GEOMETRY OF TOTALLY REAL GALOIS FIELDS OF DEGREE 4

YURY KOCHETKOV

Abstract

We will consider a totally real Galois field K of degree 4 as the linear coordinate space $\mathbb{Q}^{4} \subset \mathbb{R}^{4}$. An element $k \in K$ is called strictly positive, if all its conjugates are positive. The set of strictly positive elements is a convex cone in K. The convex hull of strictly positive integral elements is a convex subset of this cone and its boundary Γ is an infinite union of 3-dimensional polyhedrons. The group U of strictly positive units acts on Γ : the action of a strictly positive unit permutes polyhedrons. Fundamental domains of this action are the object of study in this work. We mainly present some interesting examples.

1. Introduction

Let K be a cubic totally real Galois field, defined by polynomial $p=x^{3}+a x+b \in$ $\mathbb{Q}[x]$. Elements of K will be written in the form $k x^{2}+l x+m, k, l, m \in \mathbb{Q}$. This notation allows us to identify K with 3 -dimensional space $\mathbb{Q}^{3} \subset \mathbb{R}^{3}$. . An element $k \in K$ is called strictly positive, if all its conjugates are positive, i.e. if x_{1}, x_{2}, x_{3} are (real) roots of p then an element $k x^{2}+l x+m$ is strictly positive, if

$$
\left\{\begin{array}{l}
k x_{1}^{2}+l x_{1}+m>0 \\
k x_{2}^{2}+l x_{2}+m>0 \\
k x_{3}^{2}+l x_{3}+m>0
\end{array}\right.
$$

These three conditions define a convex cone C in \mathbb{R}^{3}. Let $O \subset C$ be the set of strictly positive integral elements of K, \bar{O} — its convex hull (an infinite polyhedral subset of C) and Γ be the boundary of this convex hull - an infinite polygonal 2-dimensional complex in \mathbb{R}^{3}. Let U be the group of strictly positive units (a free Abelian group of rank 2). The action of a positive unit on Γ induces a permutation of its faces. The fundamental domain of the action of U on Γ is a finite union of polygons with pairwise identified sides - a torus. In [1] the structure of this polygonal complex was studied.

In this work we will study a 4-dimensional analogue of this problem.

2. Totally real Galois fields of degree 4

Let K be a totally real Galois field of degree 4 defined by a polynomial $p \in \mathbb{Q}[x]$. Elements of the field will be written in the form $k x^{3}+l x^{2}+m x+n, k, l, m, n \in \mathbb{Q}$, and the field will be considered as 4-dimensional space $\mathbb{Q}^{4} \subset \mathbb{R}^{4}$ with coordinates k, l, m, n. By O will be denoted the set of integral strictly positive elements from
K : an element $k x^{3}+l x^{2}+m x+n$ is called strictly positive if

$$
\left\{\begin{array}{l}
k x_{1}^{3}+l x_{1}^{2}+m x_{1}+n>0 \\
k x_{2}^{3}+l x_{2}^{2}+m x_{2}+n>0 \\
k x_{3}^{3}+l x_{3}^{2}+m x_{3}+n>0 \\
k x_{4}^{3}+l x_{4}^{2}+m x_{4}+n>0
\end{array}\right.
$$

where $x_{1}, x_{2}, x_{3}, x_{4}$ are (real) roots of p. These four conditions define a convex cone $C \subset \mathbb{R}^{4}$. The convex hull \bar{O} of the set O is an infinite polyhedral 4-dimensional subset of C. Its boundary Γ is an infinite 3 -dimensional polyhedral complex. Let $U \subset O$ be the group of strictly positive units - a free Abelian group of rank 3. The action of a positive unit on Γ induces a permutation of its 3-dimensional polyhedra. We will study fundamental domain of action of U on Γ. This domain - a finite union of 3-dimensional polyhedrons with pairwise identified faces is homeomorphic to 3-dimensional torus [2].

Galois group G of our field K is either \mathbb{Z}_{4}, or $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. In both cases G contains an invariant subgroup of order 2 , so K contains a subfield L of degree 2 . L is a decomposition field of a second degree polynomial with rational coefficients and positive discriminant d. Hence, K is a second degree algebraic extension of L, defined by polynomial $r \in \mathbb{Q}(\sqrt{d})[x]$.

Let $r=x^{2}+2 s x+t, s, t \in \mathbb{Q}(\sqrt{d})$, then roots x_{1}, x_{2} of r are of the form

$$
x_{1,2}=-s \pm \sqrt{s^{2}-t} \in K \Rightarrow \sqrt{s^{2}-t} \in K
$$

If $s^{2}-t=m+n \sqrt{d}, m, n \in \mathbb{Q}$, then $\sqrt{m+n \sqrt{d}} \in K$, i.e. all conjugates $\pm \sqrt{m \pm n \sqrt{d}}$ belong to K. Thus, the field K is the decomposition field of the biquadratic polynomial

$$
\begin{array}{r}
q=(x-\sqrt{m+n \sqrt{d}})(x+\sqrt{m+n \sqrt{d}})(x-\sqrt{m-n \sqrt{d}})(x+\sqrt{m-n \sqrt{d}})= \\
=x^{4}-2 m x^{2}+m^{2}-n^{2} d=x^{4}-2 a x^{2}+b
\end{array}
$$

Such biquadratic polynomial defines a totally real Galois field if: 1) all its roots are real, i.e. if $a>0, b>0$ and $\left.d=a^{2}-b>0 ; 2\right)$ a root $y_{1}=\sqrt{a+\sqrt{d}}$ of q polynomially generates all other roots of q, in particular, the root $y_{2}=\sqrt{a-\sqrt{d}}$, which can represented only in the form $y_{2}=k y_{1}^{3}+l y_{1}$. This gives us two possibilities:

- either $k y_{2}^{3}+l y_{2}=-y_{1}$, then $G=\mathbb{Z}_{4}, a^{2} b-b^{2}=b d=c^{2}, l=\left(2 a^{2}-b\right) / c=$ $\left(a^{2}+d\right) / c$ and $k=-a / c ;$
- or $k y_{2}^{3}+l y_{2}=y_{1}$, then $G=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, b=c^{2}, l=2 a / c$ and $k=-1 / c$.

Remark 1. If b is a full square and $a^{2} b-b^{2}$ is also a full square, then polynomial $x^{4}-2 a x^{2}+b$ is reducible.

In what follows we'll assume that $2 a$ and b are positive integers. Let us describe at first the structure of the fundamental domain for fields with smallest a and b : for the field $K_{1}=\mathbb{Q}[x] /\left(x^{4}-4 x^{2}+1\right)$ and for the field $K_{2}=\mathbb{Q}[x] /\left(x^{4}-4 x^{2}+2\right)$ (polynomial $x^{4}-3 x^{2}+1$ is reducible).

$$
\text { 3. The FIELD } K_{1}=\mathbb{Q}[x] /\left(x^{4}-4 x^{2}+1\right)
$$

Galois group here is $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Transformations $x \mapsto x^{3}-4 x$ and $x \mapsto-x$ are generators of Galois group. Elements $k x^{3}+l x^{2}+m x+n, k, l, m, n \in \mathbb{Z}$ are integral.

Hyperplane $k+l+n-1=0$ is a support hyperplane for the set O. It contains 9 integral strictly positive elements:

$$
\begin{array}{lll}
A_{1}=(-2,0,6,3), & A_{2}=(-2,3,2,0), & A_{3}=(-1,0,3,2) \\
A_{4}=(-1,0,4,2), & A_{5}=(-1,1,2,1), & A_{6}=(-1,2,0,0) \\
A_{7}=(-1,2,1,0), & A_{8}=(0,0,0,1), & A_{9}=(0,1,0,0)
\end{array}
$$

Elements $A_{1}, A_{2}, A_{4}, A_{6}, A_{8}$ and A_{9} are units. Element A_{3} is a midpoint of segment [A_{1}, A_{8}] and has norm 4 ; element A_{7} is a midpoint of segment $\left[A_{2}, A_{9}\right]$ and has norm 4; element A_{5} is a midpoint of segment $\left[A_{4}, A_{6}\right]$ and has norm 9 . The convex hull of these points in our hyperplane is an octahedron:

Faces of this octahedron are not identified by the action of group U. Hence, the construction of fundamental domain is not finished.

Indeed, hyperplane $4 k+5 l / 2+m+n-1=0$ is also a support hyperplane for the set O. It contains 5 integral strictly positive elements:

$$
A_{1}, A_{3}, A_{6}, A_{8} \text { and also an element } A_{10}=(0,0,-1,2),
$$

which is a unit. The convex hull of these points is a tetrahedron, which is glued to our octahedron (by the triangular face $A_{1} A_{6} A_{8}$). In thus obtained polyhedron some faces (not all!) are identified:
(1) multiplication by the unit A_{9} identifies the face $A_{1} A_{8} A_{10}$ with the face $A_{2} A_{6} A_{9}: A_{1} \rightarrow A_{2}, A_{8} \rightarrow A_{9}, A_{10} \rightarrow A_{6} ;$
(2) multiplication by the unit A_{4} identifies the face $A_{6} A_{8} A_{10}$ with the face $A_{1} A_{2} A_{4}: A_{6} \rightarrow A_{2}, A_{8} \rightarrow A_{4}, A_{10} \rightarrow A_{1}$
(3) multiplication by the unit A_{10} identifies the face $A_{4} A_{8} A_{9}$ with the face $A_{1} A_{6} A_{10}: A_{4} \rightarrow A_{1}, A_{8} \rightarrow A_{10}, A_{9} \rightarrow A_{6}$.
Faces $A_{1} A_{4} A_{8}, A_{1} A_{2} A_{6}, A_{6} A_{8} A_{9} A_{2} A_{4} A_{9}$ are "free". Hence, the construction of fundamental domain is not finished.

Indeed, hyperplane $k+l / 2+n-1=0$ is also a support hyperplane for the set O. It contains 5 integral strictly positive elements:

$$
A_{1}, A_{3}, A_{4}, A_{8} \text { and also an element } A_{11}=(-4,-2,15,8)
$$

which is a unit. The convex hull of these points is a tetrahedron, which is glued to our octahedron (by the triangular face $A_{1} A_{4} A_{8}$). In thus obtained polyhedron all its 2-dimensional faces are pairwise identified:
(1) multiplication by the unit A_{9} identifies the face $A_{1} A_{8} A_{11}$ with the face $A_{2} A_{4} A_{9}: A_{1} \rightarrow A_{2}, A_{8} \rightarrow A_{9}, A_{11} \rightarrow A_{4} ;$
(2) multiplication by the unit A_{6} identifies the face $A_{4} A_{8} A_{11}$ with the face $A_{1} A_{2} A_{6}: A_{4} \rightarrow A_{2}, A_{8} \rightarrow A_{6}, A_{11} \rightarrow A_{1} ;$
(3) multiplication by the unit A_{11} identifies the face $A_{6} A_{8} A_{9}$ with the face $A_{1} A_{4} A_{11}: A_{6} \rightarrow A_{1}, A_{8} \rightarrow A_{11}, A_{9} \rightarrow A_{4}$.
The construction of the fundamental domain is finished.

$$
\text { 4. THE FIELD } K_{2}=\mathbb{Q}[x] /\left(x^{4}-4 x^{2}+2\right)
$$

Galois group here is \mathbb{Z}_{4}. Transformation $x \mapsto x^{3}-3 x$ is a generator of Galois group. Elements $k x^{3}+l x^{2}+m x+n, k, l, m, n \in \mathbb{Z}$ are integral.

Hyperplanes

$$
\begin{array}{ll}
\Pi_{1}: k+2 l+m+2 n-2=0, & \Pi_{2}: 3 k+4 l+2 m+4 n-4=0, \\
\Pi_{3}: k+2 l+2 n-2=0, & \Pi_{4}: k+4 l-m+4 n-4=0 \\
\Pi_{5}: k-2 l+m-2 n+2=0, & \Pi_{6}: 3 k-4 l+2 m-4 n+4=0, \\
\Pi_{7}: k-2 l-2 n+2=0, & \Pi_{8}: k-4 l-m-4 n+4=0
\end{array}
$$

are support hyperplanes for the set O. Each hyperplane contains 5 integral elements. Three elements $A=(0,0,0,1), B=(0,-2,0,-1)$ and $(A+B) / 2$ belong to each hyperplane. Thus, the convex hull of the set $O \cap \Pi_{i}$ is an tetrahedron.

Besides A, B and $(A+B) / 2$, hyperplane Π_{1} contains elements $C=(1,0,-3,2$ and $D=(0,1,-2,1)$, hyperplane $\Pi_{2}-D$ and $E=(-2,4,1,-2)$, hyperplane Π_{3} $-E$ and $F=(-2,3,2,-1)$, hyperplane $\Pi_{4}-F$ and $G=(-1,0,3,2)$, hyperplane $\Pi_{5}-G$ and $H=(0,1,2,1)$, hyperplane $\Pi_{6}-H$ and $K=(2,4,-1,-2)$, hyperplane $\Pi_{7}-K$ and $L=(2,3,-2,-1)$, hyperplane $\Pi_{8}-L$ and C. The union of these tetrahedrons is something like two octagonal pyramids $A C D E F G H K L$ and $B C D E F G H K L$ with common base CDEFGHKL. Here elements A, B, D, F, H and L are units and elements C, E, G and K have norm 2.

In thus constructed polyhedron some faces (not all!) are identified:

- the multiplication by unit H identifies the face $A C D$ with the face $B H K$: $A \rightarrow H, C \rightarrow K, D \rightarrow B$;
- the multiplication by unit L identifies the face $A F G$ with the face $B K L$: $A \rightarrow L, F \rightarrow B, G \rightarrow K$;
- the multiplication by unit D identifies the face $A G H$ with the face $B D E$: $A \rightarrow D, G \rightarrow E, H \rightarrow B$;
- the multiplication by unit F identifies the face $A L C$ with the face $B E F$: $A \rightarrow F, C \rightarrow E, L \rightarrow B$.
Faces $A D E, A E F, A H K, A K L, B C D, B F G, B G H$ and $B L C$ are "free". The construction of the fundamental domain is not finished.
$3 k+2 l+m+n-1=0$ also is a support hyperplane for the set O. It contains 7 integral strictly positive elements: $A, D, E, F, M=(0,0,-1,2), N=(-2,4,0,-1)$ and $(-1,2,0,0)=(A+N) / 2=(D+F) / 2=(E+M) / 2$. The convex hull of these points is an octahedron, where $(A, N),(D, F)$ and (E, M) - pairs of opposite vertices. Here element N is a unit and element M has norm 2.

In thus obtained polyhedron - two octagonal pyramids with a common base and octahedron glued to them by the faces $A D E$ and $A F E$, the following faces are identified:

- the multiplication by unit N identifies the face $A H K$ with the face $E F N$: $A \rightarrow N, H \rightarrow F, K \rightarrow E$;
- the multiplication by unit N identifies the face $A K L$ with the face $N D E$: $A \rightarrow N, K \rightarrow E, L \rightarrow D$;
- the multiplication by unit H identifies the face $A D M$ with the face $B G H$: $A \rightarrow H, D \rightarrow B, M \rightarrow G ;$
- the multiplication by unit L identifies the face $A F M$ with the face $B C L$: $A \rightarrow L, F \rightarrow B, M \rightarrow C$;
- the multiplication by unit $B^{-1} F$ identifies the face $B C D$ with the face $F M N: B \rightarrow F, C \rightarrow M, D \rightarrow N$;
- the multiplication by unit $B^{-1} D$ identifies the face $B F G$ with the face $D M N: B \rightarrow D, F \rightarrow N, G \rightarrow M$.
The construction of the fundamental domain is finished.

5. The simplest fundamental domains in the case of cyclic Galois GROUP

The combinatorics of a fundamental domain can be quite complex. The natural question here is: how simple it can be? It turns out that there exists an one parameter family of fields with a simple domains and also one field apart. At first we will study the special field.
5.1. The field $K=\mathbb{Q}[x] /\left(x^{4}-15 x^{2}+45\right)$. The transformation $x \mapsto x^{3} / 3-3 x$ is a generator of Galois group. Elements of the form

$$
(k, l, m, n)+\left(\frac{i}{6}, 0,0, \frac{i}{2}\right)+\left(0, \frac{j}{6}, \frac{j}{2}, \frac{j}{2}\right), \quad k, l, m, n \in \mathbb{Z}, \quad i, j=0, \ldots, 5
$$

are integral.
Hyperplane $\Pi: 3 k+6 l+m+n=1$ is a support hyperplane for the set O. It contains 8 integral strictly positive elements - all of them are units:

$$
\begin{aligned}
& A=(0,0,0,1), B=\left(\frac{1}{6},-\frac{1}{3},-2, \frac{9}{2}\right), C=\left(\frac{1}{3},-\frac{1}{2},-\frac{7}{2}, \frac{13}{2}\right), D=\left(\frac{1}{6},-\frac{1}{6},-\frac{3}{2}, 3\right) \\
& A_{1}=\left(0, \frac{1}{3}, 0,-1\right), B_{1}=\left(0, \frac{1}{6},-\frac{1}{2}, \frac{1}{2}\right), C_{1}=\left(\frac{1}{6}, \frac{1}{6},-\frac{3}{2}, 1\right), D_{1}=\left(\frac{1}{6}, \frac{1}{3},-1,-\frac{1}{2}\right)
\end{aligned}
$$

The convex hull of the set $O \cap \Pi$ is a decahedron with 2 quadrangular faces $A B C D$ and $A_{1} B_{1} C_{1} D_{1}$ - bases, and 8 triangular faces. Bases are parallelograms, that are parallel to each other. In the picture below is presented the pattern of triangular faces of this "prism":

Faces of $A B C D A_{1} B_{1} C_{1} D_{1}$ are identified in the following way:

- the multiplication by unit A_{1} identifies the base $A B C D$ with the face $A_{1} B_{1} C_{1} D_{1}: A \rightarrow A_{1}, B \rightarrow B_{1}, C \rightarrow C_{1}, D \rightarrow D_{1}$;
- the multiplication by unit D identifies the face $A A_{1} B_{1}$ with the face $C D D_{1}$: $A \rightarrow D, A_{1} \rightarrow D_{1}, B_{1} \rightarrow C$;
- the multiplication by unit D_{1} identifies the face $A B B_{1}$ with the face $C C_{1} D_{1}$: $A \rightarrow D_{1}, B \rightarrow C, B_{1} \rightarrow C_{1}$;
- the multiplication by unit B identifies the face $A A_{1} D_{1}$ with the face $B C B_{1}$: $A \rightarrow B, A_{1} \rightarrow B_{1}, D_{1} \rightarrow C ;$
- the multiplication by unit B_{1} identifies the face $A D D_{1}$ with the face $C B_{1} C_{1}$: $A \rightarrow B_{1}, D \rightarrow C, D_{1} \rightarrow C_{1}$.
The construction of the fundamental domain is finished.
5.2. Fields K_{n}. Let $p_{n}=x^{4}-\left(n^{2}+4\right) x^{2}+n^{2}+4$, where n is an odd positive integer, and let K_{n} be the field, defined by p_{n}.

Lemma 1. Polynomials p_{n} are irreducible.
Proof. If p_{n} is reducible, then either it has a positive integral root, or it has an irreducible factor of degree 2.

Let a be a positive integral root of $p_{n}: a^{4}-\left(n^{2}+4\right) a^{2}+n^{2}+4=0$. Each prime factor of a is a factor of the number $n^{2}+4$ and vice versa. Let q be such prime factor, $\alpha>0$ be an exponent of a and $\beta>0$ be an exponent of $n^{2}+4$. In the set of 3 numbers $\{4 \alpha, 2 \alpha+\beta, \beta\}$ cannot be exactly one minimal, thus, $4 \alpha=\beta$. As this is true for each prime factor of a, then $n^{2}+4$ is a full square - a contradiction.

Let p_{n} be a product of two irreducible polynomials of degree 2 with integral coefficients, then these factors are $x^{2}-a x+b$ and $x^{2}+a x+b$:

$$
\left(x^{2}-a x+b\right)\left(x^{2}+a x+b\right)=x^{4}-\left(n^{2}+4\right) x^{2}+n^{2}+4 .
$$

But then again $n^{2}+4$ is a full square.
Remark 2. Fields K_{n} are not pairwise different. Indeed, fields K_{1} and K_{11} coincide: if $y=-3 x^{3}+5 x \in K_{1}$, then $y^{4}-125 y^{2}+125=0$.
5.3. The field $K_{1} \simeq \mathbb{Q}[x] /\left(x^{4}-5 x^{2}+5\right)$. The transformation $x \mapsto x^{3}-3 x$ is a generator of Galois group. Elements of the form $k x^{3}+l x^{2}+m x+n, k, l, m, n \in \mathbb{Z}$ are integral.

Hyperplane $\Pi: 2 k+2 l+m+n=1$ is a support hyperplane for the set O. Π contains 10 integral strictly positive elements:

$$
\begin{array}{ll}
A=(0,0,0,1), & A_{1}=(0,1,0,-1), \\
B=(0,0,-1,2), & B_{1}=(-1,2,1,-2), \\
C=(2,-2,-8,9), & C_{1}=(0,1,-2,1), \\
D=(2,-2,-7,8), & D_{1}=(1,0,-3,2), \\
E=(1,-1,-4,5), & E_{1}=(0,1,-1,0) .
\end{array}
$$

The convex hull of this points in Π is a decahedron, combinatorially the same, as in subsection 5.1. The only difference is that centers E and E_{1} of bases $A B C D$ and $A_{1} B_{1} C_{1} D_{1}$, respectively, also are integral and strictly positive.
5.4. The field $K_{3} \simeq \mathbb{Q}[x] /\left(x^{4}-13 x^{2}+13\right)$. The transformation $x \mapsto x^{3} / 3-11 x / 3$ is a generator of Galois group. Elements of the form

$$
(k, l, m, n)+\left(\frac{i}{3}, 0, \frac{i}{3}, 0\right)+\left(0, \frac{j}{3}, 0, \frac{j}{3}\right), \quad k, l, m, n \in \mathbb{Z}, \quad i, j=0,1,2
$$

are integral.
Hyperplane $\Pi: 2 k+2 l+m+n=1$ is a support hyperplane for the set O. Π contains 36 integral strictly positive elements. The convex hull of this points in Π is a decahedron, combinatorially the same, as in subsection 5.1. Besides vertices $A, B, C, D, A_{1}, B_{1}, C_{1}, D_{1}$ of decahedron the intersection $\Pi \cap O$ contains:
(1) centers of bases $A B C D$ and $A_{1} B_{1} C_{1} D_{1}$;
(2) two points on each segment $\left[A, A_{1}\right],\left[B, B_{1}\right],\left[C, C_{1}\right]$ and $\left[D, D_{1}\right]$, which divide each segment into 3 equal parts;
(3) 18 points inside the decahedron.
5.5. General case. Let assume that a field K_{n} is not isomorphic to any field K_{m}, $m<n$. Put $n=2 a+1$, then transformation

$$
x \mapsto \frac{x^{3}}{2 a+1}-\frac{4 a^{2}+4 a+3}{2 a+1} x
$$

is a generator of Galois group. Elements of the form

$$
\begin{aligned}
(k, l, m, n)+i\left(\frac{1}{2 a+1}, 0, \frac{2 a-1}{2 a+1}, 0\right)+j\left(0, \frac{1}{2 a+1}, 0,\right. & \left.\frac{2 a-1}{2 a+1}\right) \\
& k, l, m, n \in \mathbb{Z}, \quad i, j=0, \ldots, 2 a
\end{aligned}
$$

are integral.
Hyperplane $\Pi: 2 k+2 l+m+n=1$ is a support hyperplane for the set O. The convex hull of the set $\Pi \cap O$ in Π is the same decahedron with vertices $A, B, C, D, A_{1}, B_{1}, C_{1}, D_{1}$ and bases - parallelograms $A B C D$ and $A_{1} B_{1} C_{1} D_{1}$. In internal coordinates k, l, m of the hyperplane Π bases lie in parallel planes $k+l=0$ and $k+l=1$. All vertices are units: $A=1$,

$$
\begin{gathered}
B=\frac{2(a+1) x^{3}-2(a+1) x^{2}-\left(8 a^{3}+16 a^{2}+16 a+7\right) x+8 a^{3}+16 a^{2}+18 a+8}{2 a+1}, \\
C=2 x^{3}-2 x^{2}-\left(8 a^{2}+8 a+8\right) x+8 a^{2}+8 a+9 \\
D=\frac{2 a x^{3}-2 a x^{2}-\left(8 a^{3}+8 a^{2}+8 a+1\right) x+8 a^{3}+8 a^{2}+10 a+2}{2 a+1}, \\
A_{1}=x^{2}-1, \quad B_{1}=\frac{x^{3}+2 a x^{2}-(2 a+3) x+2}{2 a+1} \\
C_{1}=x^{2}-2 x+1, \quad D_{1}=\frac{-x^{3}+(2 a+2) x^{2}-(2 a-1) x-2}{2 a+1} .
\end{gathered}
$$

The multiplication by unit A_{1} identifies bases $A B C D$ and $A_{1} B_{1} C_{1} D_{1}$. Other 8 triangular faces of the "prism" are pairwise identified in the following way:

$$
\begin{array}{ll}
\triangle A A_{1} B_{1} \sim \triangle C D D_{1}, & \triangle A B B_{1} \sim \triangle C C_{1} D_{1}, \\
\triangle B B_{1} C \sim \triangle D_{1} A A_{1}, \quad \triangle B_{1} C C_{1} \sim \triangle D D_{1} A .
\end{array}
$$

Besides vertices, the intersection $\Pi \cap O$ contains centers of bases, $2 a$ points on each segment $\left[A, A_{1}\right],\left[B, B_{1}\right],\left[C, C_{1}\right]$ and $\left[D, D_{1}\right]$, which divide each segment into $2 a+1$ equal parts, and points inside the decahedron.

Remark 3. Integers of the field K_{11} are of the form

$$
(k, l, m, n)+i\left(\frac{1}{275}, 0, \frac{3}{11}, 0\right)+j\left(0, \frac{1}{55}, 0, \frac{4}{11}\right) .
$$

Therefore, the described above "prism" contains several fundamental decahedrons of the field K_{11}.
6. Simple fundamental domains in the case of Galois group $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

In the case of Klein group we don't know fields, where fundamental domain consists of one 3 -dimensional face of Γ, but there are examples, where this domain consists of two.
6.1. The field $K=\mathbb{Q}[x] /\left(x^{4}-9 x^{2}+9\right)$. Transformations $x \mapsto x^{3} / 3-3 x$ and $x \mapsto-x$ are generators of Galois group. An element $k x^{3}+l x^{2}+m x+n \in K$ is integral, if $3 k, 3 l, m, n \in \mathbb{Z}$.

Hyperplane $\Pi_{1}: 6 k+3 l+m+n-1=0$ is a support hyperplane for the set O. It contains 14 integral strictly positive elements. This elements belong to 2 parallel 2-dimensional planes in $\Pi_{1}: P_{0}: 9 k+3 l+m=0$ and $P_{1}: 9 k+3 l+m=1$ (seven in each). Elements $A=(0,0,0,1), B=(0,1 / 3,-1,1), C=(-1 / 3,4 / 3,-1,0), D=$ $(-2 / 3,2,0,1), E=(-2 / 3,5 / 3,1,-1), F=(-1 / 3,2 / 3,1,0)$ and $G=(-1 / 3,1,0,0$ belong to the plane P_{0}. Points A, B, C, D, E and F are vertices of centrallysymmetric hexagon; A, C, D and F are units; B and E have norm $4 ; G$ is the center of hexagon and has norm 9 .

Elements $A_{1}=(0,1 / 3,0,0), B_{1}=(-1 / 3,4 / 3,0,-1), C_{1}=(-4 / 3,4,1,-4)$, $D_{1}=(-2,17 / 3,2,-6), E_{1}=(-5 / 3,14 / 3,2,-5), F_{1}=(-2 / 3,2,1,-2)$ and $G=$ $\left(-1,3,1,-3\right.$ belong to the plane P_{1}. Points $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$ and F_{1} are vertices of centrally-symmetric hexagon; A_{1}, C_{1}, D_{1} and F_{1} are units; B_{1} and E_{1} have norm 4; G_{1} is the center of hexagon and has norm 9 .

Polyhedron M_{1} - the convex hull in Π_{1} of the set $O \cap \Pi_{1}$, is a "prism" with two parallel hexagon bases and ten "side" faces: $A B A_{1}, A_{1} B_{1} C B, B_{1} C_{1} C, C_{1} D_{1} C$, $C D D_{1}, D E D_{1}, D_{1} E_{1} F E, E_{1} F_{1} F, F A A_{1}, F_{1} A_{1} F$. The multiplication by unit A_{1} identifies bases. Also

- the multiplication by unit F identifies the face $A B A_{1}$ with the face $E_{1} F_{1} F$: $A \rightarrow F, B \rightarrow E_{1}, A_{1} \rightarrow F_{1}$;
- the multiplication by unit $A_{1}^{-1} F$ identifies the face $A_{1} B_{1} C B$ with the face $D_{1} E_{1} F E: A_{1} \rightarrow F, B_{1} \rightarrow E_{1}, C \rightarrow D_{1}, B \rightarrow E ;$
- the multiplication by unit $C^{-1} D$ identifies the face $B_{1} C_{1} C$ with the face $D E D_{1}: B_{1} \rightarrow E, C_{1} \rightarrow D_{1}, C \rightarrow D$.
Hyperplane $\Pi_{2}: 3 k+3 l+n-1=0$ also is a support hyperplane for the set O. The intersection $\Pi_{2} \cap O$ contains 4 elements: A, A_{1}, F and a unit $H=(-1 / 3,0,2,2)$.

Polyhedron M_{2} - the convex hull in Π_{2} of the set $O \cap \Pi_{2}$, is a tetrahedron, glued to triangular "side" face of M_{1}. The "side" surface of $M_{1} \cup M_{2}$ is presented below:

Faces $C_{1} D_{1} C, C D D_{1}, F_{1} A_{1} F, A A_{1} H, A_{1} F H$ and $F A H$ are pairwise identified in the following way:

- the multiplication by unit $C^{-1} A$ identifies the face $C_{1} D_{1} C$ with the face $A A_{1} H: C_{1} \rightarrow A_{1}, D_{1} \rightarrow H, C \rightarrow A$;
- the multiplication by unit $C^{-1} A_{1}$ identifies the face $C D D_{1}$ with the face $A_{1} F H: C \rightarrow A_{1}, D \rightarrow H, D_{1} \rightarrow F$;
- the multiplication by unit $A_{1}^{-1} A$ identifies the face $F_{1} A_{1} F$ with the face $F A H: F_{1} \rightarrow F, A_{1} \rightarrow A, F \rightarrow H$.
The construction of the fundamental domain is finished.
6.2. The field $K=\mathbb{Q}[x] /\left(x^{4}-25 x^{2}+25\right)$. Transformations $x \mapsto x^{3} / 5-5 x$ and $x \mapsto-x$ are generators of Galois group. An element $k x^{3}+l x^{2}+m x+n \in K$ is integral, if $5 k, 5 l, m, n \in \mathbb{Z}$. Hyperplanes $\Pi_{1}: 5 k+5 l+m+n=1$ and $\Pi_{2}:-75 k+$ $20 l-3 m+n=1$ are support hyperplanes for the set O. The intersection $\Pi_{1} \cap O$ contains 14 elements and the intersection $\Pi_{2} \cap O-4$. The combinatorial structure of the fundamental polyhedron here is the same as in the previous example.

Remark 4. The case of the field $K=\mathbb{Q}[x] /\left(x^{4}-49 x^{2}+49\right)$ is significantly more complex.

References

[1] Kochetkov Yu. On geometry of cubic Galois fields, Math. Notes, 2011, v. 89(1), 150-155.
[2] Vinberg E. Private communication.
[3] Borevich Z., Shafarevich I., Number Theory, M., Nauka, 1985.
E-mail address: yuyuk@prov.ru

