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1. Introduction

Foliations with transverse linear connection are investigated. Works of Molino [9], Kamber and Tondeur [3], Bel'ko [1]
are devoted to different aspects of this class of foliations.

Let Fol be the category of foliations whose objects are foliations and morphisms are smooth maps between foliated
manifolds mapping leaves to leaves. By smoothness (manifolds, mappings, bundles) we shall mean the smoothness of
the class C*. Let (M, F) be an arbitrary smooth foliation with transverse linear connection. We investigate the group
D(M, F) of diffeomorphisms of the manifold M whose elements are the automorphisms of the foliation (M, F) in the
category Fol .
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Palais [11] introduced a smooth structure on the set C>°(M, M) of smooth maps M — M’ of smooth compact manifolds
M and M'. He applied as model spaces inductive limits of Hilbert spaces. The diffeomorphism group Diff(M) of a
compact manifold M was studied by Leslie, Omori and other authors. Leslie and Omori introduced structures of infinite-
dimensional manifolds on Diff (M) modeled on Fréchet spaces and on inductive limits of Hilbert spaces respectively.

When the manifold M is non-compact the application of FD-topology (see Section 4) allowed Michor [8] to introduce a
smooth structure on Diff(M) modeled on LF-spaces, i.e., on inductive limits of Fréchet spaces.

The objective of this paper is to introduce a structure of a smooth infinite-dimensional manifold modeled on LF-spaces in
the group of all automorphisms of a foliation with transverse linear connection in the category Fol. In order to introduce
the structure of a smooth infinite-dimensional manifolds modeled on LF-spaces in the group of diffeomorphisms of a
smooth manifold, Michor [8] used the construction of a local addition. Macias-Virgés and Sanmartin Carbén [7] adapted
this method to foliations and applied it to Riemannian foliations. The goal of our work is to extend the result of Macias-
Virgés and Sanmartin Carbén for Riemannian foliations [7] to foliations with transverse linear connection. The following
theorem is the main result of this work.

Theorem 1.1.

Let (M, F) be a foliation with transverse linear connection of an arbitrary codimension q on an n-dimensional manifold M.
Then the automorphism group D(M, F) of this foliation in the category Fol admits a structure of an infinite-dimensional
Lie group modeled on LF-spaces.

The results of Macias-Virgés and Sanmartin Carbén [7, Theorem 13, Corollary 14] allow us to reduce the proof of this
theorem to the construction of an adapted local addition for (M, F). Let 2t be a smooth g-dimensional distribution
on M which is transverse to (M, F). For a foliation (M, F) with transverse linear connection we construct (Theorem 4.1)
a special linear connection V™ on the foliated manifold M with respect to which 90t and the tangent distribution TF
of the foliation (M, F) are geodesic invariant in the sense of [6]. Due to the use of V™ our construction of an adapted
local addition is simpler than Macias-Virgds and Sanmartin Carbén’s one for Riemannian foliations [7].

As pseudo-Riemannian foliations and, in particular, Lorentzian foliations belong to the class of foliations with transverse
linear connection, the following assertion is valid.

Corollary 1.2.

The statement of Theorem 1.1 is true for pseudo-Riemannian and Lorentzian foliations.

This article is organized as follows. First, we give basic concepts and notation (Section 2). Then we construct the
foliated bundle of transverse frames and prove Propositions 3.1 and 3.4 about its properties (Section 3). The foliated
bundle of transverse frames with the lifted foliation is applied for the construction of a special linear connection V™
for the foliation (M, F) (Section 4). We also recall the Macias-Virgds and Sanmartin Carbdn results about the structure
of the Lie group on the set of automorphisms of a foliation admitting an adapted local addition (Section 5). Section 6
contains the proof of our main Theorem 1.1. Here, the above mentioned special linear connection V™ is essentially
used.

2. Basic concepts and notation

2.1. Notation

Let M be a Hausdorff, paracompact, connected smooth n-dimensional manifold. It is not necessarily compact. Algebra
of smooth functions on M is denoted by F(M), and F(M)-module of vector fields on M is designated by X(M). Let M
be a smooth distribution on M. Then Xgn (M) is the set of vector fields which are sections of 9. Let TF be the tangent
distribution to the foliation (M, F), then X7£(M) is also denoted by Xg(M).
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2.2. Linear connections

Let 90t be a k-dimensional distribution n-dimensional manifold M, where 0 < k < n. A linear connection on the vector
bundle M is the operator

Vi XM) xXm(M) = Xom(M), (X,Y)— VyY,
enjoying the following properties for all X, Xy, X; € X(M), Y,Z € Xon(M) and f, h € FM):

(C1) VixenoZ =V Z+hVx,Z;
(Ca) Vx(fY)= (XY +fVxY;

(Cg) Vx(Y+2Z)=VxY + VxZ.

If 9t = TM, then the operator V is called a linear connection on M.

Further the pair (M, V) is called the manifold with linear connection. The bilinear skew-symmetric tensor on M of the
type (1, 2), which is defined by the equality

TIX,Y) = VxY =X —[X,Y],  X,Y €X(M),

is called the torsion tensor or the torsion of the linear connection V. A linear connection ¥V on M is said to be symmetric,
if the torsion tensor T vanishes.

2.3. Foliations with transverse linear connection

A diffeomorphism f: M) — M@ is said to be an isomorphism of connections V(" and V@ if
LTPY) = VALY

for all vector fields X, Y € 36(/\/1(”), where f, is the differential of f. Let N be a g-dimensional manifold and M be
a smooth n-dimensional manifold, where 0 < g < n. Unlike M the connectedness of the topological space N is not
assumed. An N-cocycle is the set {U;, f;, {k"i}}i/ej such that:

1. The family {U; : i € J} forms an open cover of M.

2. The mappings f;: U; — N are submersions into N with connected fibers.

3. U;NU; #8,ij €/, then a diffeomorphism k;;: f;(U; N U;) — f;(U; N U;) is well defined and satisfies the equality
f,‘ = kijij'

Definition 2.1.
Let a foliation (M, F) be given by an N-cocycle {U, f;, {ki/}}i,/e/' If the manifold N admits a linear connection V" such

that every local diffeomorphism k;; is an isomorphism of the linear connections induced by VN on open subsets f;(U;NU))
and f;(U; N U;), then we refer to (M, F) as a foliation with transverse linear connection defined by the (N, VN)-cocycle

{U,-, fi, {ki/'}}[,je/'

We emphasize that vanishing of the torsion tensor of a linear connection V™ on N is not assumed.
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2.4. Inducted connection on a submanifold

Let M be any n-dimensional manifold provided by a linear connection V. Consider an arbitrary p-dimensional immersion
submanifold L of M. The number g = n — p is the codimension of L. Suppose that at each point x € L a g-dimensional
subspace 9, of the tangent vector space T,M is given, and 9, is transverse to T,L and smoothly depends on x. Then
L is said to be an 9M-equipped submanifold. As T/M = T,L&M,, y € L, so each vector field X € X(M)[, may be
represented in the form X = XF @ X™, where XF € X(L), X™ € D is a section of 9. Denote the canonical projection
XM, = X(L), X = XF by prf.

Define a linear connection V™ on L in the following a way. Consider vector fields X, Y € X(L) and any point x € L. As
is well known [4], the covariant derivative of Y along X at x is defined by values of X[, and Y at any small neighborhood
of x in L. Let W and V be neighborhoods of x in L, with the closure CL W belonging to V and Xy = X[y, Yv = Y],.
There are prolongations X,Y e X(M) of vector fields Xew and Yo . We have X[, = ;([W and YTy = V[W. As is
well known, the equality

VYL =pf (ViYL x el

defines a linear connection V5™ on the 91-equipped submanifold L of (M, V). The connection V-™ is named the
M-induced connection.

Recall that a submanifold L of the manifold of linear connection (M, V) is called totally geodesic, if for each x € L and
every vector X € T,L the geodesic line yx(s) such that yx(0) = x and yx(0) = X belongs to L.

Generally speaking, the connection V-™ depends on the equipment 9 of the submanifold L. As it is known
[12, Lecture 3], if V is a symmetry connection on M, then the induced connection V-™ does not depend on the
equipment 9 of the submanifold L if and only if L is the totally geodesic submanifold of (M, V).

2.5. Geodesic invariant distributions and totally geodesic foliations

A smooth distribution 91 on the manifold of linear connection (M, V) is called geodesic invariant [6], if for any x € M
and each vector X € 91, the geodesic line yx(s) such that yx(0) = x and yx(0) = X, is an integral curve of 91. A foliation
(M, F) of a manifold M with a linear connection V is called totally geodesic, if its tangent distribution TF is geodesic
invariant or equivalent, if all its leaves are totally geodesic submanifolds.

3. The foliated bundle of transverse frames

3.1. Projectable connections [10]

We keep notation from [4]. By P(M, G) we mean a principal G-bundle. Let M be an n-dimensional smooth manifold and
w: P — M be the projection of P(M, G). A G-connection in P(M, G) is a G-invariant n-dimensional distribution Q on
P transverse to fibres of the submersion t: P — M. As known [4], the connection may be defined by g-valued 1-form w
on M satisfying some conditions. The form w is named the connection form. If P = L(M) is the frame bundle of M, then
the existence of the connection in P(M, G) is equivalent to the existence of a linear connection ¥V on M.

Consider P(M, G) with a G-invariant foliation (P, J) such that images of its leaves form a foliation (M, F) of the same
dimension m, where 0 < m < n. A connection Q on P is said to be transverse, if TF C Q or equivalent, if ixw = 0,
X € X5(P), where ix is the interior product by X. A transverse connection Q on P is called projectable with respect
to (P, ), if ixdw =0 for all X € X5(P).

3.2. Principal foliated bundles

Let (M, F) be a smooth foliation of codimension g. A g-dimensional distribution 9t on M is said to be transverse to the
foliation (M, F) if 9 satisfies the equality TM =9, ® T,F, x € M, where @ is the symbol of the direct sum of vector
spaces.
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Let (M,F) be a foliation of codimension g with transverse linear connection defined by an (N, VN)-cocycle
{U[,f[,{k,v/»}}i,jej. For brevity let us denote H = GL(q, R). Let b be the Lie algebra of a Lie group H. Denote
the projection of the frame bundle of N by p: P — N, then P = P(N, H) is the principal H-bundle. Let V; = f;(U),
then P; = p~1(V}) is a sub-bundle of the H-bundle P. Let R; = f;P; = {(x,2z) € U;x P; : f;(x) = p(z)} be the pullback
bundle of P; with respect to the submersion f;. We define the projections p;: R; — U;, (x,2z) — x, and ?, Ri — P,
(x,z) — z, where (x,z) € R;. Suppose that a g-dimensional distribution 9t on the manifold M is transverse to the
foliation (M, F). Identify the vector quotient bundle TM/TF with the distribution 91. We consider a point (x,z) € R;
as a basis {e,_q1q} of the vector space M, such that fi e, gi0 = €, where a =1,...,q, {€,} = z is the frame at
v = fi(x) € N and f., is the differential of f; at x. The pair (x, z) is named an 9M-frame at x.

Introduce the following binary relation S in the disjoint sum Y = | |, R;. Let (x,2) € R;, (X,Z) € R;. Let us assume

i€l
(x,2z) S(x,Z) if the following conditions hold:
(I.) X=X€ U,ﬂU/,

(it) Z = kjus, (o z, where kjir,(y is the differential of the local diffeomorphism k;; at the point f;(x).

Direct verification shows that S is an equivalence relation. Let R = Y//S be the quotient space and B: Y — R be the
quotient mapping. Note that for every i € J the restriction of Bly,: R; — U; = B(R;) is a bijection. By requirement that
all restrictions B[y, are diffeomorphisms we define the structure of a smooth manifold in R.

We introduce the notation: Z = EO(B{%)A: Di — P; and Kj;: E(Diﬂ Dj) — ?[(U[ﬂ D,), zZ - lqj*f/(x)oz, where z €
E(Uiﬂ D,). It is not difficult to check that {DLE {K"/}}i,,'e/ is the P-cocycle defining a foliation of (R, JF) of the same
dimension as the foliation (M, F). Remark, that for every x € M and u € 7~ '(x) the restriction 7, of 7 on the leaf
L = L(u) of (R,TF) is a covering map onto a leaf L = L(x) of (M, F).

For any point u € R there is a point (x,z) € R; such that u = B((x,z)). The equality ;r(u) = x defines a submersion
7t: R — M. The relation u-a = B((x, z-a)), where a € H, defines the right free smooth action of the Lie group H on R.
Thus, m: R — M is the projection of the principal H-bundle R(M, H). The definitions of (R, F) and the action of H on R
imply the H-invariance of this foliation. Thus we have the following statement.

Proposition 3.1.

Let (M, F) be a foliation of an arbitrary codimension q defined by N-cocycle {U,-, fi, {kf/}}ije/ and H=CGL(q, R). Then
there are:

1) the principal H-bundle with the projection : R — M;

2) an H-invariant foliation (R, &), whose leaves cover the leaves of the foliation (M, F) via .

Definition 3.2.
The principal H-bundle m: R — M satisfying Proposition 3.1 is called the foliated bundle of transverse frames (or 9t-
frames) of the foliation (M, F). In this case (R, J) is named the lifted foliation.

Remark 3.3.

Originally foliated bundles appeared in the works of Molino [9] and of Kamber—Tondeur [3]. Foliated bundles were
essentially used by the first author in [15, 16].

3.3. The projectable connection in the foliated bundle of transverse frames

Proposition 3.4.
Let (M, F) be a foliation of an arbitrary codimension q with transverse linear connection defined by (N, VN)-cocycle
{Ul-, fi, {ki/}}i/e/' Let R(M, H) be the foliated bundle of transverse frames over (M, F) with lifted foliation (R, F) and

Qo be the H-connection on P corresponding to VN. Then there exist:

(i) the unique H-connection Q D TJ on R locally projectable onto H-connection Qy on P;

(i) an R9-valued H-equivariant projectable 1-form 6 on R.
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Moreover, (R, F) is an e-foliation.

Proof. The linear connection VN defines the principal H-connection Qg on the space P of the frame bundle P(N, H).
Let wy be the h-valued 1-form of the connection Qg and 6y be the canonical R7-valued 1-form of Qy on the manifold P
(see for example [4]).

The direct verification shows that the equalities wlp = (?,—)*wo and O = (?,-)*(90), where i € J, define the h-valued
1-form w and R7-valued 1-form 6 on the manifold R. The H-equivariance of the 1-forms wy and 6y, on P implies the
H-equivariance of the 1-forms w and 6 on R. Hence w defines the principal H-connection Q = ker w on R.

It follows from the definitions that w and 6 are projectable with respect to the foliation (R, F) and Lxw =0, Lx6 =0
for any vector field X € X4(R). Thus, Q is a projectable H-connection on R with respect to the foliation (R, F). For

each fixed i € / we have Z*L,Qu = Q rﬂ(u)' u € U;. Hence H-connection Q D T on R is locally projectable onto
H-connection Qy on P.

Let v € R and x = m(u). Consider M, = {Z, € T,R : n.,(Z,) € M} and BV, = {Z, € T,R : n,.(Z,) = 0}. Then
N={M,:uveRLY={Y,:v e R} and 9NN Q are smooth distributions on R, with N = V(M N Q). Fix
bases {E,}, a = 1,...,dimh, and {Eg}, B = 1,...,q, of the vector spaces j and R?. Then at any point u € R
vectors X, [, = (meu)_1(Ea) and Xgl, = (QImeu)_1(Eg) are defined. The vector fields {X,, X3} form a transverse
parallelization of the foliation (R, F). So (R, F) is an e-foliation. O

4. The existence of special connections

Let (M, F) be a smooth foliation. Recall that a vector field X € X(M) is said to be foliate if for all Y € Xg(M) the
Lie bracket [X, Y] also belongs to X¢(M) [10]. Foliated vector fields are also named basic. The function h: M — R' is
named basic if it is constant on every leaf of the foliation.

A linear connection V on M is said to be projectable with respect to (M, F), if each submersion f: U — V from
(N, VN)-cocycle {U;, f;, {kif}}ije/ determinating (M, F) satisfies the equality

(Vo Yu) = Vi f«(Yu)

for any foliate vector fields X, Y on M. Remark that f,.X and f.Y are also called f-connected vector fields with X and Y
accordingly. It is not difficult to show that ¥ on M is projectable with respect to (M, F), iff every the above mentioned
submersion f: U — V maps geodesics on (U, V) to geodesics on (V, V7).

Let M be an arbitrary smooth g-dimensional distribution on a manifold M transverse to the foliation (M, F). Therefore
any smooth vector field X on M can be written in the form X = X7 + X, where XF € Xg(M), X' € Xon(M). Then
the canonical projections are defined in the following way:

pr X(M) = X (M), X - XF, p™ X(M) = X (M), X — X

Let ¥V be a linear connection on M. A geodesic y on (M, V) is called 9M-geodesic, if it is an integral curve of a
distribution 91.

Theorem 4.1.
Let (M, F) be a foliation with transverse linear connection of codimension q and 9t be a q-dimensional distribution
transverse to (M, F). Then there is a linear connection V™ on M such that

(i) both M and TF are geodesic invariant distributions on (/\/l, Vm), and the connections induced via 9 on leaves
of (M, F) are symmetric;

(ii) the equality VY = p™(VR'Y), where X € X(M), Y € Xon(M), defines a projectable connection on 9%,
(itt) any submersion f: U — V from (N, VN)—cocgcle defining (M, F) has the following properties:
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a) the projection o = foy of any geodesic y from U is a geodesic on V, i.e. V™ is a projectable connection with
respect to (M, F);

b) if 6:[0,1] = V is a geodesic in V and x € f~'(g(0)), then there is € € (0,1] and M-lift y = y(s), s € [0, €], of
0ljo,¢ to the point x, and y is M-geodesic.

Proof. According to Proposition 3.1 there is the foliated bundle R(M, H) of 9M-frames over (M, F) with the projection
7t: R — M. There is an open covering {V,} of manifold M with the set of transition functions ¢, : V, N Vg — GL(q, R)
[4, Chapter 1, §5]. Consider the embedding j: GL(g,R) — GL(n, R),

E, ;0
A na

where A € GL(q,R) and E,_; is the unit (n—q)-dimensional matrix, of the Lie group GL(q, R) into the Lie group
GL(n, R). Then there are maps
@pa = jolpa: VaN Vg — GL(n, R),

satisfying the equality @,q(X) = @yp(X) - s (x), x € Vo N VNV, where the symbol - denotes the product of the elements
in the group GL(n, R). According to [4, Chapter 1, Proposition 5.2] there is the principal GL(n, R)-bundle 7: RoM
with the transition functions ¢g,. ldentify GL (g, R) with the closed subgroup j(GL(g, R)) of the Lie group GL(n, R), then
R C R, moreover 7tlx = 7. Thus, we consider R as the reduced sub-bundle of GL(n, R)-bundle 92(/\/1 GL(n, R)) Let Q
be the H-connection on R satisfying Proposition 3.4. Then

E*Qu:Qofyi(u), velU cCR, il 1)

Connection Q is extended to the GL(n, R)-connection (A,) on R in the following way. Consider arbitrary z € R Let
x = 7i(z). Then there exist u € 7~ '(x) N R and a unique a € GL(n, R) such that z = u-a. Define 0, = Ry«(Qy). Due
to GL(q, R)-invariance of Q the distribution Q is really defined. Remark that Ois GL (n, R)-invariant distribution on R
and transverse to the fibers of the bundle 7: R — M. Hence the connection Q defines some linear connection V on the
manifold M. Let us show that 9 is a totally geodesic distribution on (M, V).

Since the property of 91 to be totally geodesic is local, it is sufficient to prove that it holds in a neighborhood of a point
x € M. Let x € U, where f: U — V is a submersion from the (N, VV)-cocycle defining the foliation (M, F). Consider
an arbitrary vector X € M, let £, (X) = Y, then Y € T N, where y = f(x). There is a geodesic 0 = d(s), s € (—¢, €), of
(N, VN) satisfying the conditions ¢(0) = y, ¢(0) = Y. Due to the theorem about existence and uniqueness of solutions
of ordinary differential equations, there is a number 0, 0 < 0 < ¢, and a local M-lift y = y(s), s € (—9,0), of ¢
to the point x. It means that y is a such integral curve of the distribution 2 that y(0) = x and foy = 0l_s4. As
fc: M, — TN is an isomorphism of vector spaces, so y(0) = X. Show that y is geodesic on (M, V).

Let @ be the connection form and 6 be the canonical R"-value 1-form on R defined by the connection V. Remind,
that B: € %(ITQ) is called the standard horizontal vector field if W(B¢) = 0 and @(Bg) = & = const € R". It is known
[4, Chapter I, Proposition 6.3] that y is geodesic in (M, V) if and only if y is the projection of an integral curve of some
standard horizontal vector field. Since o is geodesic, with (0) = y, then for v € p~'(y) there is the Qp-horizontal lift
0y = 0p(s), s € (—¢,¢€), of curve o to the point v, moreover 6o(dy(s)) = & = const € RY. Let U= a~ ' (U) — P be
the submersion defined by f and satisfying the equality pOf = fomn. Take u € f 'Ww)na'(x) € R. Then there is
Q horizontal lift ¥ = Y(s), s € (—0, 9), of curve y to the point u. Therefore the equality oy = y implies that y is an
integral curve of the distribution M = {ﬁu ‘U € ZT{} where 0, = {z e 0, : Tw(Z) € My, x = A(u)}. As @[D =706,
where j: RT — R" ZR"7x R, & (0,4, &) and 0,_, is zero in R"79, then (1) implies the equality

B(¥(s) =7ob(V(s) =Tobo(fu¥(s) =Tobo(do(s). s € (~0,0),
whence 8(¥(s)) = 7o O(y(s) = (0s—q. &) = n € B”, if Gy(do(s)) = & € RY, s € (8, 8). Therefore, y(s), s € (~0, 8), is

an integral curve of the horizontal vector field B, on R. It means that Y(s) = 7(¥(s)) is geodesic on (M, V). Thus, the
distribution 9 is a geodesic invariant distribution on (M, V).
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Now let us show that the linear connection V is projectable with respect to (M, F). Consider an arbitrary geodesic v
on U. Let v(0) = x and ¥(0) = X € T,M. Take up € RN 7' (x) and n = ua1(X) ER" Letpr: R" ZR" xR — RY
be the canonical projection and ¢ = pr(n) € RY. There is an integral curve v of the standard vector field B, through

V(0) = ugp on R. Then v = wrov and G = fov is the integral curve of the standard vector field B; through vy = f(uo)
on P. Since fom = pof, it is easy to see that 0 = pod is a geodesic on V, and fov = ¢. This proves that V is a
projectable connection with respect to (M, F).

According to results of Willmore [14] and Walker [13], there is a unique linear connection V") without torsion on M
such that the foliation (M, F) is parallel with respect to the connection V"), Since each parallel distribution is geodesic
invariant, the foliation (M, F) is totally geodesic on (M, V).

Define a new connection V™ on the manifold M by the equality
vy = vYF 4 v v ™, X,Y € X(M), 2)

where the linear connection V is given above and Y = pf(Y), Y?' = p™(Y). The direct verification shows that V¥ is
really a linear connection on M. In accordance with (2), p™(VF'Y) = p™(VxY) for all X € X(M), Y € Xon(M). Taking
into consideration that V is a projectable connection with respect to (M, F), we get the assertion (ii) of Theorem 4.1.

The property of the distribution 9t to be geodesic invariant with respect to the connection V and the definition of the
connection V™ by the equality (2) imply the property of 91 to be geodesic invariant on (M, V™). Similarly, the property
of TF to be geodesic invariant on (M, V™) follows from the same property of TF with respect to the connection V!
and the definition of V™.

The distribution 9 plays the role of the equipment of a leaf L of the foliation (M, F). Hence the connections V™
and V" induce through 9 the same connection without torsion on L. It finishes the proof of the statement (i) of
Theorem 4.1. The properties a) and b) follow from the corresponding properties of the connection V proved above. [

Remark 4.2.

Using the proof of Theorem 4.1 it is easy to see that a linear connection ¥V on M is projectable with respect to the
foliation (M, F) if and only if the respective induced GL(g, R)-connection Q in the foliated bundle of transverse frames
R (M, GL(g, R)) is projectable with respect to the lifted foliation (X, F) in the sense of subsection 3.1.

5. The Lie group of automorphisms of foliations with an adapted local addi-
tion

The goal of this section is to recall the results of Macias-Virgés and Sanmartin Carbén [7].

5.1. Michor’s topology

Let M and M’ be two smooth manifolds. Consider the set C>°(M, M’) of smooth maps from M to M’. Recall some notions
and notation of different topologies on the set C*°(M, M’) from [8] (see also [5]).

Let 0 < r < oo and J'(M, M) be the space of r-jets of smooth maps from C>®(M, M’). Let CO" be the compact C'-topology
on C®(M, M'). It is the topology induced by the embedding j : C®°(M, M’) — CO(M, )" (M, M’)) from the compact open
topology.

Let C"-topology of Whitney or WO'-topology on the set C*°(M, M’) be defined as the topology having the basis
W(Q) = {f € C=(M, M) : (/' 1)(M) € Q},
where Q) is any open set in J"(M, M’). The basis of D-topology on C®(M, M’) is given by the sets

D(L,Q) = {f € C®*(M, M) : (j"f)(Ln) C Qy for all m},
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where L = {L,} is a locally finite countable collection of closed sets in M and Q = {Q,} is a family of open sets
in J°(M, M’). If the manifold M is not compact, the space C(M, M’) with D-topology is not locally path connected.
This problem was solved by the addition of new open sets that are the equivalence classes of the relation: f ~ g if
g coincides with f on the complement to some compact set in M’. The resulting topology is called FD-topology or
Michor’s topology.

We emphasize that WO -topology is finer than both CO"-topology and WO”—topologg for r > r’. The D-topology is
finer than WO™-topology. By the definition, Michor’s topology is finer than D-topology.

5.2. The adapted local addition

Denote the projection of the tangent bundle to the manifold M by 7: TM — M. Let so: M — TM, x — 0,, be the zero
section of T assigning to an arbitrary point x of M the zero vector 0, of T,M. Thus My = s0(M) is a submanifold of TM
diffeomorphic to M. A map E: S — M of some open neighborhood S of the submanifold M, of TM is said to be a local
addition [8], if the following two conditions are satisfied:

(D1) E(04) = x for every x € M.

(D2) The map (1,E): S - MxM, X, — (x, E(X\)), Xy € S, is a diffeomorphism onto some neighborhood W of the
diagonal A = {(y, y) : y € M} in the product of manifolds M x M.

Suppose that a foliation (M, F) of codimension q is given. There is a foliated chart (U, ¢) at every point x € M. Let
Fu = F1, be the restriction of the foliation (M, F) onto U. Then (U, F[) is a simple foliation, which is isomorphic (in
the category Fof) to the standard foliation (R”, Fy;). Therefore the leaf space U = UJFy is a smooth g-dimensional
manifold diffeomorphic to R?, and the canonical projection mry: U — U is a submersion.

A local addition E on a foliated manifold M is called adapted to the foliation (M, F) [7], if for any foliated chart (U, ¢)
and the canonical projection sty : U — U there is an open neighborhood Sy C S of submanifold Uy = so(U) in TU and
a local addition Ey: Sy = (y).(Suy) — U, moreover E(Sy) C U, and the following diagram is commutative:

Sy —t£ U

lm 1

Macias-Virgés and Sanmartin Carbdn proved that for any Riemannian foliation there is an adapted local addition [7].

5.3. The Lie group of automorphisms of foliations

Denote the group of all automorphisms of a foliation (M, F) in the category of foliations Fol by D(M, F). Let f be an
arbitrary element of the group D(M, F). Consider the pullback f*TM of the tangent bundle 7: TM — M. A smooth map
X: M — TM satisfying the equality To X = f is named a vector field X along f. Let V be an open set in M. A vector
field X along f is said to be foliated, if for any basic function h defined on V, the function Xh given by (Xh), = X;h,
x € f71(V), is basic. The set of foliated vector fields along f is denoted by ' (f*TM). Let ['F(f*TM) be the set of
foliated vector fields along f with compact support.

Suppose that a foliation (M, F) admits an adapted local addition. The application of Michor’s results [8] allowed Macias-
Virgés and Sanmartin Carbén [7] to prove that I'7 (f*TM) with FD-topology is an LF-space, i.e., it is a complete locally
path connected vector space, which is an inductive limit of Fréchet spaces.

Recall of the construction of an atlas on the automorphism group D(M, F) in the category Fol of (M,F) [7] Two
elements g,f € D(M, F) are said to be equivalent f ~ g if g coincides with f on the complement to some compact set.

According to our assumption, for (M, F) there is an adapted local addition E: S — M. Then W = (t, E)(S) is an
open neighborhood of the diagonal of M x M. Let f be any automorphism from D(M, F). The topology in D(M, F) is



N.I. Zhukova, A.Yu. Dolgonosova

defined as the induced topology from the LF-manifold Diff (M) introduced by Michor [8] (see also [5]). Then an open
neighborhood U; of f in D(M, F) is given by

U= {h € DM, F) : h ~ 1, (f(x), h(x)) € W, x € M}.

The map ¢r: Ur — TE(f*TM) is defined by ¢¢(h)(x) = X,, where X, is the unique vector in SN TyyM such that
(t, E)(Xy) = (f(x), h(x)). It is proved in [7] that the map h € U; is a morphism of Fol if the vector field X = ¢(h)
along f is foliated. Moreover, for every f € D(M, F) the map ¢;: Ur — ' (f*TM) is a homeomorphism onto an open
neighborhood of the zero section in the vector space I'7(f*TM), and the last space is isomorphic to the vector space of
the Lie algebra X.(M, F) of foliate vector fields with compact support.

Thus the following statement is a corollary of [7, Theorem 13 and Corollary 14].

Theorem 5.1.
Let (M, F) be a foliation that admits an adapted local addition. Then the group D(M, F) of foliation preserving
diffeomorphisms is an infinite-dimensional Lie group modeled on the Lie algebra X.(M, F), which is an LF-space.

6. Proof of Theorem 1.1

Let (M, F) be a foliation of an arbitrary codimension g with transverse linear connection defined by (N, V")-cocycle
{Ui, fi, {k"l'}}i,,'ej' Fix a g-dimension distribution 91 transverse to (M, ). Denote the linear connection on M satisfying
Theorem 4.1 by V™. Further we consider open subsets of M and N with the linear connections inducted by V™ and
by VN, respectively.

6.1. Neighborhoods Q(W, €)

Consider a submersion f: U — V from the maximal (N, VV)-cocycle determining (M, F). Let gY and g" be Riemannian
metrics on U and V, respectively. Define a new Riemannian metric g on U by the following formula:

g(X,Y) = gYX"YT) + g (LX), (V™)

for X =XF + XM and Y = YF + Y™ in X(V).

Remark that f: (U,g) — (V, g") is a Riemannian submersion, and 90, is a horizontal distribution for f [2]. It is well
known that for a Riemannian submersion f the length of a smooth horizontal curve p is equal to the length of its
projection fou. By the norms of vectors X € T,U and Y &€ T,V we shall mean the numbers || X|. = \/g.(X, X) and

Yl =gy, Y).

Let W and WY be open relatively compact subsets in U and V properly. Introduce for £ > 0 the following notation:
QW,e)={XeT,U:xeW, |X|«<e} Q(WV,S) ={vel.V:we WY XY < e}.

Put W, = exp(Q(W, ¢)), W = expV(Q(WV, 8)), where exp and exp" are exponential mappings with respect to the
connections V™ and VN correspondingly, if these sets are defined. As was proved by Whitehead (for example, see
[4, Chapter IlI, § 8], at every point of the manifold provided with a linear connection there is a normal convex neighborhood.
Therefore without loss of generality we may assume € to be so small that the restrictions explow,gnr,0r X € W, and
eXerQ(WV,e)ﬁTWV)' w € WY, are diffeomorphisms onto images belonging to U and V, respectively.
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Lemma 6.1.

Let f: U — V be any submersion from (N, VN)—cocyde determining (M, F). Then at each point z € U there is an open
neighborhood W = W(z) C U and a number 6 = d(z) > 0 satisfying the following condition (in the notation introduced
above):

for any geodesic o of V" from V(v) = f(Ws), v = f(z), such that ||d(0)||g(0) <0,
and for each point x € f~'(0(0)) N W there is M-lift y of o to x, and y is M-geodesic of V™ in U.

Proof. Take an arbitrary point z € U. Let € be a small positive number and W be an open relatively compact
neighborhood of z in U such that W, C U. Any submersion is an open map, hence WY = f(W) is an open relatively
compact neighborhood of v = f(z) in V.

In conformity with (iii) of Theorem 4.1 any geodesic y from (U, V™) projects onto a geodesic fou from (V,VV). As
f: U — V is a Riemannian submersion, so ||(i(0))[| > [|(fou)(0)]|", with [[(#(0))]| = ||(fou)(0)||" for any 9M-geodesic 1 on
(U, V™). Therefore the set W is defined, and the inclusions WY C f(W,) C V are valid. Let yx(s) = exp sX, where
s €10, 1] Thanks to the following property of geodesics yx(s) = yx(As), A € [0, 1], 1-parametric family of neighborhoods
{W)e} exists in U and continuously depends on A. This family may be considered as a compression from W, A = 1,
to W, A = 0. Due to the continuity of the exponential mapping it implies the existence of a number dy > 0 such that
for every 8, 0 < & < &, we have exp(Q(W;, 8)) C W, and f(W;) ¢ WY. Take one of such & and show that W(z) and &
satisfy Lemma 6.1.

Consider an arbitrary geodesic o from V(v) = f(W;) of (V, VN) such that |Y|Y < &, where w = ¢(0) and Y = &(0).
For every x € f~'(w) N W; the restriction f,[gy : M, — T,V is an isometry of Euclidean vector spaces (9M,, g)
and (T,V,g)). Hence there is a unique vector X € 9, such that £, (X) = Y, with [|X|, = |Y[|¥ < 6. Therefore
X € Q(W,0) and there exists a geodesic yx(s) = exp,sX, s € [0,1], moreover yx(s) € W; C U. Because M is
a geodesic invariant distribution by (i) of Theorem 4.1, yx is an 9t-geodesic on (U, Vim). In accordance with the
statement (iii) of Theorem 4.1 the projection v = foyy is a geodesic in (V, VV). Note that v = ¢ as geodesics in
(V. VN) having the same tangent vector Y at common point w. Thus yx is M-lift of o into point x. O

6.2. Themap £y : Q(W,0) - U

Suppose that the submersion f: U — V, the number 0 and Q(W, 0) satisfy Lemma 6.1. Define a map Ew: Q(W,0) — U
in the following way. For X € Q(W,d) N T,M and y = exp, p" (X) let us put

-1
Ew(X) = exp, o (Fuylan,) "0 fux 0 p™ (X).

In other words, for any X € Q(W, 8)N T,M and y = exp, X" the geodesic d(s) = fo expsX™, s € [0, 1], is defined, and
v =0(0) = f(x) € V. Then Ew(X) = y(1), where y is the 9-lift of o to the point y.

The definition of the Riemannian metric g implies the inequality | X7, < |X|lx, hence for X € Q(W, ) N T,M it is
necessary X € Q(W,8)n T,M and y = exp, X© € W;. According to Lemma 6.1 the lift y exists and belongs to U.
Therefore, the map Ew: Q(W,d) — U is really defined. It is clear that the map Ew: Q(W, d) — U is smooth. It is not
difficult to show the validity of the following assertion.

Lemma 6.2.
At each u € W there is such neighborhood D C Q(W,d) of 0, in T,M that the restriction Ew[p: D — U is a
diffeomorphism onto the image E (D).

6.3. ThesetS,andthemap £,: Sy, — U

Take any z € U. Consider a neighborhood W = W(z) and Q(W,0), 0 = 0(z), satisfying Lemma 6.1. Remark that
U= U,y W(2). Let Sy = U Q(W(z),5(z)) and X € Sy. Then there is a set Q(W,d) containing X. Let

zeU
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Ew: Q(W,0) — U be the map given above. The equality Ey(X) = Ew(X) defines a map Ey: Sy — U. Indeed,
for X € SyNT,W and y = exp X© we have Ey(X) = y(1), where y is the M-lift of the geodesic o(s) = fo expsX™,
s €[0,1], to the point y. Hence Ey/(X) does not depend on the choice of z, W = W(z) and 0 = d(z). Therefore the map
Ey: Sy — U is well defined and smooth.

Each submersion is an open map, hence f(W(z)) = V(v) is an open neighborhood of v = f(z) in V, and V =
For the set Sy = {f.,(X) : X € Sy N T, U, x € U} the following diagram is commutative:

vE\/

E,
Sy —4—

lf* l; )

Sy —=2 , v,

6.4. Themap (t,Ey): Sy - Ux U

Let 7: TM — M be the projection of the tangent bundle. Remark that the proof of the following lemma is similar to the
proof of [7, Proposition 19] and it is given here for the completeness of the description. Let n = dim M.

Lemma 6.3.
The map (1, Ey): Q(W,0) - Ux U, X — (T(X), EU(X)), is a diffeomorphism onto an open neighborhood of the diagonal
Aw = {(x,x) : x € W} in the product U x U.

Proof. 1t is sufficient to show that for each point x € W there is an open neighborhood W’ C W and a positive
number r < 0 such that (7, Ey) is a diffeomorphism between Q(W’ r) and an open neighborhood (7, E¢)(Q(W/, r)) of
(x,x) in Ux U. It is a trivializing open set of the tangent bundle, because U is a contractible set. Therefore

(t, Ev)uo,: TIWXR" — T,Ux T, U, n(X,v) = (X, X+ (E)0,(v).

It follows from Lemma 6.2 that the map (E,)«0,: R” = To,M — T, U is also an isomorphism of the indicated vector space,
)
(1, Eu)soy: To,QW,0) = Ty(Ux U)

is an isomorphism. Hence there is an open neighborhood Q' of 0, in Q(W,d) such that (7,Ey): Q" - Ux U is a
diffeomorphism onto some open neighborhood W’ of (x, x) in U x U. Since )’ contains some open neighborhood Q(W’, r)
satisfying Lemma 6.2, the statement is proved. O

6.5. Proof of Theorem 1.1

Let S be the union of Sy, for the maximal (N, VN)—cocgcle determining the foliation (M, F). Let E: S — M be defined by
the equality E(X) = Ey(X), X € Sy. Show that this map E: S — M is an adapted local addition to the foliation (M, F).

At first, we check that £: S — M is well defined, i.e. Ey(X) = Ey(X) when X € Sy N S;. Denote the corresponding
submersions by f: U — V and : U — V. Let y(s) = exstm, s €101 Let X = XF + XM € Sn T,M, then
y=exp, X €Un U. According to the definition, Sy(X) = y(1), where y is the M-lift to y of the geodesic ¢ = foy
from V. By analogy, Sy(X) = y(1), where y is the M-lift to y of the geodesic 7 = foy from V. Note that by
Theorem 4.1, y and y are 9M-geodesics in M. Since (M,F)is a foliation with transverse linear connection, there is a
local Lsomorphlsm of the induced linear connections k: f(UO U) - f(UN U) sattsfglng the equality f = kof. Hence
0 = foy = (kof)oy = ko(foy) = kod and 6(0) = kiv(0(0)), where v = f(u). Therefore §(0) = ka(5(0)) =
k*;(7*y(7(0))) = (kaofy)(¥(0)) = f.y(¥(0). On the other hand, ¢(0) = £.,(¥(0)) and we have (0) = f.,(¥(0) =

f.y (¥(0)).
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As the map f,,: M, — T,V, v = f(y), is an isomorphism of the corresponding vector spaces, it is necessary that
v(0) = y(0). Thus, M-geodesics y and y have the properties: y(0) = y(0) = y and y(0) = y(0). Therefore y =y and
Eu(X) = Eg(X).

The commutative diagram (3) and Lemma 6.3 imply that the map E: S — M is an adapted local addition to the foliation
(M, F). Therefore, as it was shown by Macias-Virgés and Sanmartin Carbdn (Theorem 5.1), the full automorphism group
D(M, F) of this foliation (M, F) is an infinite-dimensional Lie group whose manifold is modeled on the LF-spaces. O
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