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a b s t r a c t

It has been shown recently that the normalized median Genocchi
numbers are equal to the Euler characteristics of the degenerate
flag varieties. The q-analogues of the Genocchi numbers can be
naturally defined as the Poincaré polynomials of the degenerate
flag varieties.Weprove that the generating function of the Poincaré
polynomials can be written as a simple continued fraction. As
an application we prove that the Poincaré polynomials coincide
with the q-version of the normalized median Genocchi numbers
introduced by Han and Zeng.
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0. Introduction

The Genocchi numbers appear in many different contexts (see e.g. [1,4,5,7,6,14,20]). Probably the
most well-known definition uses the Seidel triangle

155 155
17 17 155 310

3 3 17 34 138 448
1 1 3 6 14 48 104 552

1 1 1 2 2 8 8 56 56 608

By definition, the triangle is formedby the numbers gk,n (k is the number of a row counted frombottom
to top and n is the number of a column from left to right) with n = 1, 2, . . . and 1 ≤ k ≤

n+1
2 , subject

to the relations g1,1 = 1 and

gk,2n =


i≥k

gi,2n−1, gk,2n+1 =


i≤k

gi,2n.
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For example, 138 = 56+48+34 and 48 = 14+17+17. The two sequences of numbers sitting on the
edges of the Seidel triangle are called the Genocchi numbers. More precisely, the Genocchi numbers of
the first kind are 1, 1, 3, 17, 155, . . . and those of the second kind are 1, 2, 8, 56, 608, . . . . The latter
numbers are also referred to as themedian Genocchi numbers and are denoted byH2n−1. For example,
H1 = 1 and H7 = 56. These numbers are known to be divisible by powers of 2 (see [1,4]): H2n+1 ÷ 2n.
The ratios are called the normalized median Genocchi numbers and are denoted by hn. Thus the first
values h0, h1, h2, . . . are as follows:

1, 1, 2, 7, 38, 295, 3098, . . . .

It has been shown recently (see [9]) that the numbers hn are analogues (‘‘degenerations’’) of the
numbers n!. More precisely, let Fn be the variety of flags in an n-dimensional space, i.e. Fn consists
of collections of subspaces (V1 ⊂ V2 ⊂ · · · ⊂ Vn−1) of a given n-dimensional space W such that
dim Vk = k. It is well known that the Euler characteristics of Fn is equal to n!. Combinatorially, the
number n! appears in this context as the number of sequences (I1 ⊂ I2 ⊂ · · · ⊂ In−1) of subsets of
{1, . . . , n} such that #Ik = k. The varieties Fn have natural degenerations Fa

n, called the degenerate
flag varieties (see [8–11]). The degenerate flag varieties consist of collections (V1, V2, . . . , Vn−1) of
subspaces of an n-dimensional vector space subject to certain explicit conditions (see Section 1). It
turns out that the Euler characteristic of Fa

n is equal to the normalized median Genocchi number:
χ(Fa

n) = hn. Combinatorially this means that the number of sequences (I1, I2, . . . , In−1) of subsets of
{1, . . . , n} such that #Ik = k and Ik ⊂ Ik+1 ∪ {k + 1} is equal to hn.

We introduce natural q-analogues hn(q) as the Poincaré polynomials of the degenerate flag
varieties. We note that the degenerate flag varieties are singular, but share the following important
property with their classical analogues: the varieties Fa

n can be decomposed into a disjoint union of
complex (even-dimensional real) affine cells. Therefore the Poincaré polynomials PFa

n(t) are functions
of q = t2 (odd powers do not show up). Hence we define hn(q) = PFa

n(q
1/2). Obviously, one has

hn(1) = hn. Various q-analogues of the Genocchi numbers appear in the literature (see e.g. [15,16,22]).
In particular, in [15] Han and Zeng used the q-analogues to give a third proof of the Barsky theorem
[1,4].

We give a continued fraction presentation of the generating function of the polynomials hn(q).
Namely, it is convenient to introduce the ‘‘reversed’’ polynomials h̃n(q) = qn(n−1)/2hn(q−1). Then we
have

Theorem 0.1.
n≥0

h̃n(q)sn =
1

1 −
s

1− qs

1−


3
2


q
s

1−
q

3
2


q
s

1−


4
2


q
s

1−
q

4
2


q
s

1−···

Using this formula, we prove that the h̃n(q) coincide with the q version of the normalized median
Genocchi numbers introduced by Han and Zeng in [15,16]. We also note that the Viennot formula
(see [19,21,4,7]) for the generating function of themedian Genocchi numbersH2n−1 can be derived by
specialization at q = 1.

Our paper is organized as follows.
In Section 1 we briefly recall the definitions of the degenerate flag varieties and of the q-analogues

of the normalized median Genocchi numbers.
In Section 2 we obtain the continued fraction presentation for the generating function of h̃n(q).



Author's personal copy

E. Feigin / European Journal of Combinatorics 33 (2012) 1913–1918 1915

1. Combinatorics of the normalized median Genocchi numbers

The normalized median Genocchi numbers hn, n = 0, 1, 2, . . ., form a sequence which starts
with 1, 1, 2, 7, 38, 295. These numbers enjoy many definitions (see [1,4,3,14,17,18]). We have shown
recently that the numbers hn are equal to the Euler characteristics of certain (singular) algebraic
varieties Fa

n called the degenerate flag varieties (see [9]). Recall that Fa
n consists of sequences

(V1, . . . , Vn−1) of the subspaces of a given n-dimensional spaceW with a basis w1, . . . , wn, subject to
the conditions

prk+1Vk ⊂ Vk+1, k = 1, . . . , n − 2,

where prk : W → W is a projection along wk: prk(
n

i=1 ciwi) =


i≠k ciwi. One proves that
the degenerate flag varieties share the following important property with their classical analogues
(see [13]):Fa

n can be decomposed into a disjoint union of complex (even-dimensional real) cells. Hence
we obtain a natural graded analogue of the numbers hn defined by the Poincaré polynomials of Fa

n:

hn(q) = PFa
n(q

1/2),

where PFa
n(t) is the Poincaré polynomial of Fa

n and q1/2 shows up because all the cells are even-
dimensional. The first four polynomials hn(q) are as follows:

h1(q) = 1, h2(q) = 1 + q,
h3(q) = 1 + 2q + 3q2 + q3,
h4(q) = 1 + 3q + 7q2 + 10q3 + 10q4 + 6q5 + q6.

In general, the degree of hn(q) is equal to n(n − 1)/2. Obviously, hn(1) = hn.
Let us recall an explicit formula for the polynomials hn(q) derived in [2] using the geometry of

quiver Grassmannians. Letm ≥ n ≥ 0. Then the q-binomial (Gaussian) coefficient
m

n


q is defined asm

n


q
=

mq!

nq!(m − n)q!
, mq! =

m
i=1

1 − qi

1 − q
.

Proposition 1.1. The Poincaré polynomial of the degenerate flag variety Fa
n is equal to


f1,...,fn−1≥0

q
n−1

k=1 (k−fk)(1−fk+fk+1)
n−1
k=1


1 + fk−1

fk


q

n−1
k=1


1 + fk+1

fk


q
, (1.1)

(we assume f0 = fn = 0).

Geometrically, formula (1.1) appears as follows. The varieties Fa
n can be cut into disjoint pieces,

such that each piece is fibered over a product of several Grassmannianswith fibers being affine spaces.
Since the Poincaré polynomial of a Grassmannian is given by a q-binomial coefficient, we arrive at the
formula as above.

2. The generating function and continued fractions

Our goal in this section is to give an explicit continued fraction form of the generating function of
the Poincaré polynomials hn(q) and to prove that they coincide with the q-versions of the normalized
median Genocchi numbers defined in [15,16].

We first recall the formalism of the weighted generating functions of Motzkin paths due to Flajolet
(see [12]). Letαn,βn andγn,n ≥ 0, be sequences of complex numbers calledweights. For a nonnegative
integer k we define w(k, k) = γk, w(k, k + 1) = αk and w(k, k − 1) = βk−1 (if k ≥ 1). We denote
by α• the whole collection (αk)

∞

k=0 and similarly for β• and γ•. The weighted generating function of
Motzkin paths is given by the formula

F(s; α•, β•, γ•) =


n≥0

sn

f∈Mn

n−1
k=0

w(fk, fk+1).
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The following result is due to Flajolet [12]: the weighted generating sum of theMotzkin paths is given
by the continued fraction

F(s; α•, β•, γ•) =
1

1 − γ0s −
α0β0s2

1−γ1s−
α1β1s2

1−γ2s−···

.

Let us apply this formalism to our situation. Formula (1.1) can be rewritten as follows:

hn(q) = qn(n−1)/2

f∈Mn

q
n−1

k=1 fk(fk−fk+1−2)
n−1
k=1


1 + fk−1

fk


q

n−1
k=1


1 + fk+1

fk


q
. (2.1)

We introduce three sequences of weights

αm(q) = q−3m

m + 2

2


q
, βm(q) = q−m−1


m + 2

2


q
, γm(q) = q−2m


m + 1

1

2

q

and define w(fk, fk+1) using these weights. Then formula (2.1) implies the following lemma.

Lemma 2.1.

q−n(n−1)/2hn(q) =


f∈Mn

n−1
k=0

w(fk, fk+1). (2.2)

In order to use the Flajolet theoremwe need to get rid of the factor qn(n−1)/2 in (2.2). We introduce the
notation

h̃n(q) = qn(n−1)/2hn(q−1)

(note that the degree of hn(q) is exactly n(n − 1)/2). Let h̃(q, s) =


n≥0 h̃n(q)sn. We note that

γm(q) =


m + 1

1

2

q−1
, αm(q)βm(q) = q−1


m + 2

2

2

q−1
.

Using the Flajolet theorem we arrive at the following theorem.

Theorem 2.2. The generating function h̃(q, s) can be written as follows:

h̃(q, s) =
1

1 − s −
qs2

1−

2
1

2
q
s−

q

3
2

2
q

s2

1−

3
1

2
q

s−
q

4
2

2
q

s2

1−

4
1

2
q

s−···

(2.3)

Proof. Follows from Lemma 2.1 and the Flajolet theorem. �

Corollary 2.3.

h̃(q, s) =
1

1 −
s

1− qs

1−


3
2


q
s

1−
q

3
2


q
s

1−


4
2


q
s

1−
q

4
2


q
s

1−···

(2.4)



Author's personal copy

E. Feigin / European Journal of Combinatorics 33 (2012) 1913–1918 1917

Proof. Recall the following formula (see [7, Lemma 2]):

c0

1 − c1s −
c1c2s2

1−(c2+c3)s−
c3c4s2

1−(c4+c5)s−···

=
c0

1 −
c1s

1− c2s

1−
c3s
1−···

.

Now our corollary follows from Theorem 2.2. �

Recall the q-analogues of the normalized median Genocchi numbers c̄n(q) introduced by Han and
Zeng (see formula (17) in [15]). By definition,

c̄n(q) =
Cn(1, q)

(1 + q)n−1
, n ≥ 1,

where the polynomials Cn(x, q) are defined by C1(x, q) = 1 and

Cn(x, q) = (1 + qx)
(1 + qx)Cn−1(1 + qx, q) − xCn−1(x, q)

1 + qx − x
, n ≥ 2.

Corollary 2.4. h̃n(q) = c̄n+1(q).

Proof. Formula (18) in [15] gives a continued fraction form of the generating function of the
polynomials c̄n(q). Comparing this formula with (2.4) and using the equations

2n
2


q
= (1 + q2 + q4 + · · · + q2n−2)(1 + q + q2 + · · · + q2n−2),

2n + 1
2


q
= (1 + q2 + q4 + · · · + q2n−2)(1 + q + q2 + · · · + q2n),

we obtain h̃n(q) = c̄n+1(q). �

Finally, we note that specializing to q = 1, one derives the continued fraction formulas due to
Viennot for the generating functions of the (normalized) median Genocchi numbers (see [4,7,19,21]).
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