ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Spin-plasmons in topological insulator

D.K. Efimkin^a, Yu.E. Lozovik^{a,b,*}, A.A. Sokolik^a

- ^a Institute for Spectroscopy, Russian Academy of Sciences, Fizicheskaya 5, 142190, Troitsk, Moscow Region, Russia
- ^b Moscow Institute of Physics and Technology, Institutskii Per. 9, 141700, Dolgoprudny, Moscow Region, Russia

ARTICLE INFO

Available online 28 February 2012

Keywords: Topological insulator Plasmons Helical liquid Spintronics

ABSTRACT

Collective plasmon excitations in a helical electron liquid on the surface of strong three-dimensional topological insulator are considered. The properties and internal structure of these excitations are studied. Due to spin-momentum locking in helical liquid on a surface of topological insulator, the collective excitations should manifest themselves as coupled charge- and spin-density waves.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, topological insulators with a non-trivial topological order, intrinsic to their band structure, were predicted theoretically and observed experimentally (see [1] and references therein). Three-dimensional (3D) realizations of "strong" topological insulators (such as $\mathrm{Bi}_2\mathrm{Se}_3$, $\mathrm{Bi}_2\mathrm{Te}_3$ and $\mathrm{Sb}_2\mathrm{Te}_3$) are insulating in the bulk, but have gapless topologically protected surface states with a number of unusual properties [2]. These states obey two-dimensional Dirac equation for massless particles, similar to that for electrons in graphene [3], but related to real spin of electrons, instead of sublattice pseudospin in graphene.

The consequence of that is a spin-momentum locking for electrons on the surface of strong 3D topological insulators, i.e., spin of each electron is always directed in the surface plane and perpendicularly to its momentum [1,4]. The surface of topological insulator can be chemically doped, forming a charged "helical liquid".

Collective excitation of electrons in such helical liquid were considered in [5], where relationships between charge and spin responses to electromagnetic field were derived. It was shown that charge-density wave in this system is accompanied by spin-density wave. Application of spin-plasmons to create "spin accumulator" was proposed in [6]. Also the surface plasmon-polaritons under conditions of magnetoelectric effect in 3D topological insulator were considered [7].

In the present article we consider the properties and internal structure of spin-plasmons in a helical liquid. Within the randomphase approximation, we derive plasmon wave function and

E-mail address: lozovik@isan.troitsk.ru (Yu.E. Lozovik).

calculate amplitudes of charge- and spin-density waves in the plasmon state.

2. Wave function of spin-plasmon

Low-energy effective Hamiltonian of the surface states of Bi₂Se₃ in the representation of spin states $\{|\uparrow\rangle,|\downarrow\rangle\}$ is $H_0 = \nu_{\rm F}(p_x\sigma_y - p_y\sigma_x)$ for a surface in the xy plane, where the Fermi velocity $\nu_{\rm F}\approx 6.2\times 10^5$ m/s [2]. Its eigenfunctions can be written as $e^{i{\bf p}\cdot{\bf r}}|f_{{\bf p}\gamma}\rangle/\sqrt{5}$, where S is the system area and $|f_{{\bf p}\gamma}\rangle=(e^{-i\phi_{\bf p}/2},i\gamma e^{i\phi_{\bf p}/2})^T/\sqrt{2}$ is the spinor part of the eigenfunction, corresponding to electron with momentum ${\bf p}$ (its azimuthal angle in the xy plane is $\phi_{\bf p}$) from conduction $(\gamma=+1)$ or valence $(\gamma=-1)$ band. Many-body Hamiltonian of electrons populating the surface of topological insulator is $H=\sum_{{\bf p}\gamma}\xi_{{\bf p}\gamma}a_{{\bf p}\gamma}^+a_{{\bf p}\gamma}+(1/2S)\sum_{{\bf q}}V_q\rho_{\bf q}^+\rho_{\bf q}$, where $a_{{\bf p}\gamma}$ is the destruction operator for electron with momentum ${\bf p}$ from the band γ , $\xi_{{\bf p}\gamma}=\gamma \nu_{\rm F}|{\bf p}|-\mu$ is its energy measured from the chemical potential μ , $V_q=2\pi e^2/\epsilon q$; $\rho_{\bf q}^+=\sum_{{\bf p}\gamma\gamma'}\langle f_{{\bf p}+{\bf q},\gamma'}|f_{{\bf p}\gamma}\rangle a_{{\bf p}+{\bf q},\gamma'}^+a_{{\bf p}\gamma}$ is the charge density operator for helical liquid.

The creation operator for spin-plasmon with wave vector \mathbf{q} can be presented in the form:

$$Q_{\mathbf{q}}^{+} = \sum_{\mathbf{p}\gamma\gamma'} C_{\mathbf{p}\mathbf{q}}^{\gamma\gamma\gamma} a_{\mathbf{p}+\mathbf{q},\gamma'}^{+} a_{\mathbf{p}\gamma} \tag{1}$$

This operator should obey the equation of motion $[H,Q_{\mathbf{q}}^+] = \Omega_q Q_{\mathbf{q}}^+$, where Ω_q is the plasmon frequency. We can get solution of this equation in the random phase approximation at T=0 (similarly to [8]):

$$C_{\mathbf{pq}}^{\gamma\gamma\gamma} = \frac{|n_{\mathbf{p}\gamma} - n_{\mathbf{p}+\mathbf{q},\gamma'}| \langle f_{\mathbf{p}+\mathbf{q},\gamma'}| f_{\mathbf{p}\gamma} \rangle N_{\mathbf{q}}}{\Omega_{\mathbf{q}} + \xi_{\mathbf{p}\gamma} - \xi_{\mathbf{p}+\mathbf{q},\gamma'} + i\delta},$$
 (2)

where $n_{p+} = \Theta(p_F - |p|)$ and n_{p-} are occupation numbers for electron-doped helical liquid ($p_F = \mu/v_F$ is the Fermi momentum).

^{*}Corresponding author at: Institute for Spectroscopy, Russian Academy of Sciences, Fizicheskaya 5, 142190 Troitsk, Moscow Region, Russian Federation. Tel.: +7 496 751 0881; fax: +7 496 751 0886.

The plasmon frequency is determined in this approach from the equation $1 - V_a \Pi(q, \Omega_a) = 0$, where

$$\Pi(q,\omega) = \sum_{\mathbf{p}\gamma\gamma'} \left| \langle f_{\mathbf{p}+\mathbf{q},\gamma'} | f_{\mathbf{p}\gamma} \rangle \right|^2 \frac{n_{\mathbf{p}\gamma} - n_{\mathbf{p}+\mathbf{q},\gamma'}}{\omega + \xi_{\mathbf{p}\gamma} - \xi_{\mathbf{p}+\mathbf{q},\gamma'} + i\delta}$$
(3)

is the polarization operator of the helical liquid, different from that for graphene [3] only by degeneracy factor. The factor N_q in (2) can be determined from the normalization condition

$$\langle 0 | [Q_{\mathbf{q}}, Q_{\mathbf{q}'}^+] | 0 \rangle = \delta_{\mathbf{q}\mathbf{q}'} \sum_{\gamma\gamma'} D_{\gamma'\gamma} = \delta_{\mathbf{q}\mathbf{q}'}$$

$$D_{\gamma'\gamma} = \sum_{\mathbf{p}} |C_{\mathbf{p}\mathbf{q}}^{\gamma\gamma\gamma}|^2 (n_{\mathbf{p}\gamma} - n_{\mathbf{p}+\mathbf{q},\gamma'}) \tag{4}$$

 $(|0\rangle)$ is the ground state), so that $|N_{\bf q}|^{-2} = -S[\partial\Pi(q,\omega)/\partial\omega]|_{\omega=\Omega_q}$. The quantities $D_{\gamma\gamma}$ in (4) can be considered as total weights of intraband (D_{++}) and interband $(D_{+-}+D_{-+}=1-D_{++})$ electron transitions, contributing to the plasmon wave function (1). Note that all these formulas are also applicable to the case of graphene.

Spin-plasmon dispersion Ω_q and contribution of intraband transitions into its wave function are plotted in Fig. 1 at various $r_{\rm s}\!=\!e^2/\epsilon v_{\rm F}$, where ϵ is the dielectric susceptibility of surrounding 3D medium. For Bi₂Se₃, $r_{\rm s}\approx 0.09$ with $\epsilon\approx 40$ for dielectric halfspace [5] (for such small $r_{\rm s}$, the corresponding dispersion curve approaches very closely to the upper bound $\omega\!=\!v_{\rm F}q$ of the intraband continuum). The results for suspended graphene with rather large $r_{\rm s}\!=\!8.8$ (for $v_{\rm F}\approx 10^6$ m/s, $\epsilon\!=\!1$ and with the degeneracy factor

4 incorporated into r_s) are also presented for comparison. It is seen that the undamped spin-plasmon consists mainly of intraband transitions. When the dispersion curve enters the interband continuum, the spin plasmon becomes damped and interand intraband transitions contribute almost equally to its wave function.

3. Charge- and spin-waves

The helical liquid in the state $|1_{\bf q}\rangle=Q_{\bf q}^+|0\rangle$ with one spin-plasmon of wave vector ${\bf q}$ has a distribution of electron-hole excitations (2), shifted towards ${\bf q}$. Due to the spin-momentum locking, the system acquires a total nonzero spin polarization, perpendicular to ${\bf q}$. A similar situation occurs in the current-carrying state of the helical liquid, which turns out to be spin-polarized [4].

Introducing one-particle spin operator as $\mathbf{s} = \mathbf{\sigma}/2$, we can calculate its average value in the one-plasmon state $\langle \mathbf{s} \rangle = \langle \mathbf{1}_q | \mathbf{s} | \mathbf{1}_q \rangle$ as

$$\langle \mathbf{s} \rangle = \sum_{\mathbf{p}\gamma\gamma'\tau} [\langle f_{\mathbf{p}+\mathbf{q},\gamma'} | \mathbf{s} | f_{\mathbf{p}+\mathbf{q},\tau} \rangle C_{\mathbf{p}\mathbf{q}}^{\tau\gamma} - C_{\mathbf{p}\mathbf{q}}^{\gamma\prime\tau} \langle f_{\mathbf{p}\tau} | \mathbf{s} | f_{\mathbf{p}\gamma} \rangle] (C_{\mathbf{p}\mathbf{q}}^{\gamma\gamma\prime})^* (n_{\mathbf{p}\gamma} - n_{\mathbf{p}+\mathbf{q},\gamma'})$$
(5)

If q is parallel to e_x , only the y-component of $\langle s \rangle$ is nonzero. Its dependence on q at various r_s is plotted in Fig. 2(a).

Charge- and spin-density waves, accompanying spin-plasmon with the wave vector \mathbf{q} , can be characterized by corresponding spatial harmonics of charge- and spin-density operators: $\rho_{\mathbf{q}}^+$ and $\mathbf{s}_{\mathbf{q}}^+ = \sum_{\mathbf{p}\gamma\gamma'} \langle f_{\mathbf{p}+\mathbf{q},\gamma'} | \mathbf{s} | f_{\mathbf{p}\gamma} \rangle a_{\mathbf{p}+\mathbf{q},\gamma'}^+ a_{\mathbf{p}\gamma}$. Using, similarly to [9], the

Fig. 1. Dispersions of spin-plasmon (a) and contributions D_{++} of intraband transitions into its wave function (b) at various r_s . Continuums of intraband ($\omega < v_F q$) and interband ($\omega + v_F q > 2\mu$) single-particle excitations are shaded in (a).

Fig. 2. Total spin polarization $\langle s \rangle$ of the helical liquid in the one-plasmon state (a) at various r_s and normalized amplitudes A_ρ and A_s of charge- and spin-density waves respectively in the many-plasmon state (b).

unitary transformation, inverse with respect to (1), we can write:

$$\rho_{\mathbf{q}}^{+} = SN_{\mathbf{q}}^{*}\Pi(q,\Omega_{q})Q_{\mathbf{q}}^{+} + \tilde{\rho}_{\mathbf{q}}^{+}, \tag{6}$$

$$\mathbf{s}_{\mathbf{q}}^{+} = SN_{\mathbf{q}}^{*}\Pi_{s}(q, \Omega_{q})Q_{\mathbf{q}}^{+} + \tilde{\mathbf{s}}_{\mathbf{q}}^{+}, \tag{7}$$

where the operators $\tilde{\rho}_{\mathbf{q}}^{+}$ and $\tilde{\mathbf{s}}_{\mathbf{q}}^{+}$ are the contributions of single-particle excitations and are dynamically independent on plasmons. Here the crossed spin-density susceptibility of the helical liquid [5] has been introduced:

$$\Pi_{\mathbf{s}}(\mathbf{q},\omega) = \sum_{\mathbf{p}\gamma\gamma'} \langle f_{\mathbf{p}+\mathbf{q},\gamma'} | f_{\mathbf{p}\gamma} \rangle \langle f_{\mathbf{p}\gamma} | \mathbf{s} | f_{\mathbf{p}+\mathbf{q},\gamma'} \rangle \frac{n_{\mathbf{p}\gamma} - n_{\mathbf{p}+\mathbf{q},\gamma'}}{\omega + \xi_{\mathbf{p}\gamma} - \xi_{\mathbf{p}+\mathbf{q},\gamma'} + i\delta}$$
(8)

The average values of $\rho_{\bf q}^+$ and ${\bf s}_{\bf q}^+$ in the $n_{\bf q}$ -plasmon state $|n_{\bf q}\rangle=[(Q_{\bf q}^+)^{n_{\bf q}}/\sqrt{n_{\bf q}!}]|0\rangle$ vanish, therefore we consider their mean squares in $|n_{\bf q}\rangle$ after subtracting their background values in $|0\rangle$, i.e.,

$$\langle \rho_{\mathbf{q}} \rho_{\mathbf{q}}^{+} \rangle \equiv \langle n_{\mathbf{q}} | \rho_{\mathbf{q}} \rho_{\mathbf{q}}^{+} | n_{\mathbf{q}} \rangle - \langle 0 | \rho_{\mathbf{q}} \rho_{\mathbf{q}}^{+} | 0 \rangle$$

$$= n_{\mathbf{q}} S^{2} |N_{\mathbf{q}}^{*} \Pi(q, \Omega_{q})|^{2}, \tag{9}$$

$$\langle s_{\mathbf{q}}^{\perp}(s_{\mathbf{q}}^{\perp})^{+} \rangle \equiv \langle n_{\mathbf{q}} | s_{\mathbf{q}}^{\perp}(s_{\mathbf{q}}^{\perp})^{+} | n_{\mathbf{q}} \rangle - \langle 0 | s_{\mathbf{q}}^{\perp}(s_{\mathbf{q}}^{\perp})^{+} | 0 \rangle$$

$$= n_{\mathbf{q}} s^{2} | N_{\mathbf{q}}^{*} \Pi_{s}^{\perp}(q, \Omega_{q}) |^{2}$$
(10)

(only the in-plane transverse component s^{\perp} of the spin \mathbf{s} is nonzero in these averages). The normalized amplitudes $A_{\rho}(q) = [\langle \rho_{\mathbf{q}} \rho_{\mathbf{q}}^{+} \rangle / n_{\mathbf{q}} S \rho]^{1/2}$ and $A_{\mathbf{s}}(q) = [\langle s_{\mathbf{q}}^{\perp} (s_{\mathbf{q}}^{\perp})^{+} \rangle / n_{\mathbf{q}} S \rho]^{1/2}$ of charge-and spin-density waves are plotted in Fig. 2(b) $(\rho = p_{\mathbf{F}}^{2} / 4\pi)$ is

the average electron density). The "continuity equation" for density and transverse spin, following from the spin-momentum locking [5], requires that $\Omega_q A_\rho(q) = 2 v_F q A_s(q)$, in agreement with our results.

4. Conclusions

We have considered microscopically spin-plasmons in helical liquid in the random phase approximation. The developed

quantum-mechanical formalism can be applied for a number of problems in spin-plasmon optics.

We calculated the average spin polarization, acquired by the helical liquid in a spin-plasmon state, as well as mean-square amplitudes of charge- and spin-density waves, arising in this state. Coupling between these amplitudes, caused by spin-momentum locking, was demonstrated. The interconnection between charge- and spin-density waves can be applied for constructing various spin-plasmonic and spintronic devices.

Acknowledgment

The work was supported by Russian Foundation for Basic Research, by Grant of the President of Russian Federation MK-5288.2011.2 and by the Federal target-oriented program "Research and scientific-pedagogical staff of innovational Russia" for 2009–2013. One of the authors (A.A.S.) acknowledges support from the Dynasty Foundation.

References

- [1] M.Z. Hasan, C.L. Kane, Reviews of Modern Physics 82 (2010) 3045-3067.
- [2] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Naturé Physics 5 (2009) 438–442.
- [3] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Reviews of Modern Physics 81 (2009) 109–162.
- [4] D. Culcer, E.H. Hwang, T.D. Stanescu, S. Das Sarma, Physical Review B 82 (155457) (2010) 1–20.
- [5] S. Raghu, S.B. Chung, X.L. Qim, S.-C. Zhang, Biophysical Reviews and Letters 104 (116401) (2010) 1–4.
- [6] I. Appelbaum, H.D. Drew, M.S. Fuhrer, Applied Physics Letters 98 (023103) (2011) 1–3.
- [7] A. Karch, Physical Review B 83 (245432) (2011) 1–5.
- [8] K. Sawada, K.A. Brueckner, N. Fukuda, R. Brout, Physical Review 108 (1957) 507–514
- [9] R. Brout, Physical Review 108 (1957) 515–517.