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Abstract

We consider a control problem for longitudinal vibrations of a non-

homogeneous bar with clamped ends. The vibrations of the bar are

controlled by an external force which is distributed along the bar. For

the minimization problem of mean square deviation of the bar we prove

that the optimal control has an infinite number of switchings in a finite

time interval, i.e., the optimal control is the chattering control.

1. Introduction

Consider small longitudinal vibrations of a nonhomogeneous bar of length l.
The longitudinal displacement at a typical point x is denoted y(t, x) where
t is the time. Let g(x, t) be a density of external longitudinal force at the
instant of time t at the point x. Suppose that

g(t, x) = u(t)f(x)

where the force profile function f(x) is assumed to be given, u (t) is the
control function. We assume that

− 1 ≤ u (t) ≤ 1 (1.1)
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The equation of longitudinal vibrations of the bar can be written as

p (x) ytt(t, x)− (k (x) yx(t, x))x = u(t)f(x) (1.2)

Here
p (x) = ρ (x)S (x) , k (x) = E (x)S (x)

where ρ (x) is the density of bar, S (x) is the cross-sectional area, E (x) is
the Young’s modulus at x, see, for example, [1, 2, 3].

We assume that the ends of the bar are clamped:

y|x=0 = y|x=l = 0, t > 0 (1.3)

and the initial position and velocity are fixed:

y|t=0 = y0(x), x ∈ [0, l] (1.4)

yt|t=0 = y1(x), x ∈ [0, l] (1.5)

We suppose that the coefficient functions k, p are smooth enough and

∀x ∈ [0, l] k (x) ≥ k0 > 0, p (x) ≥ p0 > 0 (1.6)

We consider an optimal control problem: to find such a control function
u (t) that minimize the following functional

∫

∞

0

∫ l

0
p (x) y2 (t, x) dxdt→ inf (1.7)

under (1.2)–(1.6).
The problems of longitudinal vibrations of a bar were considered in [1, 2,

3]. In [1, 2] the dynamics of the longitudinal vibrations of a bar subjected
to viscous boundary conditions was studied. The optimal boundary control
problem for longitudinal vibrations of a bar was considered in [3]. By using a
maximum principle the optimal control was expressed in terms of an adjoint
variable.

In this paper for the problem of controlling the longitudinal vibrations of
a bar (1.1)–(1.7) we construct a solution y (t, x) in the form

y(t, x) =
∞
∑

j=1

sj(t)hj(x) (1.8)
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where {hj (x)}
∞

j=1 are eigenfunctions of the Sturm-Liouville problem, {sj (t)}
∞

j=1

are corresponding Fourier coefficients. To find Fourier coefficients we consider
an optimal control problem in the space l2. For the control problem in l2 we
show that the optimal solutions contain singular trajectories and chattering
trajectories. A trajectory is called a chattering trajectory if it has an infinite
number of a control switchings on a finite time interval. By similar method
we studied the optimal control problem for a rotating uniform Timoshenko
beam [4, 5]. But for the Timoshenko beam similar results hold only for a
dense set of initial conditions in the space l2.

2. Optimal control problem in l2

Define an operator L in C2 ([0, l]) by

Lh = (khx)x

Consider the following Sturm-Liouville eigenvalue problem with Dirichlet
boundary conditions:

Lh+ λp (x) h = 0, x ∈ (0, l) (2.1)

h (0) = 0, h (l) = 0 (2.2)

Here the functions k (x) and p (x) satisfy (1.6). It is known (see [6]) that
the problem (2.1)–(2.2) has an infinite sequence of eigenvalues {λj}

∞

j=1, which
are simple and positive:

0 < λ1 < λ2 < . . . , λj → ∞, j → ∞

To each eigenvalue λj corresponds a single eigenfunction hj , and the sequence
of eigenfunctions {hj(x)}

∞

j=1 forms an ortonormal basis of L2 ((0, l) ; p) with

the inner product (z, w)p =
∫ l
0 p (x) z (x)w (x) dx. If k (x) , p (x) are smooth

enough (for example, k′, p ∈ C1 ([0, l])) and the condition (1.6) holds, then
the eigenvalues λj admit the asymptotic form [7, 8, 9]:

λj
j2

∼ π2

(

∫ l

0

√

p (x) /k (x)dx

)

−2

, j → ∞ (2.3)
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Assume that y(t, ·) ∈ L2 ((0, l) ; p). For any t > 0 we expand the solution
y (t, x) of (1.2) in the basis {hj(x)}

∞

j=1:

y(t, x) =
∞
∑

j=1

sj(t)hj(x) (2.4)

sj(t) =
∫ l

0
p (x) y(t, x)hj (x) dx = (y, hj)p

Using (1.4)–(1.5) we get:

sj (0) =
∫ l

0
p (x) y0 (x) hj (x) dx = (y0, hj)p

ṡj (0) =
∫ l

0
p (x) y1 (x) hj (x) dx = (y1, hj)p

We multiply the equation (1.2) by hj and integrate it in x:

∫ l

0
(pytt + Ly)hjdx =

∫ l

0
ufhjdx

d2

dt2
(y, hj)p + (Ly, hj) = u (f, hj) ⇒

d2

dt2
(y, hj)p + (y, Lhj) = u (f, hj)

or
d2

dt2
(y, hj)p + λj (y, hj)p = u (f, hj)

Thus the function sj (t) satisfies the following equation:

s̈j(t) + λjsj (t) = Cju(t), j = 1, 2, . . .

where

Cj = (f, hj) =
∫ l

0
f (x) hj (x) dx (2.5)

We substitute (2.4) into (1.7). Using Parseval’s equality we get:

∫

∞

0

∫ l

0
p (x) y2 (t, x) dxdt =

∫

∞

0

∞
∑

j=1

s2j(t)dt (2.6)

Denote αj = (y0, hj)p , βj = (y1, hj)p . We reduce the problem (1.2)–(1.7)
to the following one:

∫

∞

0

∑

s2j (t)dt→ inf (2.7)
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s̈j(t) + λjsj(t) = Cju(t), j = 1, 2, . . . (2.8)

sj(0) = αj , ṡj(0) = βj (2.9)

− 1 ≤ u(t) ≤ 1 (2.10)

We shall assume everywhere below that

Cj 6= 0 for all j = 1, 2, . . . (2.11)

Remark. Assumption (2.11) is very essential for the problem (2.7)–(2.10).

Indeed, let Cj0 = 0 for some j0. Then j0-th equation in (2.8) takes the form

s̈j0(t) + λj0sj0(t) = 0

Hence, if |αj0| + |βj0| 6= 0 then the corresponding solution sj0 (t) does not
vanish as t → ∞. Therefore the integral (2.7) is equal to +∞ and the
optimization problem (2.7)–(2.10) has not any sense.

Assume that

y0, y1 ∈ L2 ((0, l) ; p) , f ∈ L2 (0, l) (2.12)

Following [5] we denote

ωj =
√

λj, τj (t) = ṡj (t) /ωj, cj = Cj/ωj, aj = αj, bj = βj/ωj

Then the problem (2.7)–(2.10) takes the form

∫

∞

0

∑

s2j (t)dt→ inf (2.13)

ṡj = ωjτj , τ̇j = −ωjsj + cju (2.14)

sj(0) = aj , τj(0) = bj, j = 1, 2, . . . (2.15)

− 1 ≤ u(t) ≤ 1 (2.16)

Denote

s (t) = (s1 (t) , s2 (t) , . . .) , τ (t) = (τ1 (t) , τ2 (t) , . . .)

a = (a1, a2, . . .) , b = (b1, b2, . . .) , c = (c1, c2, . . .)
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Consider the standart Hilbert space l2:

l2 =

{

w = (w1, w2, . . .) : wn ∈ R,
∞
∑

n=1

w2
n <∞

}

with inner product (v, w) =
∑

∞

n=1 vnwn. Using assumption (2.12) we get that
a, b, c ∈ l2.

The existence and uniqueness of a solution (s (t) , τ (t)) to problem (2.13)–
(2.16) in the space l2× l2 were proved in [5] for any initial data from an open
neighborhood of the origin (s = 0, τ = 0). We apply a formal generalization
of the Pontryagin maximum principle to the problem (2.13)–(2.16). Denote
by ψi = (ψi1, ψi2, . . .) (i = 1, 2) adjoint variables. Define the Pontryagin
function

H (ψ1, ψ2, s, τ, u) =
∞
∑

j=1

(

ψ1jωjτj − ψ2jωjsj + ψ2jcju− s2j/2
)

=

= H0 (ψ1, ψ2, s, τ) + uH1 (ψ1, ψ2, s, τ)

where

H0 (ψ1, ψ2, s, τ) =
∞
∑

j=1

(

ψ1jωjτj − ψ2jωjsj −
1

2
s2j

)

, H1 (ψ1, ψ2, s, τ) =
∞
∑

j=1

ψ2jcj

For breavity we denote z = (ψ1, ψ2, s, τ). In the space l2 × l2 × l2 × l2 let us
consider the Hamiltonian system

ψ̇1j = ψ2jωj + sj, ṡj = ωjτj
ψ̇2j = −ψ1jωj, τ̇j = −ωjsj + cju

∗(t)
j = 1, 2, . . . (2.17)

where u∗(t) satisfies the following maximum condition:

u∗(t) = arg max
u∈[−1,1]

H (z (t) , u) = arg max
u∈[−1,1]

(uH1 (z (t))) (2.18)

Here we use notation: a∗ = arg max
a∈A

g(a) iff g(a∗) = max
a∈A

g(a).

It was proved [5] that the Pontryagin maximum principle is the necessary
and sufficient condition of optimality for the problem (2.13)–(2.16).

If H1 (z (t)) 6= 0 along the trajectory the optimal control is uniquely
determined as a function of time from the maximum condition (2.18):

u∗ (t) = sign (H1 (z (t))) = sign





∞
∑

j=1

ψ2j(t)cj
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Suppose that there exists an interval (t1, t2) such that

H1 (z (t)) ≡ 0, ∀t ∈ (t1, t2)

To find an optimal control u (t) in this case we will differentiate the identity
H1 (z (t)) ≡ 0 by virtue of the system (2.17) until the control u with a non-
zero coefficient occurs in the resulting expression with a non-zero coefficient.

d

dt

∣

∣

∣

∣

(2.17)
H1(z) =

d

dt

∣

∣

∣

∣

(2.17)





∞
∑

j=1

ψ2jcj



 =



−
∞
∑

j=1

cjψ1jωj





d2

dt2

∣

∣

∣

∣

(2.17)
H1(z) =

d

dt

∣

∣

∣

∣

(2.17)



−
∞
∑

j=1

cjψ1jωj



 = −
∞
∑

j=1

cj
(

ψ2jω
2
j + sjωj

)

d3

dt3

∣

∣

∣

∣

(2.17)
H1(z) = −

d

dt

∣

∣

∣

∣

(2.17)

∞
∑

j=1

cj
(

ψ2jω
2
j + sjωj

)

= −
∞
∑

j=1

cjωj

(

−ω2
jψ1j + τjωj

)

d4

dt4

∣

∣

∣

∣

(2.17)
H1(z) =

∞
∑

j=1

cjω
2
j

(

ψ2jω
2
j + 2sjωj

)

− u
∞
∑

j=1

c2jω
2
j (2.19)

Assume that all series in (2.19) are convergent in l2. Denote

H2 (z) = −
∞
∑

j=1

cjψ1jωj, H3 (z) = −
∞
∑

j=1

cjωj (ψ2jωj + sj)

H4 (z) = −
∞
∑

j=1

cjω
2
j (−ψ1jωj + τj)

From (2.19) it follows that

H1 (z (t)) = H2 (z (t)) = H3 (z (t)) = H4 (z (t)) = 0, t ∈ (t1, t2)

We say a solution of the (2.17)–(2.18) is singular if it belongs to the surface

Σ = { z : H1 (z) = H2 (z) = H3 (z) = H4 (z) = 0 } (2.20)

A singular control u0 (t) is determited from the equation d4

dt4

∣

∣

∣

∣

(2.17)
H1(z) = 0.

Using (2.19) we obtain

u0(t) =
∞
∑

j=1

cjω
3
j (ψ2jωj + 2sj) /

∞
∑

j=1

c2jω
2
j (2.21)
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Note that the origin (ψ1 = 0, ψ2 = 0, s = 0, τ = 0) is the singular trajectory
and the corresponding singular control u0 (t) equals 0.

It was proved [5] that in a certain neighborhood of the origin the structure
of the optimal solutions is the following one: for the finite time the optimal
nonsingular trajectory enters the singular surface with infinite numbers of
control switchings, after that the optimal trajectory remains on the singular
surface and attains the origin for the infinite time. Namely, the following
theorem holds.

Theorem 1 [5]. Let cj 6= 0 ∀j and (c1ω
4
1, c2ω

4
2, c3ω

4
3, . . .) ∈ l2. Assume

that there exist positive constants δ and K such that

|ωj+1| − |ωj| ≥ δ, |ωj| ≤ K · j, j = 1, 2, . . .

Then there exists an open neighborhood of the origin in the space (s, τ)
such that the following statements hold for all initial data (a, b) from this
neighborhood.

(i) The problem (2.13)–(2.16) has a unique optimal solution.

(ii) In the space z = (ψ1, ψ2, s, τ) there exists the singular surface Σ of
codimension 4 given by the equations

∞
∑

j=1

ψ2jcj = 0,
∞
∑

j=1

cjψ1jωj = 0

∞
∑

j=1

cjωj (ψ2jωj + sj) = 0,
∞
∑

j=1

cjω
2
j (−ψ1jωj + τj) = 0

which is filled in by the singular extremals of the problem (2.13)–(2.16).
The control on singular extremals are defined by (2.21).

(iii) For all initial data not belonging to the projection of the singular surface
Σ on the space (s, τ), the optimal trajectories arrive at Σ in finite time
with countable many control switchings, i.e., the optimal trajectories
are chattering trajectories.
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3. Optimal solution for controlling vibrations

Let (s∗ (t) , u∗ (t)) be an optimal solution of (2.13)–(2.16). Consider

y∗ (t, x) =
∞
∑

j=1

s∗j (t)hj(x) (3.1)

where {hj(x)}
∞

j=1 are eigenfunctions of the Sturm-Liouville problem (2.1)–
(2.2).

Series (3.1) formally satisfies equation (1.2), boundary conditions (1.3)
and initial conditions (1.4)–(1.5). We will show that this series gives a weak
solution of problem (1.2)–(1.5).

Denote QT = (0, l) × (0, T ), where T > 0. Consider the Sobolev space
Hk (QT ) = W k

2 (QT ) , k ≥ 0. The space Hk (QT ) consists of all functions
v ∈ L2 (QT ) whose generalized derivatives up to order k exist and belong to
L2 (QT ). The space Hk

0 (QT ) can be defined as a completion of C∞

0 (QT ) with
respect to the norm of the space Hk (QT ).

Let g = uf ∈ L2 (QT ) , y1 ∈ L2 (0, l).

Definition 1. We say a function y ∈ H1 (QT ) is a weak solution of
the (1.2)–(1.5) if

(i) y|x=0 = y|x=l = 0, t > 0, y|t=0 = y0(x), x ∈ [0, l];

(ii)
∫

QT

(kyxvx − pytvt) dxdt =
∫

QT

gv dxdt+
∫ l

0
y1(x)v(0, x) dx

for each v ∈ H1 (QT ): v |x=0 = v |x=l = 0, v |t=T = 0.

Definition 2. We say y ∈ H2 (QT ) is a almost everywhere solution of the
problem (1.2)–(1.5) provided y satisfies equation (1.2) in QT for almost all
(t, x) ∈ QT and y satisfies (1.3)–(1.5).

The following theorem is the main result for the problem (1.2)–(1.7).

Theorem 2. Let y0 ∈ H2
0 (0, l), y1 ∈ H1

0 (0, l), k (x) , p (x) are smooth
enough (for example, k, p ∈ C4 ([0, l])), p (x) ≥ p0 > 0, k (x) ≥ k0 > 0.
Assume that f ∈ C4[0, l],

f(0) = f(l) = 0, f (i) (0) = f (i) (l) = 0, i = 1, 2, 3 (3.2)

9
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and condition (2.11) holds. Then there exist positive constants q1 and q2
such that if

‖y0‖L2((0,l);p)
< q1, ‖y1‖L2((0,l);p)

< q2

then

(i) the problem (1.2)–(1.7) has a unique optimal solution y∗ (t, x);

(ii) y∗ ∈ H2 (QT ) for all T > 0;

(iii) an optimal solution y∗ (t, x) has an infinite number of control switchings
in a finite time interval.

Proof. Here we use notations introduced in Section 2. Since the functions
p, k, f satisfy conditions of Theorem 2 it follows [8] that Cj ∼ j−4 as j → ∞,
where

Cj = (f, hj) =
∫ l

0
f (x) hj (x) dx

Then we have

∞
∑

j=1

(

cjω
4
j

)2
=

∞
∑

j=1

(

Cjω
3
j

)2
=

∞
∑

j=1

C2
j λ

3
j <∞ =⇒

(

c1ω
4
1, c2ω

4
2, c3ω

4
3, . . .

)

∈ l2

The property (2.3) of the eigenvalues {λj}
∞

j=1 of the problem (2.1) - (2.2)
imply that there exist positive constants δ and B such that

|ωj+1| − |ωj | ≥ δ, |ωj | ≤ Bj

Now we may apply Theorem 1 to the problem (2.13)–(2.16). We get that the
optimal control u∗ (t) for the problem (2.13)–(2.16) has an infinite number
of switchings in the finite time interval.

Since the functions f, α, β satisfy the conditions of Theorem 2 it follows
(see [10, 11]) that the function y∗(t, x) defined by (3.1) is a unique weak
solution of the problem (1.2)–(1.5) and y∗ ∈ H2 (QT ). Hence [10] y∗(t, x) is
the solution almost everywhere of the problem (1.2)–(1.5). Thus the function
y∗(t, x) satisfies (1.2) for almost all (t, x) ∈ (0, l) × (0,+∞), boundary and
initial conditions (1.3)–(1.5).

Since the function s∗(t) = (s∗1(t), s
∗

2(t), . . .) minimizes the functional (2.7)
and the identity (2.6) holds then the function y∗ (t, x) minimizes the functio-
nal (1.7). Thus y∗ (t, x) is a solution of the problem (1.1)–(1.7).

10
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4. Conclusion

We considered the optimal control problem of longitudinal vibrations of a
nonhomogeneous bar with clamped ends. We proved that the optimal tra-
jectories contain singular part and nonsingular one with accumulation of
control swithings.
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