Moduli spaces of Gorenstein quasi-homogeneous surface singularities

S. M. Natanzon and A. M. Pratusevich

1. In this paper we describe the topology of the space of Gorenstein hyperbolic quasi-homogeneous surface singularities. We determine the number of connected components of this space and describe their topology. Quasi-homogeneous surface singularities and their affine coordinate rings were actively studied in the 1970s by Dolgachev, Milnor, Neumann, Pinkham, and others. We call a singularity hyperbolic if the corresponding orbifold is hyperbolic, namely, of the form \mathbb{H}/Γ , where \mathbb{H} is the hyperbolic plane and Γ a Fuchsian group. A normal isolated surface singularity is Gorenstein if and only if there exists a nowhere vanishing holomorphic 2-form on a punctured neighbourhood of the singular point. For example, all isolated singularities of complete intersections are Gorenstein. Dolgachev [1] proved that Gorenstein hyperbolic quasi-homogeneous surface singularities of level m are in 1-to-1 correspondence with singular m-co-spin bundles on compact hyperbolic Riemann orbifolds, that is, line bundles whose mth tensor power is isomorphic to the tangent bundle.

There is a 1-to-1 correspondence between m-co-spin and m-spin bundles. Classical (m=2) spin bundles on compact Riemann surfaces coincide with Riemann's Theta-characteristics. Their modern interpretation and classification was proposed by Atiyah [2] and Mumford [3]. A classification of 2-spin bundles and their moduli on non-compact surfaces was given in [4]. A description of the moduli spaces of m-spin bundles was given in [5] for compact surfaces with punctures and in [6], [7] for surfaces with arbitrary finitely generated fundamental group.

2. Definition. Let p be a point on a compact hyperbolic Riemann orbifold P. Let $\pi_1^0(P,p)$ be the set of all non-trivial elements of the orbifold fundamental group $\pi_1(P,p)$ that can be represented by simple contours. An m-Arf function is a map $\sigma \colon \pi_1^0(P,p) \to \mathbb{Z}/m\mathbb{Z}$ such that for any $a,b \in \pi_1^0(P,p)$ the following conditions are satisfied: 1) $\sigma(bab^{-1}) = \sigma(a)$; 2) $\sigma(a^{-1}) = -\sigma(a)$ if the element a is not of order 2; 3) $\sigma(ab) = \sigma(a) + \sigma(b)$ if a and b can be represented by simple contours intersecting in exactly the one point p with the intersection index not equal to 0; 4) $\sigma(ab) = \sigma(a) + \sigma(b) - 1$ if a) the intersection index of a and b is equal to 0, b) a and b can be represented by simple contours intersecting in exactly the one point p, and c0; the oriented contours a0, a1, a2, a3 and a4 and a5 whose orientations are opposite to those induced by the complex structure of the sphere with 3 holes which they cut out of a5; 5) for any elliptic element a5 order a6 order a7, a8, and a8 is a multiple of a8.

Theorem 1. There exists a 1-to-1 correspondence between Gorenstein hyperbolic quasi-homogeneous surface singularities of level m and m-Arf functions on compact hyperbolic Riemann orbifolds.

The proof is based on the correspondence between m-spin bundles on the orbifold \mathbb{H}/Γ and lifts of the Fuchsian group $\Gamma \subset PSL(2,\mathbb{R})$ into the unique m-fold covering $\varphi \colon G_m \to PSL(2,\mathbb{R})$.

The first author was supported by the Russian Foundation for Basic Research (grant no. 10-01-00678-a), grant no. HIII-8462.2010.1, and grant no. 2010-220-01-077 of the government of the Russian Federation; the second author was supported by SFB 611 (DFG) and RCMM (Liverpool).

 $AMS~2010~Mathematics~Subject~Classification.~Primary~14J60, 30F10; Secondary~14J17, 32S25.\\ DOI~10.1070/RM2011v066n05ABEH004768.$

3. Let us describe the simplest topological invariants of an m-Arf function σ . They are the genus g of the orbifold P and the orders p_1, \ldots, p_r of the singular points of P. It follows immediately from the definition of m-Arf functions that the group Mod of homotopy classes of orientation-preserving autohomeomorphisms of the orbifold P acts naturally on the set Σ of all m-Arf functions on P.

Theorem 2. The set Σ of all m-Arf functions on a compact hyperbolic orbifold P of signature $(g:p_1,\ldots,p_r)$ is not empty if and only if the orders p_1,\ldots,p_r are co-prime with m and $(p_1\cdots p_r)\left(\sum_{1\leqslant i\leqslant r}\frac{1}{p_i}-(2g-2)-r\right)$ is a multiple of m. In this case the number of m-Arf functions is equal to m^{2g} . The action of the group Mod on the non-empty set Σ is transitive if g=0 or if g>1 and m is odd, it has exactly two orbits if g>1 and m is even, and it has a number of orbits equal to the number of divisors of $\gcd(m,p_1-1,\ldots,p_r-1)$ if g=1.

The proof uses the explicit expressions for Dehn generators of the group Mod.

4. We shall now use m-Arf functions to study the space S^m of hyperbolic Gorenstein quasi-homogeneous surface singularities of level m. The space S^m is the disjoint union of subsets $S^m_{g:p_1,\ldots,p_r}$ which correspond to the simplest topological invariants of the m-Arf functions. Theorem 2 implies the following theorem.

Theorem 3. The space $S^m_{g:p_1,...,p_r}$ is not empty if and only if the orders $p_1,...,p_r$ are co-prime with m and $(p_1\cdots p_r)\bigg(\sum_{1\leqslant i\leqslant r}\frac{1}{p_i}-(2g-2)-r\bigg)$ is a multiple of m. The non-empty set $S^m_{g:p_1,...,p_r}$ is connected if g=0 or if g>1 and m is odd, it has exactly two connected components if g>1 and m is even, and it has a number of connected components equal to the number of divisors of $\gcd(m,p_1-1,\ldots,p_r-1)$ if g=1.

Theorems 1-3 and the Fricke–Klein theorem [8] in the form in [9] imply the next theorem.

Theorem 4. Each connected component of the space $S_{g:p_1,...,p_r}^m$ is homeomorphic to \mathbb{R}^d/G , where d = 6g - 6 + 2r and $G \subset \text{Mod}$ is a discrete group.

Bibliography

- [1] I. V. Dolgachev, Math. Ann. **265**:4 (1983), 529–540.
- [2] M. F. Atiyah, Ann. Sci. École Norm. Sup. (4) 4:1 (1971), 47–62.
- [3] D. Mumford, Ann. Sci. École Norm. Sup. (4) 4:2 (1971), 181–192.
- [4] С. М. Натанзон, Матем. заметки 45:4 (1989), 111–116; English transl.,
 S. M. Natanzon, Math. Notes 45:4 (1989), 341–345.
- [5] T. J. Jarvis, Internat. J. Math. 11:5 (2000), 637–663.
- [6] С. Натанзон, А. Пратусевич, УМН **60**:2(362) (2005), 169–170; English transl., S. M. Natanzon and A. M. Pratusevich, Russian Math. Surveys **60**:2 (2005), 363–364.
- [7] S. Natanzon and A. Pratoussevitch (Pratusevich), J. Lie Theory 19:1 (2009), 107–148.
- [8] R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Funktionen.
 B. I, II, Johnson Reprint Corp., New York; Teubner, Stuttgart 1965.

[9] С. М. Натанзон, Модули римановых поверхностей, вещественных алгебраических кривых и их супераналоги, МЦНМО, М. 2003, 176 с. [S. M. Natanzon, Moduli of Riemann surfaces, real algebraic curves, and their superanalogues, Moscow Center for Continuous Mathematical Education, Moscow 2003, 176 pp.]

S. M. Natanzon

Higher School of Economics; Institute of Physico-Chemical Biology, Moscow State University; Institute for Theoretical and Experimental Physics E-mail: natanzons@mail.ru

A. M. Pratusevich

University of Liverpool *E-mail*: annap@liv.ac.uk

 $\begin{array}{c} {\rm Presented~by~S.\,M.~Gusein\hbox{-}Zade} \\ {\rm Accepted~09/SEP/11} \\ {\rm Translated~by~A.~PRATUSEVICH} \end{array}$