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Abstract

This article contributes to research dealing with the optimal dividend policy problem of

a firm whose goal is to maximize the expected total discounted dividend payments before

bankruptcy. We consider a model of firm whose cash surplus exhibits regime switching,

but unlike the existing literature, we exclude diffusion from our model in order to over-

come the well-known shortcoming of infinite money flows. Hence, we assume firm’s cash

surplus follows telegraph process, which leads to the problem of singular stochastic con-

trol. Surprisingly, this problem turns out to be more complicated than the ones arising

in the models involving diffusion. We solve this problem using the method of variational

inequalities and show that the optimal dividend policy is defined by two thresholds.
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1 Introduction and the formulation of the model

The optimal dividend problem was first discussed in [9]. The key idea of this work was that

the goal of a company is to maximize the expected present value of the flow of dividends before

bankruptcy. In the simplest discrete framework it was shown that the optimal dividend strategy

is of a threshold type — the surplus above certain level should be paid as dividends, and if the

capital is less than this level, company should not pay any dividends. The renewed interest in

the optimal dividend problems was stimulated by the articles [24], [15] and [1], which addressed

the optimal dividend problems in continuous environment with firm’s cash reserves following

Brownian motion with drift. Numerous works which followed after them considered the optimal

dividend problems for more complicated dynamics of cash reserves based on Brownian motion,

see for example [4], [31], [10], [23], [28]. Another big strand of optimal dividend policy literature

is based on compound Poisson process and presented in, for example, [11], [2] and [13] among

many others.

Our point of interest is an optimal dividend problem in the model where firm’s cash reserves

follow telegraph process. Introduced in [14] and [18], telegraph process was extensively analyzed,

for example, in [22], [12] and [3]. Notable generalizations of telegraph process include telegraph

process with random velocities introduced in [30] and with alternating renewal process defining

switching times in [33]. A jump-telegraph process with jumps occurring at the moments of

switching is introduced in [25] and analyzed in [7], [19] and [6]. Telegraph process and its

generalizations are widely used in finance as alternatives to the Brownian motion since it is

free from the limitations of the Brownian motion such as infinite propagation velocities and

independent log-returns increments on separated time intervals. In [21] telegraph process is

used in the context of stochastic volatility. In [5] the very basic model of evolution of stock

prices based on telegraph process is presented. In [8] a geometric telegraph process is used to

describe the dynamics of the price of risky assets, and the analogue of the Black-Sholes equation

is derived. In [25], [27] and [26], the jump-telegraph process is used to develop an arbitrage-free

model of financial market. In [20] it is used in the option pricing model.

The models of optimal dividend policy with regime switching, such as [29], [34], [17], [32],

[16] among others are closest to ours, but they involve diffusion, which is absent in our model.

For example, our model may be considered as just a special case of [29] with two states of

the world, first one with a positive drift coefficient, and the second one with a negative drift
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coefficient with diffusion coefficients set to zero. But, as we shall see, the absence of diffusion

completely changes the nature of the problem and leads to substantially different results.

We now formulate our model. Let (Ω,F ,P) be a probability space of trajectories of changes

of the state of the world and a filtration F(t) represents the information up to time t. We

assume that cash reserves of a firm Xt follow the equation

X(t) = x+

∫ t

0

µπ(u)du− L(t), (1)

where x is the initial level of reserves, π(u) ∈ {0, 1} is the state of the world, µ0 < 0 and µ1 > 0

are the drift coefficients and L(t) ∈ F(t) is the total amount of dividends paid up to the time

t, which is non-negative and non-decreasing and also assumed to be left-continuous with right

limits. The switching between the states of the world is defined by the frequencies Λ0 > 0 and

Λ1 > 0: if the state of the world is 0 then the probability of switching to the state 1 during the

period of time ∆t is Λ0∆t and similarly for the state 1. The goal of firm is to maximize the

expected total amount of dividends paid before bankruptcy time τ , which occurs when firm’s

level of reserves hits zero for the first time:

J(s, x, L(·)) =

[∫ τ

0

e−ctdL(t)|π(0)=s,X(0)=x

]
→ max

L(·)
. (2)

We denote the admissible dividend policy, which maximizes J(s, L(·)), by L∗ and then denote

P (s, x) = EJ(s, x, L∗(·)).

2 Analysis of the model

2.1 Variational inequalities

In this subsection we derive variational inequalities which the solution of the optimal dividend

policy problem must satisfy. Consider a small interval [0, δ]. Fix some ε and consider an

admissible policy Ls,y(·) such that for any y > 0 and s ∈ {0, 1}

EJ(s, y, Ls,y(·)) ≥ P (s, y)− ε.

Let W (t) = x+ µπ(t)t. Consider the following policy:
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Lε(t) =

 0, t < δ,

Lπ(δ),W (δ)(t− δ), t ≥ δ.

This policy means that we pay no dividends before δ and then switch to suboptimal policy. We

get

P (s, x) ≥ ecδE [P (π(δ),W (δ))− ε] . (3)

By the definition of the telegraph process

EP (π(δ),W (δ)) = (1− Λsδ)P (s, x+ µsδ) + ΛsδP (1− s, x) + o(δ). (4)

Using (4) and the arbitrariness of ε, (3) may re rewritten as

P (s, x) ≥ (1− cδ)[(1− Λsδ)P (s, x+ µsδ) + ΛsδP (1− s, x)].

Assuming P (s, x) is continuously differentiable and using Taylor expansion, we get

P (s, x) ≥ (1− cδ)[(1− Λsδ)(P (s, x) + µsδ
∂

∂x
P (s, x)) + ΛsδP (1− s, x)].

Simplifying this expression and tending δ to zero we get the first variational inequality:

µs
∂

∂x
P (s, x)− (Λs + c)P (s, x) + ΛsP (1− s, x) ≤ 0, s ∈ {0, 1}. (5)

To obtain another one, we fix x, δ > 0 and denote y = x − δ. Consider the policy Lε(t) =

δ + Lx−δ(t), which prescribes to pay δ instantaneously and then use the policy Lx−δ. We get

P (s, x) ≥ δ + P (s, x− δ) + ε.

Again using Taylor expansion and arbitrariness of ε we get the second variational inequality

∂

∂x
P (s, x) ≥ 1. (6)

Now combining (5), (6) and the obvious boundary condition P (0, 0) = 0, we get the following

Theorem 1. Let the function P be continuously differentiable. Then it satisfies the follow-

ing Hamilton-Jacobi-Bellman equation:
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max{µs
∂

∂x
P (s, x)− (Λs + c)P (s, x) + ΛsP (1− s, x), 1− ∂

∂x
P (s, x)}, s ∈ {0, 1},

P (0, 0) = 0.

(7)

2.2 Solution of Hamilton-Jacobi-Bellman equation

Standard arguments verify that P (s, ·) is concave. This implies that there exist ms, s ∈ {0, 1}

such that P (s, x) > 1 for x < ms and P (s, x) = 1 for x ≥ ms. Denote m = min(m0,m1) and

M = max(m0,m1). We now analyze two different cases.

Case 1. m0 ≥ m1. In this case we have three domains. In the lower domain [0,m] it follows

from (5) that function P follows equations

µs
∂

∂x
P (s, x)− (Λs + c)P (s, x) + ΛsP (1− s, x) = 0 (8)

for s ∈ {0, 1} with the boundary condition P (0, 0) = 0. Applying Laplace transform to it, we

get

ξ L (s, ξ)− P (s, 0) = −ΛsL (1− s, ξ)
µs

+
L (s, ξ) Λs

µs
+
L (s, ξ) c

µs
,

where L(s, ξ) is the Laplace transform of P (s, x). This leads to

L (0, ξ) = − P (1, 0) Λ0µ1

ξ2µ0µ1 − cξ µ0 − cξ µ1 − ξ Λ0µ1 − ξ Λ1µ0 + c2 + cΛ0 + cΛ1

,

L (1, ξ) = − −P (1, 0) ξ µ0µ1 + P (1, 0) cµ1 + P (1, 0) Λ0µ1

ξ2µ0µ1 − cξ µ0 − cξ µ1 − ξ Λ0µ1 − ξ Λ1µ0 + c2 + cΛ0 + cΛ1

.

(9)

Considering denominator as the square polynomial on ξ, we may rewrite (9) as

L (0, ξ) = − P (1, 0) Λ0

µ0 (ξ − a) (ξ − b)
,L (1, ξ) = −−P (1, 0) ξ µ0µ1 + P (1, 0) cµ1 + P (1, 0) Λ0µ1

µ1µ0 (ξ − a) (ξ − b)
, (10)

where

a =
cµ0 + cµ1 + Λ0µ1 + Λ1µ0 +

√
Ω

2µ1µ0

, b =
cµ0 + cµ1 + Λ0µ1 + Λ1µ0 −

√
Ω

2µ1µ0

(11)

and
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Ω = c2µ0
2 − 2 c2µ0µ1 + c2µ2

1 − 2 cΛ0µ0µ1 + 2 cΛ0µ
2
1+

+ 2 cΛ1µ
2
0 − 2 cΛ1µ0µ1 + Λ2

0µ
2
1 + 2 Λ0Λ1µ0µ1 + Λ2

1µ
2
0.

(12)

We now derive some inequalities which will be used later.

Lemma 1. For any values of the parameters of the model the following inequalities hold.

1. a < 0 and b > 0.

2. −bcµ0 − bΛ0µ1 − bΛ1µ0 + c2 + cΛ0 + cΛ1 > 0.

3. bcµ0 + bcµ1 + bΛ0µ1 + bΛ1µ0 − c2 − cΛ0 − cΛ1 < 0.

4. −bc2µ0 − 2 bcΛ1µ0 − bΛ0Λ1µ1 − bΛ2
1µ0 + c3 + c2Λ0 + 2 c2Λ1 + cΛ0Λ1 + cΛ2

1 ¿ 0.

Proof. 1. Inequality a < 0 may be rewritten as

√
Ω < −(cµ0 + cµ1 + Λ0µ1 + Λ1µ0).

If the expression in parentheses is positive, it is obviously true. If it is negative, we square both

sides of inequality and after some simplifications get

4 c2µ0µ1 + 4 cΛ0µ0µ1 + 4 cΛ1µ0µ1 < 0, (13)

which is always true. Inequality b > 0 is also reduced to (13).

2. Substituting (11) we get

(cµ0 + Λ0µ1 + Λ1µ0)
√

Ω < c2µ2
0−c2µ0µ1+cΛ0µ

2
1+2cΛ1µ

2
0−cΛ1µ0µ1+Λ2

0µ1
2+2 Λ0Λ1µ0µ1+Λ2

1µ
2
0.

The expression on the right side is always positive. If the expression in parentheses on the left

side is negative, the proof is concluded. If it is positive, we square both sides of inequality and

get

−4 c3Λ0µ
2
0µ

2
1 + 4 c3Λ0µ0µ

3
1 − 4 c2Λ2

0µ
2
0µ

2
1 + 4 c2Λ2

0µ0µ
3
1 − 4 c2Λ0Λ1µ

2
0µ

2
1 + 4 c2Λ0Λ1µ0µ

3
1 < 0,

which is always true.

3. Substituting (11) we get

(cµ0 + cµ1 + Λ0µ1 + Λ1µ0)
√

Ω < c2µ2
0 + c2µ2

1 + 2 cΛ0µ
2
1 + 2 cΛ1µ0

2 + Λ2
0µ

2
1 + 2 Λ0Λ1µ0µ1 + Λ2

1µ
2
0
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If the expression in parentheses on the left side is negative, the proof is concluded. If it is

positive, we square both sides of inequality and get

0 < 4 c4µ2
0µ

2
1 + 8 c3Λ0µ

2
0µ

2
1 + 8 c3Λ1µ

2
0µ

2
1 + 4 c2Λ2

0µ
2
0µ1

2 + 8 c2Λ0Λ1µ
2
0µ

2
1 + 4 c2Λ2

1µ
2
0µ

2
1,

which is always true.

4. Substituting (11) in it, we get

(
c2µ0 + 2 cΛ1µ0 + Λ0Λ1µ1 + Λ2

1µ0

)√
Ω < c3µ2

0 − c3µ0µ1 − c2Λ0µ0µ1 + 3 c2Λ1µ
2
0−

− 2 c2Λ1µ0µ1 + cΛ0Λ1µ0µ1 + cΛ0Λ1µ
2
1 + 3 cΛ2

1µ0
2 − cΛ2

1µ0µ1 + Λ2
0Λ1µ1

2 + 2 Λ0Λ2
1µ0µ1 + Λ3

1µ
2
0.

The expression on the right side is always positive. Indeed, it may be rewritten as

cΛ0Λ1µ
2
1 + Λ2

0Λ1µ
2
1 +
(
3 cΛ1

2 − 3 c2Λ1 + c3 + Λ3
1

)
µ2

0−µ1

(
c3 + cΛ1

2 − 2 Λ0Λ2
1 + 2 c2Λ1

)
µ0. (14)

The necessary condition for this inequality to hold is that the coefficient of µ2
0 is positive:

3cΛ2
1 − 3c2Λ1 + c3 + Λ3

1 > 0.

The cubic polynomial in the left side of inequality has one zero Λ1 − 3
√

2Λ1 with respect to c,

which is negative, and this polynomial is positive for big values of c, hence it is always positive

and the necessary condition is satisfied. Also note that (14) is positive for µ0 = 0. Hence, if the

derivative of (14) in µ0 = 0 is non-positive, inequality is proven. Assume it is positive:

−µ1c
3 − cΛ2

1µ1 + 2Λ0Λ2
1µ1 − 2c2Λ1µ1 > 0. (15)

The maximum of (14) is achieved at

µ̃0 =
1

2

µ1

(
c3 + cΛ1

2 − 2 Λ0Λ1
2 + 2 c2Λ1

)
3 cΛ1

2 − 3 c2Λ1 + c3 + Λ1
3 .

The value of (14) in this point is

−1

4

µ2
1cΥ

3 cΛ2
1 − 3 c2Λ1 + c3 + Λ3

1

, (16)

where

8



Υ = c5 + 4 Λ1c
4 + 6 c3Λ2

1 + 4 c2Λ3
1 + cΛ4

1 − 4 Λ1

(
−3 cΛ1 + c2 + 3 Λ2

1

)
Λ2

0−

4 Λ1

(
c3 − 2 c2Λ1 + 2Λ3

1 + 5cΛ2
1

)
Λ0.

For (16) to be positive, Υ has to be negative, because the expression in denominator is shown

earlier to be positive. The coefficient of Λ2
0 in Υ is negative, hence Υ is negative for big values

of Λ0. Now consider the minimal value of Λ0 defined by (15):

Λ̃0 =
1

2

µ1c
3 + cΛ2

1µ1 + 2 c2Λ1µ1

µ1Λ2
1

.

The value of Υ in this point is

Υ(Λ̃0) = −c (3 Λ2
1 + 2 cΛ1 + c2) (3 cΛ2

1 − 3c2Λ1 + c3 + Λ3
1) (Λ1 + c)2

Λ3
1

< 0.

It is left to show that derivative of Υ in the point Λ∗0 is negative. Indeed,

∂

∂Λ0

Υ|Λ0=Λ∗
0

= −4
(2Λ2

1 + 2 cΛ1 + c2) (3cΛ2
1 − 3 c2Λ1 + c3 + Λ3

1)

Λ1

< 0.

�

Now we can invert Laplace transforms in (10) and get

P (0, x) =
P (1, 0) Λ0

(
ebx − eax

)
µ0 (a− b)

, x ∈ [0,m],

P (1, x) =
P (1, 0)

(
eax (aµ0 − c− Λ0) + (−bµ0 + c+ Λ0) ebx

)
µ0 (a− b)

, x ∈ [0,m].

(17)

The threshold level m is defined by the condition ∂
∂x
P (1, x) = 1:

P (1, 0)
(
aeam (aµ0 − c− Λ0) + (−bµ0 + c+ Λ0) bebm

)
µ0 (a− b)

= 1. (18)

Substituting (18) into (17), we get

P (0, x) =
Λ0

(
ebx − eax

)
aeam (aµ0 − c− Λ0) + (−bµ0 + c+ Λ0) bebm

, x ∈ [0,m],

P (1, x) =
eax (aµ0 − c− Λ0) + (−bµ0 + c+ Λ0) ebx

aeam (aµ0 − c− Λ0) + (−bµ0 + c+ Λ0) bebm
, x ∈ [0,m].

(19)
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We now consider the middle domain [m,M ]. In this domain the function P (1, ·) follows the

equation ∂
∂x
P (1, x) = 1. Integrating it and using obvious boundary condition, we get

P (1, x) = x−m+ P (1,m), x ∈ [m,M ]. (20)

Function P (0, ·) follows (8). Substituting (20) into (8) and solving the differential equation, we

get

P (0, x) =
((x−m+ P (1,m))(c+ Λ0) + µ0) Λ0

(Λ0 + c)2 + C e
(Λ0+c)x
µ0 , x ∈ [m,M ]. (21)

Since P (0, ·) is assumed to be continuously differentiable, we impose two conditions: P (0,m−) =

P (0,m+) and ∂
∂x
P (0,m−) = ∂

∂x
P (0,m+) but they turn out to be identical:

C = −
Λ0

(
P (1, 0) (Λ0 + c)

(
aeam − bebm

)
+ µ0 (a− b)

)
(a− b) (Λ0 + c)2 e

− (Λ0+c)m
µ0 . (22)

Substituting (22) into (21) and also substituting P (1,m) found from (19), we get

P (0, x) =
Λ0

Λ0 + c

(
Aeam −Bebm

aAeam − bBebm
− cm+ cx− Λ0m+ Λ0x+ µ0

)
+

Λ0µ
2
0

(
a2eam − b2ebm

)
(Λ0 + c)2 (aAeam + bBebm) + (aAeam + bBebm)

e
Λ0(x−m)+c(x−m)

µ0 , x ∈ [m,M ],

(23)

where B = −bµ0 + c+ Λ0, A = −aµ0 + c+ Λ0.

We now consider conditions the solution must satisfy.

Condition 1. ∂
∂x
P (0, x) ≥ 1 for x ∈ [0,m]. To guarantee the fulfilment of this inequality,

we can demand ∂
∂x
P (0, x)|x=m ≥ 1 and ∂2

∂x2P (0, x) ≤ 0 for x ∈ [0,m]. First inequality may re

rewritten as

Λ0

(
bebm − aeam

)
a (aµ0 − c− Λ0) eam + (−bµ0 + c+ Λ0) bebm

≥ 1. (24)

After some simplifications, denominator may be represented as µ0 (c+ Λ1)
(
aeam − bebm

)
+

c (Λ0 + c+ Λ1)
(
ebm − eam

)
and hence is obviously positive. Inequality (24) is thus equivalent

to

(
−bcµ0 − bΛ0µ1 − bΛ1µ0 + c2 + cΛ0 + cΛ1

)
e−am+bm+acµ0 +aΛ0µ1+aΛ1µ0−c2−cΛ0−cΛ1 ≤ 0.
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Part 2 of Lemma 1 states that the coefficient of the exponent is always positive. Hence, this

inequality may be rewritten as

e−am+bm ≤ K∗1 =
acµ0 + aΛ0µ1 + aΛ1µ0 − c2 − cΛ0 − cΛ1

bcµ0 + bΛ0µ1 + bΛ1µ0 − c2 − cΛ0 − cΛ1

. (25)

Now consider the inequality ∂2

∂x2P (0, x) ≤ 0 for x ∈ [0,m]. It can be rewritten as

(
bcµ0 + bcµ1 + bΛ0µ1 + bΛ1µ0 − c2 − cΛ0 − cΛ1

)
e−ax+bx−

− acµ0 − acµ1 − aΛ0µ1 − aΛ1µ0 + c2 + cΛ0 + cΛ1 ≥ 0.
(26)

Part 3 of Lemma 1 states that the coefficient of the exponent is always negative. We now show

that if (25) holds, (26) also holds. Indeed e−ax+bx ≤ e−am+bmleqK∗1 , hence

(
bcµ0 + bcµ1 + bΛ0µ1 + bΛ1µ0 − c2 − cΛ0 − cΛ1

)
e−ax+bx−

− acµ0 − acµ1 − aΛ0µ1 − aΛ1µ0 + c2 + cΛ0 + cΛ1 >

(bcµ0 + bcµ1 + bΛ0µ1 + bΛ1µ0 − c2 − cΛ0 − cΛ1) (acµ0 + aΛ0µ1 + aΛ1µ0 − c2 − cΛ0 − cΛ1)

−bcµ0 − bΛ0µ1 − bΛ1µ0 + c2 + cΛ0 + cΛ1

−

− acµ0 − acµ1 − aΛ0µ1 − aΛ1µ0 + c2 + cΛ0 + cΛ1 =

− c2 (c+ Λ0 + Λ1) (cµ0 − cµ1 + 2 Λ0µ0 − Λ0µ1 + Λ1µ0)

µ0 (bcµ0 + bΛ0µ1 + bΛ1µ0 − c2 − cΛ0 − cΛ1)
> 0.

Condition 2. ∂
∂x
P (1, x) ≥ 1 for x ∈ [0,m]. This inequality may be rewritten as

aeax (aµ0 − c− Λ0) + (−bµ0 + c+ Λ0) bebx

aeam (aµ0 − c− Λ0) + (−bµ0 + c+ Λ0) bebm
, x ∈ [0,m] ≥ 1.

which is obviously equivalent to the condition that the function in numerator has negative

derivative for any x ∈ [0,m]. This condition after some simplifications may be rewritten as

(
−bc2µ0 − 2 bcΛ1µ0 − bΛ0Λ1µ1 − bΛ2

1µ0 + c3 + c2Λ0 + 2 c2Λ1 + cΛ0Λ1 + cΛ2
1

)
e−ax+bx ≤

− ac2µ0 − 2 acΛ1µ0 − aΛ0Λ1µ1 − aΛ2
1µ0 + c3 + c2Λ0 + 2 c2Λ1 + cΛ0Λ1 + cΛ2

1, x ∈ [0,m].
(27)

Part 4 of Lemma 1 states that the coefficient of the exponent is always positive. If the expression

in parentheses on the left side is negative, inequality is proven. If it is positive, we square both

sides of inequality and after some simplifications get

11



0 < −4c4Λ0Λ1µ0µ
3
1−8c3Λ2

0Λ1µ0µ
3
1−8c3Λ0Λ2

1µ0µ
3
1−4c2Λ3

0Λ1µ0µ
3
1−8c2Λ2

0Λ2
1µ0µ

3
1−4c2Λ0Λ3

1µ0µ
3
1,

which is always true. Hence, (28) may be rewritten as

ex(b−a) ≤ K∗2 =
a(c2µ0 + 2cΛ1µ0 + Λ0Λ1µ1 + Λ2

1µ0)− c3 − c2Λ0 − 2 c2Λ1 − cΛ0Λ1 − cΛ2
1

b(c2µ0 + 2cΛ1µ0 + Λ0Λ1µ1 + Λ2
1µ0)− c3 − c2Λ0 − 2 c2Λ1 − cΛ0Λ1 − cΛ2

1

. (28)

Condition 3. Inequality (5) in the middle domain for s = 1 has the following form:

µ1 − (c+ Λ1) (x+ P (1,m)−m) + Λ1P (0, x) ≤ 0.

It holds as equality for x = m. To guarantee that it holds for x ∈ [m,m′] for some m′ > m we

impose the following condition

∂

∂x
P (0, x) |x=m ≤

c+ Λ1

Λ1

.

Substituting (23) in this inequality, we get

0 ≤ −b (bcµ0 + bΛ1µ0 − c2 − cΛ0 − cΛ1) ebm + a (acµ0 + aΛ1µ0 − c2 − cΛ0 − cΛ1) eam

Λ1 (a2eamµ0 − aceam − aeamΛ0 − b2ebmµ0 + bebmc+ bebmΛ0)
. (29)

Denominator may be rewritten as

Λ1

µ1

(
µ0(c+ Λ1)

(
aeam − bebm

)
+ c (c+ Λ0 + Λ1)

(
ebm − eam

))
(30)

and hence is always positive. The condition that numerator is non-negative can be rewritten as

(
−bc2µ0 − 2 bcΛ1µ0 − bΛ0Λ1µ1 − bΛ2

1µ0 + c3 + c2Λ0 + 2 c2Λ1 + cΛ0Λ1 + cΛ2
1

)
e−am+bm+

+ ac2µ0 + 2 acΛ1µ0 + aΛ0Λ1µ1 + aΛ1
2µ0 − c3 − c2Λ0 − 2 c2Λ1 − cΛ0Λ1 − cΛ1

2 ≥ 0,
(31)

which is exactly

e−am+bm ≥ K∗2 . (32)

Hence, the only possibility of both (28) and (32) to be satisfied is

12



e(b−a)m = K∗2 =
a(c2µ0 + 2 cΛ1µ0 + Λ0Λ1µ1 + Λ2

1µ0)− c3 − c2Λ0 − 2 c2Λ1 − cΛ0Λ1 − cΛ2
1

b(c2µ0 + 2 cΛ1µ0 + Λ0Λ1µ1 + Λ2
1µ0)− c3 − c2Λ0 − 2 c2Λ1 − cΛ0Λ1 − cΛ2

1

. (33)

This condition defines the optimal lower threshold level m. Now we need to show that it

satisfies Condition 1. To do so, we show that K∗1 > K∗2 . Indeed,

K∗1 −K∗2 = −c2Λ0µ1 (ac+ aΛ0 + aΛ1 − bc− bΛ0 − bΛ1)×

×
(
bcµ0 + bΛ0µ1 + bΛ1µ0 − c2 − cΛ0 − cΛ1

)−1×

×
(
bc2µ0 + 2 bcΛ1µ0 + bΛ0Λ1µ1 + bΛ1

2µ0 − c3 − c2Λ0 − 2 c2Λ1 − cΛ0Λ1 − cΛ2
1

)−1
> 0.

We now that that upper threshold level is finite. Indeed, ∂
∂x
P (0, x) |x=m = c+Λ1

Λ1
> 1

and limx→∞
∂
∂x
P (0, x) = Λ0

c+Λ0
< 1. Hence, there exists a point M ∈ (m,+∞) such that

∂
∂x
P (0, x) |x=M = 1. Equalizing ∂

∂x
P (0, x) to one, we get the equation defining M .

e
(Λ0+c)M

µ0 = −
c
(
a2eamµ0 − aceam − aeamΛ0 − b2ebmµ0 + bebmc+ bebmΛ0

)
Λ0µ0

(
a2e

m(aµ0−c−Λ0)
µ0 − b2e

m(bµ0−c−Λ0)
µ0

) . (34)

Hence, there exists the unique solution for the optimal dividend problem in the Case 1, and

this solution is defined by threshold levels (33) and (34). Now we need to analyze the signs of

thresholds. Condition m > 0 is obviously equivalent to K∗2 > 1, which may be rewritten as

(
c2µ0 + 2 cΛ1µ0 + Λ0Λ1µ1 + Λ1

2µ0

)√
Ω

µ0µ1

< 0.

Thus we arrive to the condition of the positivity of thresholds:

(c+ Λ1)2µ0 + Λ0Λ1µ1 > 0. (35)

Case 2. m0 < m1. Again, we should consider three domains. In the lower domain [0,m], as

in the previous case, function P follows (8), which leads to (17) but the boundary condition is

now ∂
∂x
P (0, x) = 1:

P (1, 0) Λ0

(
−aeam + bebm

)
µ0 (a− b)

= 1.

Substituting it to (17), we get
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P (0, x) =
ebx − eax

−aeam + bebm
, P (1, x) =

eax (aµ0 − c− Λ0) + (−bµ0 + c+ Λ0) ebx

Λ0 (−aeam + bebm)
. (36)

For the middle domain, similarly to the Case 1, we get

P (0, x) = x−m+ P (0,m), x ∈ [m,M ]. (37)

Function P (1, ·) follows (8). Substituting (37) into (8) and solving the differential equation, we

get

P (1, x) =
(cP (0,m) + Λ1P (0,m)− cm+ cx− Λ1m+ Λ1x+ µ1) Λ1

(c+ Λ1)2 + Ce
(c+Λ1)x
µ1 . (38)

Again, we impose two conditions: P (1,m−) = P (1,m+) and ∂
∂x
P (1,m−) = ∂

∂x
P (1,m+) but

they turn out to be identical:

C = − Λ1µ1

(c+ Λ1)2 e
− (c+Λ1)m

µ1 +
P (1, 0) (B̃ebm − Ãeam)

(a− b)µ0 (c+ Λ1)
e
− (c+Λ1)m

µ1 ,

where B̃ = −bcµ0−bΛ1µ0 +c2 +cΛ0 +cΛ1 and Ã = −acµ0−aΛ1µ0 +c2 +cΛ0 +cΛ1. Substituting

it to (38), we get

P (1, x) =
Λ1

(c+ Λ1)2

(
(c+ Λ1)

(
ebm − eam

)
−aeam + bebm

− cm+ cx− Λ1m+ Λ1x+ µ1

)
+

µ1

(
−bB̃ebm + aÃeam

)
(c+ Λ1)2 Λ0 (aeam − bebm)

e
(c+Λ1)(x−m)

µ1 .

(39)

We now consider some conditions the solution must satisfy and show they are inconsistent.

Condition 1. ∂
∂x
P (1, x)|x=m ≥ 1 may be rewritten as

a (aµ0 − c− Λ0) eam + (−bµ0 + c+ Λ0) bebm

Λ0 (−aeam + bebm)
≥ 1.

Denominator is always positive and thus inequality may be rewritten as

(
−bcµ0 − bΛ0µ1 − bΛ1µ0 + c2 + cΛ0 + cΛ1

)
e−am+bm+acµ0 +aΛ0µ1+aΛ1µ0−c2−cΛ0−cΛ1 ≥ 0,

which is exactly e−am+bm ≥ K∗1 .
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Condition 2. Inequality (5) in the middle domain for s = 0, which may be rewritten as

P (1, x) ≤ Λ0 + c

Λ0

(x−m+ P (0,m))− µ0

Λ0

. (40)

Condition 3. Finiteness on the middle domain.

∂

∂x
P (1, x) = − Θ

µ1 (c+ Λ1) Λ0 (aeam − bebm)
e

−cm+cx−mΛ1+xΛ1
µ1 +

Λ1

c+ Λ1

,

where

Θ = eamac2µ0 + 2 eamacΛ1µ0 + eamaΛ0Λ1µ1 + eamaΛ1
2µ0 − ebmbc2µ0 − 2ebmbcΛ1µ0−

− ebmbΛ0Λ1µ1 − ebmbΛ2
1µ0 − eamc3 − eamc2Λ0 − 2 eamc2Λ1 − eamcΛ0Λ1 − eamcΛ2

1+

+ ebmc3 + ebmc2Λ0 + 2 ebmc2Λ1 + ebmcΛ0Λ1 + ebmcΛ2
1.

If we want the middle domain to be finite, we must demand the coefficient of exponent to be

negative, which implies Θ < 0, which may be rewritten as

(
−bc2µ0 − 2 bcΛ1µ0 − bΛ0Λ1µ1 − bΛ2

1µ0 + c3 + c2Λ0 + 2 c2Λ1 + cΛ0Λ1 + cΛ2
1

)
e−am+bm+

+ ac2µ0 + 2 acΛ1µ0 + aΛ0Λ1µ1 + aΛ2
1µ0 − c3 − c2Λ0 − 2 c2Λ1 − cΛ0Λ1 − cΛ2

1 ≤ 0.

This is exactly e−am+bm ≤ K∗2 . But it is already shown that K∗1 > K∗2 , so Conditions 1 and

3 cannot be satisfied at the same time. Condition 1 cannot violated for the solution of HJB

equation, so suppose Condition 3 is violated, which means there is no upper threshold. But if

Θ is positive, P (1, x) increases exponentially, so Condition 2 is violated for big x. Condition 2

cannot violated for the solution of HJB equation, hence we arrive to the conclusion that there

are no solutions of HJB equation in the Case 2. Thus we arrive to the following

Theorem 2. Let the parameters of the model are such that (35) is satisfied. Than thresholds

m and M , defined by (33) and (34) respectively, are positive and the solution of HJB equation

(7) is given by
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P (0, x) =



Λ0(ebx−eax)
−aeamA+Bbebm

, x ≤ m,

Λ0

Λ0+c

(
Aeam−Bebm

aAeam−bBebm
− cm+ cx− Λ0m+ Λ0x+ µ0

)
+

+
Λ0µ2

0(a2eam−b2ebm)
(Λ0+c)2(aAeam+bBebm)+(aAeam+bBebm)

e
(Λ0+c)(x−m)

µ0 , x ∈ (m,M ],

x−M + Λ0

Λ0+c

(
Aeam−Bebm

aAeam−bBebm
− cm+ cM − Λ0m+ Λ0M + µ0

)
+

+
Λ0µ2

0(a2eam−b2ebm)
(Λ0+c)2(aAeam+bBebm)+(aAeam+bBebm)

e
(Λ0+c)(M−m)

µ0 , x > M,

(41)

P (1, x) =

 −Aeax+Bebx

−aAeam+bBebm
, x ∈ [0,m],

x−m+ −Aeam+Bebm

−aAeam+bBebm
, x > m,

(42)

where B = −bµ0 + c+ Λ0, A = −aµ0 + c+ Λ0 and the associated dividend policy is

L∗(t) = (x−m)+
1{s=1} + (x−M)+

1{s=0} +

∫ t

0

µ11{π(u)=1,X(u)=m}du.

The optimal dividend strategy is is thus defined by two thresholds m and M . In the region

lower than m firm should not pay any dividends in both states of the world. In the region

between m and M firm should immediately pay an excess above m as dividends, if the state of

the world is 1 and don’t pay anything if the state of world is 0. This may look a bit counter-

intuitive — in the state 0 firm loses money and then the state of the world switches to 1, it

pays the excess above m. Why don’t pay before switching? The answer is that in the case of

paying before switching, firm then suffers losses, because the state of the world is 0, and n the

case of paying at switching, it finds itself on the threshold in the state of the world 1 and makes

more money. Finally, if firm has more money than M , in both states of the world it should

immediately pay the excess above M as dividends (and then also the excess above m if the state

of the world is 1).

2.3 Verification of solution

In this subsection we show that the solution of HJB equation described in Theorem 2 indeed

defines the solution of the optimal dividend problem.

Theorem 3. Let G be a solution of HJB equation (7). Than it is the value function for

problem (2) and the associated dividend policy is the optimal dividend policy.

Proof. Let L(·) be some admissible control. Denote the set of its discontinuities by Φ and

let Ld(t) =
∑

u∈Φ,s≤t(L(u+)− L(u)) and Lc(t) = L(t)− Ld(t) be discontinuous and continuous
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parts of L respectively. Denote also f(t, s, x) = e−ctG(s, x). We have

Es,xdtf(t, π(t), X(t)) =[
µπ(t)

∂

∂x
f(t, π(t), X(t)) +

∂

∂t
f(t, π(t), X(t))

]
dt− ∂

∂x
f(t, π(t), X(t))dZc(t)+

[f(t, π(t), X(t+))− f(t, π(t), X(t))]It∈Φ + [−Λπ(t)f(t, π(t), X(t)) + Λπ(t)f(t, 1− π(t), X(t))]dt =

e−ct[µπ(t)G(π(t), X(t))− cG(π(t), X(t))− Λπ(t)G(π(t), X(t)) + Λπ(t)G(1− π(t), X(t))]dt−

− e−ct
∂

∂x
G(π(t), X(t))dZc(t) + e−ct[G(π(t), X(t+))−G(π(t), X(t))]It∈Φ.

Integrating this expression, we get

e−c(t∧τ)G(π(t ∧ τ), X(t ∧ τ)) = G(s, x) +

∫ t∧τ

0

e−cyR(y)dy−∫ t∧τ

0

e−cy
∂

∂x
G(π(y), X(y))dLc(y) +

∑
0≤y≤t∧τ,y∈Φ

e−cy (G(π(y), X(y+))−G(π(y), X(y))) ,

whereR(y) = µπ(y)G(π(y), X(y))−cG(π(y), X(y))−Λπ(y)G(π(y), X(y))+Λπ(y)G(1−π(y), X(y)).

Taking conditional expectations, we get

Es,x
[
e−c(t∧τ)G(π(t ∧ τ), X(t ∧ τ))

]
= G(s, x) + Es,x

[∫ t∧τ

0

e−cyR(y)dy

]
− Es,x

[∫ t∧τ

0

e−cy
∂

∂x
G(π(t), X(t))dLc(t)

]
+

Es,x

[ ∑
0≤y≤t∧τ,y∈Φ

e−cy (G(π(t), X(t+))−G(π(t), X(t)))

]
.

Inequality (5) guarantees the integrand for the first integral is non-positive, and inequality (6)

guarantees that for every t ∈ Φ G(π(t), X(t+))−G(π(t), X(t)) ≤ X(t+)−X(t) = L(t)−L(t+).

It also follows from (6) that e−cy ∂
∂x
G(π(t), X(t)) ≥ e−cy. Hence

Es,x
[
e−c(t∧τ)G(π(t ∧ τ), X(t ∧ τ))

]
≤ G(s, x)− Es,x

[∫ t∧τ

0

e−cydL(y)

]
.

Note that for the dividend policy LG, associated with the solution of HJB equation , this

inequality turns into equality. Indeed, under this policy R(y) = 0 almost everywhere, hence

the first integral equals zero. Continuous flow of dividends corresponds to X(t) = m and

s = 1, and we know that ∂
∂x
G(1, X(t))|X(t)=m = 1. Finally, in the points of discontinuity

G(π(t), X(t+))−G(π(t), X(t)) = X(t+)−X(t). Hence, taking t→ +∞, we get
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G(s, x) ≥ Es,x
[∫ t∧τ

0

e−cydL(y)

]
for the arbitrary dividend policy with equality for the dividend policy associated with the

solution of HJB equation (7).

�

3 Conclusion

It is shown that the optimal dividend policy in the model of firm’s cash surplus following

telegraph process is of a threshold type, which is in line with results for models with diffusion

and Markov regime switching. However, we had to perform rather tricky analysis of variational

inequalities to find these thresholds. Further research may involve generalization of our results

for the arbitrary number of regimes and the analysis of links between our model and the models

with diffusion.
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