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Collective plasmon excitations in a helical electron liquid on the surface of strong three-dimensional
topological insulator are considered. The properties and internal structure of these excitations are
studied. Due to spin-momentum locking in helical liquid on a surface of topological insulator, the
collective excitations should manifest themselves as coupled charge- and spin-density waves.
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1. Introduction

In recent years, topological insulators with a non-trivial topolo-
gical order, intrinsic to their band structure, were predicted theore-
tically and observed experimentally (see [1] and references therein).
Three-dimensional (3D) realizations of “strong” topological insula-
tors (such as Bi,Ses, Bi;Tes and Sb,Tes) are insulating in the bulk, but
have gapless topologically protected surface states with a number of
unusual properties [2]. These states obey two-dimensional Dirac
equation for massless particles, similar to that for electrons in
graphene [3], but related to real spin of electrons, instead of
sublattice pseudospin in graphene.

The consequence of that is a spin-momentum locking for
electrons on the surface of strong 3D topological insulators, i.e.,
spin of each electron is always directed in the surface plane and
perpendicularly to its momentum [1,4]. The surface of topological
insulator can be chemically doped, forming a charged “helical
liquid”.

Collective excitation of electrons in such helical liquid were
considered in [5], where relationships between charge and spin
responses to electromagnetic field were derived. It was shown
that charge-density wave in this system is accompanied by
spin-density wave. Application of spin-plasmons to create “spin
accumulator” was proposed in [6]. Also the surface plasmon-
polaritons under conditions of magnetoelectric effect in 3D
topological insulator were considered [7].

In the present article we consider the properties and internal
structure of spin-plasmons in a helical liquid. Within the random-
phase approximation, we derive plasmon wave function and
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calculate amplitudes of charge- and spin-density waves in the
plasmon state.

2. Wave function of spin-plasmon

Low-energy effective Hamiltonian of the surface states of Bi,Se;
in the representation of spin states {|1),| | >} is Ho=vrpxoy—pyox)
for a surface in the xy plane, where the Fermi velocity vp~ 6.2 x 10°
m/s [2]. Its eigenfunctions can be written as e *|f, > /+/S, where S is
the system area and [f,,, > = (e7'%/2,iyei%/2)T/ \/5 is the spinor part
of the eigenfunction, corresponding to electron with momentum p
(its azimuthal angle in the xy plane is ¢,,) from conduction (y=+1)
or valence (y=-—1) band. Many-body Hamiltonian of electrons
populating the s urface of topological insulator is H= 3", &y, a5, apy
+(1/28)3°qVapq pq, Where ap, is the destruction operator for
electron with momentum p from the band 7, &, =yve|p|—u is its
energy measured from the chemical potential u, V,=2me?/eq;
Pq =2 pyy <SFp+ayfoy> a1 qyapy is the charge density operator
for helical liquid.

The creation operator for spin-plasmon with wave vector q can
be presented in the form:

+_ 7 o+
Qq =D Chady.qyap M
I 7Ea

This operator should obey the equation of motion [H,Q(‘l* 1=
QqQ;, where €, is the plasmon frequency. We can get solution of
this equation in the random phase approximation at T=0 (simi-
larly to [8]):

o — My —Tp+qy [ Fpray I pr > Ng
=

: , 2
Qq+Epy—Epray +10 @

where n,,=0(pr—|p|) and n,_ are occupation numbers for
electron-doped helical liquid (pr=p/vF is the Fermi momentum).
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The plasmon frequency is determined in this approach from
the equation 1-V,I1(q,24)=0, where

@)=Y | {fprarlfe> ?

Py

Tpy—Np+qy
O+ Epy—Cprqy +i0

3)

is the polarization operator of the helical liquid, different from
that for graphene [3] only by degeneracy factor. The factor Ng in
(2) can be determined from the normalization condition

<O‘[quQ¢r]‘0> = 6qq'ZDy'y = 5qq/,

Dyy=3_[Cha *(npy—"p - q.7) “)
P

(|0> is the ground state), so that |Ng —S[oIl(q,w)/
aa)]\wﬂzq. The quantities D, in (4) can be considered as total
weights of intraband (D,,) and interband (D, _+D_,=1-D,,)
electron transitions, contributing to the plasmon wave function
(1). Note that all these formulas are also applicable to the case of
graphene.

Spin-plasmon dispersion €, and contribution of intraband
transitions into its wave function are plotted in Fig. 1 at various
re=e?/evy, where ¢ is the dielectric susceptibility of surrounding
3D medium. For Bi,Ses, rs~ 0.09 with ¢~ 40 for dielectric half-
space [5] (for such small rs, the corresponding dispersion curve
approaches very closely to the upper bound o = vgq of the intraband
continuum). The results for suspended graphene with rather large
r.=8.8 (for vgp~10° m/s, e=1 and with the degeneracy factor

-
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4 incorporated into 1) are also presented for comparison. It is seen
that the undamped spin-plasmon consists mainly of intraband
transitions. When the dispersion curve enters the interband con-
tinuum, the spin plasmon becomes damped and inter- and intra-
band transitions contribute almost equally to its wave function.

3. Charge- and spin-waves

The helical liquid in the state [1q4> =Q4 |0> with one spin-
plasmon of wave vector q has a distribution of electron-hole
excitations (2), shifted towards q. Due to the spin-momentum
locking, the system acquires a total nonzero spin polarization,
perpendicular to q. A similar situation occurs in the current-
carrying state of the helical liquid, which turns out to be spin-
polarized [4].

Introducing one-particle spin operator as s=6/2, we can calcu-
late its average value in the one-plasmon state (s> ={14|s|14> as

(s)= Z[<fp+q.y' Is|fpra:>Coa

P

T
CP

o Fpe |81y > 1Cha)* (py—Tp 1 q.1) )

If q is parallel to ey, only the y-component of {s) is nonzero.
Its dependence on q at various r; is plotted in Fig. 2(a).

Charge- and spin-density waves, accompanying spin-plasmon
with the wave vector q, can be characterized by corresponding
spatial harmonics of charge- and spin-density operators: pg and
Sq =2y <Sp+ay|Slfpy )51 qy - Using, similarly to [9], the
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Fig. 1. Dispersions of spin-plasmon (a) and contributions D,, of intraband transitions into its wave function (b) at various rs. Continuums of intraband (w < vgq) and

interband (w+veq > 21) single-particle excitations are shaded in (a).
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Fig. 2. Total spin polarization {s) of the helical liquid in the one-plasmon state (a) at various r; and normalized amplitudes A, and A; of charge- and spin-density waves

respectively in the many-plasmon state (b).
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unitary transformation, inverse with respect to (1), we can write:

pq =SNgIl(q.29)Qq +Pq - ©6)

Sq =SNgIs(q,.29)Qq +34 (7)

where the operators ,5; and §q+ are the contributions of single-
particle excitations and are dynamically independent on plas-
mons. Here the crossed spin-density susceptibility of the helical
liquid [5] has been introduced:

IL(q,0) = Z<fp+q,y’ fpy > <fpy ‘s‘fPJqu” >

Py

Npy—Tp+q,y
O+ Epy—Epiqy 10

®

The average values of pS and si in the ng-plasmon state

[ng> =[(Qq )" //nq"|0> vanish, therefore we consider their

mean squares in |ng)> after subtracting their background values
in [0), ie,

{PgPq > = {Nq|pgPq |Na>—<0|pqpq [0>
= ngS?NEIT(q.Q9) |, ©)

(Sq(sq) ™ > = (nq|sg(sq) " [ng>—<0sq(sg)™ [0
= ngS?|NEI13(q,29)| (10)

(only the in-plane transverse component s of the spin s is
nonzero in these averages). The normalized amplitudes A,(q) =
[<PaPq >/nqSPI'? and As(q)=[{sg(sq)" > /ngSp]'/* of charge-
and spin-density waves are plotted in Fig. 2(b) (p = p3/4~ is

the average electron density). The “continuity equation” for
density and transverse spin, following from the spin-momentum
locking [5], requires that Q,A,(q)=2v¢qAs(q), in agreement with
our results.

4. Conclusions

We have considered microscopically spin-plasmons in helical
liquid in the random phase approximation. The developed

quantum-mechanical formalism can be applied for a number of
problems in spin-plasmon optics.

We calculated the average spin polarization, acquired by the
helical liquid in a spin-plasmon state, as well as mean-square
amplitudes of charge- and spin-density waves, arising in this state.
Coupling between these amplitudes, caused by spin-momentum
locking, was demonstrated. The interconnection between charge-
and spin-density waves can be applied for constructing various spin-
plasmonic and spintronic devices.
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