we briefly discuss these
two different approaches.

It should be pointed out that the spin separation phe-
nomenon is known in other systems as well. At low tempera-
ture the 2D Ising model exhibits spontaneous magnetization,
developing the coherent spin domains separated by the domain
walls. The Z, symmetry is spontaneously broken in this phase.
In the case of fluctuating Ising spins coupled to 2D gravity, the
spontaneous creation of baby universes takes place and it is
known that the spin direction in the daughter universe is always
opposite to the spin directions in the parent one (see [15] for
a review). In our case we see the formation of clusters with
opposite spin signs due to dynamic rearrangement of bonds
only (since the spins are quenched). A similar spin separation
phenomenon occurs in 2D matter with nonvanishing chemical
potential [16] and in 4D matter in an external magnetic field
(see [17] for a review). The chirality separation emerges in
some lattice QCD systems when sheets of opposite chiralities
become connected by stringy skeletons [18].

IV. PLATEAU FORMATION

The most intriguing question concerns the interpretation of
the plateau formation, since it seems to be a phenomenon with
the signature of a quantum phase transition. In contrast to the
symmetry breaking, the plateau formation is an essentially col-
lective effect that disappears for networks with a nonconserved
vertex degree.

The relevant image that highlights the basic features of
this phenomenon is the famous game of fifteen puzzle. The
analogy goes as follows. When the concentration of graph links
is small, it is always possible to minimize the system energy
(the sum of unicolor triples) almost locally. This resembles the
initial stages of ordering in the puzzle, when one takes care of
single-tile placements only. However, our network gets highly
frustrated due to the vertex conservation condition: In order
to find the way to place some new good link that minimizes
the unicolor triple energy, it might be necessary to pass over
a high potential barrier and remove other good links that have
already been placed. Thus, the energy minimization involves
unfavorable sequences of link permutations until all necessary
constraints are satisfied. This is exactly what happens at late
stages of ordering in the game of fifteen.

A. Statistical interpretation

To proceed with the combinatorial interpretation, we
represent the graph by the symmetric adjacency matrix J;; and
split it into four sectors with the corresponding numbers of
particles (links) Npp, Npw, Nyp, Ny (see Table I). The matrix
Jij is symmetric, namely, Ny, = Nyp. The unicolor triple
is any pair of particles in one row or in one column in the
sectors [ee] or [oo]. The vertex degree conservation implies
the condition 3" | J;; = J;O), where J}O) (j=1,...,N)are
the initial vertex degrees, fixed by the network preparation
conditions. Hence the simplest rearrangements of graph links
should involve pairs of particles (links) as shown in Fig. 2. As
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TABLE I. Number of particles in each sector for the symmetric
adjacency matrix J;;.

No. of particles Sector Symmetric adjacency matrix
Npp [ee] [1<{i,j} < Nel

Nuw [oo] [Ne+1<{i,j} <N]
Npy [eo] [Ne+1<i<N,I1<j<Nc]
Nup [oe] [1<i<NeNe+1<j<N]

we shall see, this figure helps explain the appearance of the
plateau on the N, (1) curve depicted in Fig. 1.

The physics behind the N, (1) dependence is as follows.
When the chemical potential . of unicolor triples is increasing,
the formation of aligned pairs of particles (in rows or in
columns) in the sectors [ee] and [co] becomes favorable. There
are two mechanisms that increase the number of aligned pairs
in these sectors; they are schematically shown in Figs. 2(a)
and 2(b). In the first mechanism I the exchange of particles
[shown by arrows in Fig. 2(a)] 1 < 2 (and of their symmetric
counterparts 1’ <5 2') pushes particles 1,1’ to [ee] and particles
2,2" to [oo]. In the second mechanism II [see Fig. 2(b)]
the exchange 1 < 2 (and 1’ < 2) preserves the number of
particles in all sectors.

At small p [at the beginning of the N, () curve] both
mechanisms (I and II) of unicolor triple energy increasing are
available. However, as the number of particles in the sectors
[ee] and [oo] exceeds some critical value, the entropic loss due
accumulation of particles in these sectors forces the first-order
vapor-liquid-like phase transition in sectors [ee] and [oo].
Note that since the initial concentrations ng)q) =N, ég) /N?c? and
D = NO /N%(1 — ¢)? of particles in sectors [ee] and [oo]
do not coincide in general (they are fixed by a random network
preparation), the difference

ey — ] ~ (Vp) 12 ©)

desynchronizes the vapor-liquid transitions in [ee] and [oo].
So we connect the beginning of the plateau on the Np, (1)

\
@) [oe] [o0] () [oe] [o0]

FIG. 2. (a) Pulling particles (bonds) 1 and 2 (and their symmetric
counterparts 1" and 2’) from the sectors [ec] and [ce] into the sectors
[ee] and [oo]. The rearrangement results in two newborn triples
of graph vertices (pairs of particles). (b) Bond rearrangement that
conserves the number of particles in all sectors, but increases the
number of triples in the sector [ee].
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FIG. 3. Number of unicolor triples Ny;y as a function of u in the
ensemble of networks with N = 500 and p = 0.15.

curve with the first occurrence of independent vapor-liquid
transitions in [ee] or in [oo]. The plateau itself we identify
with the synchronization of these two vapor-liquid transitions
in [ee] and in [oo]. At the plateau mechanism I gets suppressed,
because capturing particles by sectors [ee] and [oo] becomes
entropically unfavorable.

The plateau on the Ny, (1) curve (shown in Fig. 1) occurs
simultaneously with the plateau on the Nyip(t) curve, shown
in Fig. 3, where Nyip is the number of unicolor triples. The
plateau on the Ny;pi (1) curve indicates the topological quench
of each unicolor subnetwork in [ee] and in [oo]. This behavior
is a signature of a spinodal decomposition typical for the vapor-
liquid phase transitions. The mechanism that competes with
the increase of energy of triples in the plateau region is just
mechanism II of particle exchange: Particle pairings, as shown
in Fig. 2(b), do not change the numbers of particles in all
sectors, but act against the entropy in sectors [ec] and [oe]
since trapping of particles such as 2 and 2’ is entropically
unfavorable.

Altogether, we are led to the following conjecture. The
plateau begins at the value fipee independently in subnetworks
[ee] and [oo] as the individual vapor-gas phase transitions. At
the plateau the interaction between sectors [ee] and [oo] is
ensured by process II, particle trapping in [ee] and [oo] works
against the entropy in [eo] and [oe], and we deal with two
effectively coupled subsystems [ee] and [oo], both exhibiting
a first-order transition and existing in a joint metastable state.
The plateau is finished at the value p¢nq, at which both sectors
[ee] and [oo] fall down in liquid states and decouple. At u >
Iend the entropic contributions in all sectors become negligible
and the Arrhenius-type activation kinetics gets restored.

Note that just above the percolation threshold, i.e., for
Pz %, the standard Erd6s-Rényi network, besides the giant
component, contains many disconnected clusters with the size
distribution c(k) ~ k=/2, where c(k) is the concentration of
clusters of k vertices. For black-white networks the distribution
c(k) should be modified since weights of particular clusters
become color dependent. For all p clusters contain only nodes
of the same color and all black-white links are external,
connecting oppositely colored clusters. The very existence of
the plateau is insensitive to the number of disjointed unicolor
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clusters in the network, however the plateau disappears for
quite small p.

B. Two-dimensional gravity or stringy interpretation

In terms of 2D gravity, the emergence of the plateau can be
linked with baby universe formation. It was proven in [15,19]
that critical phenomena in 2D gravity deal with the formation
of a newborn (daughter) bubble connected by the neck to the
parent universe. The free energy of the system consists of
two competing contributions: the mean value of the total neck
diameter and the spontaneous curvature of the newborn (baby)
universe of a given size. The same mechanism lies behind the
budding of vesicles in liquid membranes [20]. In terms of the
black-white network, the color separation can be interpreted
as the baby universe formation, whose size depends on the

ratio ngg) /N where Nl(,(;) (or N9y are the initial numbers
of black-black (or white-white) nodes, while the interaction
of triples plays the role of a curvature contribution to the free
energy (fixed by the cosmological constant ).

The plateau formation, in terms of 2D gravity, signals that
the neck size (or sum of all neck sizes for a multicluster
network) connecting the parent and baby universes does not
depend in some interval on the bulk cosmological constant .
The pure 2D gravity undergoes the phase transition at some
value u. (see [21] for a review), therefore upon the color
separation, we have two copies of 2D gravities connected
by the neck. Each gravity could be in one of two phases.
Since we consider the quantum geometry, there is no reason
for initial synchronization of phase transitions in these two
universes. The value of the cosmological constant, at which
the first transition happens, is presumably the point at which
the plateau gets started. Two universes are entangled, which in
terms of each 2D gravity can be interpreted as the insertion of
the macroscopic loop operator.

So the phase transition in one (say, black) universe happens
spontaneously, however, due to the quantum entanglement
of two universes ([ee] and [oo] clusters), the transition
in the second (white) universe is induced by the vacuum
expectation value of the macroscopic loop operator. The
plateau corresponds to the coexistence of two phases in 2D
gravity and when the second universe undergoes the induced
phase transition, they get separated and the plateau terminates.
Note that we consider the Euclidean version of 2D gravity,
when the baby universes can be produced.

If we would deal with fluctuating Ising spins coupled to
2D gravity, the results could be borrowed from the literature.
The case when spins exist on faces was solved in [13], while
the dual Ising model for spins existing on vertices was treated
in [22]. In the last case the model was reduced to the O(1)
loop model. In our system we have spins on the vertices,
hence the dual Ising model [22] is more relevant. It admits
the two-matrix representation [22]

7 — /dXdYeTrX2+;LTrX3+TrY2+qTrXY2, 7)

where X is the adjacency matrix for both black-black and
white-white links, while Y is the matrix of black-white connec-
tions. Besides, we have two additional ingredients compared
to [22]: The spins are quenched and the graph vertex degree is
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conserved. The degree conservation can be introduced into the
matrix model by the linear term with the Lagrangian multiplier
Tr M X playing the role of an external magnetic field similar to
[23]. AtY = 0 we are back to the pure matrix model describing
2D gravity with the cosmological constant .

The plateau formation is analogous to the chiral symmetry
breaking in QCD with a nonvanishing baryonic chemical
potential u. Recall key QCD properties relevant to our system.
At T =0 the QCD is in the confinement phase with the
chiral condensate (¥'W) # 0. The popular model of the QCD
vacuum is the instanton—anti-instanton 17 liquid, represented
by an ensemble of interacting pointlike objects of two types.
The value of the chiral condensate is presumably expressed
in terms of the number of connected instanton—anti-instanton
pairs [24], which is the number of black-white links in the
network language. The number of fermionic zero modes at the
instanton is an unchanged topological number, meaning a fixed
vertex degree in network terms. In the /I ensemble zero modes
at individual instantons get collectivized. The phase diagram
in QCD is quite rich in the temperature-chemical potential
plane. At small u the system is in the confinement phase with
broken chiral symmetry. By increasing 1, one reaches a mixed
phase with two coexisting condensates (¥ W) and (WW). Such
a mixed phase exists in some region in w, in which the string
tension does not depend on the density, being analogous to
the network plateau. Further growth of u forces the system
to fall down into the so-called color superconducting phase,
with chiral symmetry being restored and the QCD string
disappearing. In the QCD color superconducting phase, which
is believed to occur in neutron stars, condensation of a
quark-quark state happens similarly to the Cooper pairing
in conventional superconductors. The phenomenon of chiral
symmetry restoration at large u apparently can be described
by the effective random matrix model (see [25] for a review).
We conjecture that the two-color network picture could be
regarded as a toy model for zero-mode collectivization and
can be related to the holographic representation of the chiral
symmetry breaking proposed in [26].

V. DISCUSSION

In this paper we have described a critical phenomenon in
the statistics of a two-color random network: the emergence of
a wide plateau in the concentration of bonds linking black and
white nodes. The key condition for the plateau development is
the graph vertex degree conservation, a very natural condition
for any topological ensemble. The physics behind this phe-
nomenon can be thought of as a particular mechanism of bond
collectivization in Levin-Wen-type topological Hamiltonians.
It has evident parallels with the effect of fermionic zero-mode
collectivization, emerging from localized solutions of the
Dirac equation in the instanton—anti-instanton QCD ensemble.
Recall that this effect results in chiral symmetry breaking at
small condensate density and its restoration at large density. It
would be highly desirable to find an appropriate matrix model
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description of the phenomenon, similar to the QCD chiral
matrix model describing the spectrum of the Dirac operator in
the 11 ensemble.

One could consider ensembles of topological defects of
different nature such as instantons, monopoles, or vertices. The
effect of plateau formation due to zero-mode collectivization
is expected to be universal for them. Recently, the formation
of the condensate in the colorless instanton ensemble without
anti-instantons was investigated [27], where it was found that
a microscopic description of the condensate involves refined
knot invariants. The critical behavior in such colorless topo-
logical ensembles inspires the conjecture that knot recognition
by the topological invariant is different in different phases. It
would be very interesting to understand whether a relation
to the knot invariants can be found for colored topological
ensembles.

In this work we followed the probe approach for the
string, however one could question whether the critical plateau
formation would have stringy meaning if considering the
colored network as a quantum gravity model. The idea to use
a colored network in this way was recently suggested in [28].
However, our model differs from the one proposed in [28]
in two crucial respects: (i) We consider a conserved vertex
degree and (ii) in our case, contrary to [28], the flow increases
the number of triads, since the signs of cosmological constants
in our model and in [28] are different.

The criticality found in colored networks seems to be a quite
general phenomenon and could have practical applications
in real life networks where there are sets of separated
communities (black and white nodes). Criticality takes place
even in highly asymmetric black-white networks (i.e., for
the parameter ¢ lying in the region about [0.1,0.9]). As an
immediate example we could mention social networks. In
this framework, the phenomenon of plateau formation can
be regarded as follows. Consider two social communities and
assume that each community desires to increase the number of
its own triadic connections (its own simplest cliques) measured
with some weight (the chemical potential of triads). We predict
in such networks the existence of the stability plateau (i.e., in
the presence of unavoidable communication between commu-
nities), at which the number of links between different com-
munities is insensitive to the weight of its own connections.
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