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A report on locally conformally Kähler manifolds

Liviu Ornea and Misha Verbitsky

To J. C. Wood at his sixtieth birthday

Abstract. We present an overview of recent results in locally conformally
Kähler geometry, with focus on the topological properties which obstruct the
existence of such structures on compact manifolds.

1. Locally conformally Kähler manifolds

Locally conformally Kähler (LCK) geometry is concerned with complex man-
ifolds of complex dimension at least two admitting a Kähler covering with deck
transformations acting by holomorphic homotheties with respect to the Kähler
metric.

We shall usually denote with M the LCK manifold, with (J, g) its Hermitian

structure, with Γ → M̃ → M the Kähler covering and with ω̃ the Kähler form on
the covering.

Directly from the definition, one obtains the existence of an associated character

χ : Γ → R>0, χ(γ) =
γ∗ω̃

ω̃
.

This already puts some restrictions on π1(M). Others, more precise ones, will
be obtained further.

Sometimes, the couple (Γ, M̃) is called a presentation of the LCK manifoldM .

Here, M̃ is understood as a Kähler manifold tgether with a group of holomorphic
homotheties (called a homothetic Kähler manifold). The idea is that, as on M the
metric can move in a conformal class, on the covering, the Kähler metric is not
fixed but can be changed homothetically. Obviously, the same LCK manifold can
admit many presentations and one can choose a minimal one and a maximal one
(corresponding to the simply connected M̃). However, the rank of the image of Γ in
R>0 is constant; it will be denoted rk(M). Clearly, rk(M) 6 b1(M) (see [GOPP]).

An equivalent definition - historically, the first one -, at the level of the manifold
itself, requires the existence of an open covering {Uα} with local Kähler metrics
gα subject to the condition that on overlaps Uα ∩ Uβ, these local Kähler metrics
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are homothetic: gα = cαβgβ. The cocycle {cUV } is represented by a closed one-

form θ. Locally, θ
∣

∣

∣

Uα

= dfα and the metrics efαgα glue to a global metric whose

associated two-form ω satisfies the integrability condition dω = θ ∧ ω, thus being
locally conformal with the Kähler metrics gα. Here θ is a closed 1-form onM , called
the Lee form. This gives another definition of an LCK structure (motivating also
the name), which will be used in this paper.

Definition 1.1. Let (M,ω) be a Hermitian manifold, dimCM > 1, with dω = θ∧ω,
where θ is a closed 1-form. ThenM is called a locally conformally Kähler (LCK)
manifold.

Remark 1.2. i) Some authors include the Kähler manifolds as particular LCK
manifolds. Although this is a legitimate choice, we prefer the dichotomy LCK ver-
sus Kähler, and hence we always assume that the LCK manifolds we work with
are of non-Kähler type. Due to a result in [Va], namely: A compact locally con-
formally Kähler manifold which admits some Kähler metric, or, more generally,
which satisfies the ∂∂-Lemma, is globally conformally Kähler, it is enough to as-
sume [θ] 6= 0 ∈ H1(M,R).

ii) The equation dω = θ∧ω makes sense also in absence of a complex structure,
leading to the notion of locally conformally symplectic manifold (LCS). There
is a great number of papers on this topic, among the authors of which we cite: A.
Banyaga, G. Bande, S. Haller, D. Kotschick, A. Lichnerowicz, J.C. Marrero, I. Vais-
man etc. Hence, any LCK structure underlies a LCS structure. Nothing is known
on the converse. The corresponding question regarding the relation symplectic ver-
sus Kähler was since long solved by Thurston, [Th]. We still do not know if any
(compact) LCS manifold admits an integrable, compatible complex structure which
makes it a LCK manifold or not. The difficulty might come from the fact that the
topology of a LCK manifold is not controlled. We believe the answer should be
negative and hence we propose:

Open Problem 1. Construct a compact LCS manifold which admits no LCK
metric.

The Lee form, which is the torsion of the Chern connection (see [G]), can also
be interpreted in terms of presentations as follows. Abelianize the Serre sequence
of Γ → M̃ →M to get:

H1(K,Z) → H1(M,Z) → Γab → 1.

Then apply Hom(·,Z) to obtain:

0 → Hom(Γab,Z) → H1(M,Z) → H1(K,Z).

Tensoring with ⊗ZR, exactness is conserved (as R/Z is flat) and one arrives at:

0 → HomZ(Γ
ab,R)

i→ H1
DR(M) → H1

DR(K).

Then i(χ) = [θ], as proven in [PV].

We refer to [DO] and [O] for an overview of this geometry. Here we focus on
our recent results and on related ones.

The following notion, coming from conformal geometry, is crucial for the way
we understand LCK geometry:
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Definition 1.3. Let (M,ω, θ) be an LCK manifold, and L the trivial line bundle,

associated to the representation GL(2n,R) ∋ A 7→ | detA| 1

n , with flat connection
defined as D := d+ θ. Then L is called the weight bundle of M .

Its holonomy coincides with the character χ : π1(M)−→R>0 whose image is
called the monodromy group of M .

We shall denote with the same letter, D, the corresponding covariant derivative
on M . It is precisely the Weyl covariant derivative associated to ∇ = ∇g and θ,
uniquely defined by the conditions:

DJ = 0, Dg = θ ⊗ g.

The complexified weight bundle will also be denoted L. As dθ = 0, L is flat
and defines a local system and hence one can compute its cohomology.

On the other hand, in LCK geometry, one tries to work on the Kähler covering.
But there, the interesting tensorial objects, in particular differential forms α, are the
ones satisfying: γ∗α = χ(γ)α for every γ ∈ Γ. We call such forms automorphic.

The advantage of using the weight bundle is that automorphic objects on M̃
are regarded as objects on M with values in L.

1.1. Examples.

1.1.1. Diagonal Hopf manifolds. ([GO], [KO], [Ve].) LetHA := (Cn\{0})/〈A〉
with A = diag(αi) endowed with:

• Complex structure as the projection of the standard one of Cn.
• LCK metric constructed as follows:
Let C > 1 be a constant and

ϕ(z1, . . . , zn) =
∑

|zi|βi , βi = log|αi|−1 C

a potential on Cn.
Then A∗ϕ = C−1ϕ and hence: Ω =

√
−1∂∂ϕ is Kähler and Γ ∼= Z

acts by holomorphic homotheties with respect to it.

Note that the Lee field: θ♯ = −
∑

zi log |αi|∂zi is parallel.
It is also important to observe that the LCK metric here is constructed out of

an automorphic potential. The construction will be extended to non-diagonal Hopf
manifolds.

1.1.2. Compact complex surfaces. Belgun, [Be], gave the complete list of com-
pact complex surfaces which admit metrics with parallel Lee form (∇θ = 0), being,
in particular, LCK. Such metrics are calledVaisman and will be treated separately,
in section 2.1 (see Theorems 2.6, 2.7).

Recently, Fujiki and Pontecorvo constructed LCK metrics on parabolic and
hyperbolic Inoue surfaces. These examples are also bihermitian and hence related
to generalized Kähler geometry. We also note that in [AD], the LCK metric of
the diagonal Hopf surface gGO found [GO] was deformed to a family of bihermitian
metrics (gt, J, J

t) with J t = ϕt(J), where ϕt is a path of diffeomorphisms; as t→ 0,
J t → J and gt/t→ gGO.

More generally, Brunella, [Br2], proved that all surfaces with global spheri-
cal shells, also known as Kato surfaces (as the previous mentioned parabolic and
hyperbolic Inoue surfaces are) do admit LCK metrics. Previously he constructed
families of LCK metrics only on Enoki surfaces, [Br1].
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On the other hand, Belgun also proved in [Be] that a certain type of Inoue
surfaces does not admit any LCK metric. As these surfaces are deformations of
other Inoue surfaces with LCK metric (found in [Tr]), this proves, in particular,
that, unlike the Kähler class, the LCK class is not stable at small deformations.
By contrast, the LCK class share with the Kähler one the stability to blowing up
points, [Tr], [Vu1].

1.1.3. Oeljeklaus-Toma manifolds, [OT]. Let K be an algebraic number field
of degree n := (K : Q). Let then σ1, . . . , σs (resp. σs+1, . . . , σn) be the real (resp.
complex) embeddings of K into C, with σs+i = σs+i+t, for 1 6 i 6 t. Let OK be
the ring of algebraic integers of K. Note that for any s, t ∈ N, there exist algebraic
number fields with precisely s real and 2t complex embeddings.

Using the embeddings σi, K can be embedded in Cm, m = s+ t, by

σ : K → Cm, σ(a) = (σ1(a), . . . , σm(a)).

This embedding extends to OK and σ(OK) is a lattice of rank n in Cm. This gives
rise to a properly discontinuous action of OK on Cm. On the other hand, K itself
acts on Cm by

(a, z) 7→ (σ1(a)z1, . . . , σm(a)zm).

Note that if a ∈ OK , aσ(OK) ⊆ σ(OK). Let now O∗
K be the group of units in OK

and set

O∗,+
K = {a ∈ O∗

K | σi(a) > 0, 1 6 i 6 s}.
The only torsion elements in the ring O∗

K are ±1, hence the Dirichlet units theorem
asserts the existence of a free Abelian group G of rank m − 1 such that O∗

K =

G∪ (−G). Choose G in such a away that it contains O∗,+
K (with finite index). Now

O∗,+
K acts multiplicatively on Cm and, taking into account also the above additive

action, one obtains a free action of the semi-direct product O∗,+
K ⋉ O∗

K on Cm

which leaves invariant Hs × Ct (as above, H is the open upper half-plane in C).

The authors then show that it is possible to choose a subgroup U of O∗,+
K such that

the action of U ⋉OK on Hs×Ct be properly discontinuous and co-compact. Such
a subgroup U is called admissible for K. The quotient

X(K,U) := (Hs × Ct)/(U ⋉OK)

is then shown to be a m-dimensional compact complex (affine) manifold, differen-
tiably a fiber bundle over (S1)s with fiber (S1)n.

For t = 1, X(K,U) admits LCK metrics.
Indeed,

ϕ : Hs × C → R, ϕ =

s
∏

j=1

i

zj − zj
+ |zm|2

is a Kähler potential on whose associated 2-form i∂∂ϕ the deck group acts by linear
holomorphic homotheties. On the other hand, one sees that the potential itself is
not automorphic (in particular, these manifolds cannot be Vaisman, see §2.1).

A particular class of manifolds X(K,U) is that of simple type, when U is not
contained in Z and its action on OK does not admit a proper non-trivial invari-
ant submodule of lower rank (which, as the authors show, is equivalent to the
assumption that there is no proper intermediate field extension Q ⊂ K ′ ⊂ K with
U ⊂ OK′). If X(K,U) is of simple type, then b1(X(K,U)) = s (a more direct proof
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than the original one appears in [PV]), b2(X(K,U)) =

(

s

2

)

. Moreover, the tan-

gent bundle TX(K,U) is flat and dimH1(X(K,U),OX(K,U)) > s. In particular,
X(K,U) are non-Kähler.

Observe that for s = t = 1 and U = O∗,+
K , X(K,U) reduces to an Inoue surface

SM with the metric given in [Tr].
Now, for s = 2 and t = 1, the six-dimensional X(K,U) is of simple type, hence

has the following Betti numbers: b0 = b6 = 1, b1 = b5 = 2, b2 = b4 = 1, b3 = 0.
This disproves Vaisman’s conjecture claiming that a compact LCK, non-Kähler,
manifold must have an odd odd Betti number.

These manifolds can be used to obtain examples of LCK structures with arbi-
trary rank (recall that rk(M) is the rank of χ(Γ) in R>0). Specifically:

Theorem 1.4. [PV] Let the number field K admit exactly two non-real embeddings
and M = X(K,U). Then:

i) If n is odd (hence if dimC(M) is even), then rk(M) = b1(M) (i.e. the rank
is maximal).

ii) If n is even, then either rkM = b1(M) or rk(M) =
b1(M)

2
; this last sit-

uation occurs if and only if K is a quadratic extension of a totally real number
field.

Concrete examples of number fields which lead to ii) above are also constructed
in [PV].

2. Locally conformally Kähler manifolds with potential

Definition 2.1. [OV7] (M,J, g) is a LCK manifold with (automorphic) potential
if M admits a Kähler covering with automorphic potential.

Remark 2.2. The definition we gave in [OV3] was slightly more restrictive: we
asked the potential to be a proper function (i.e. to have compact levels). The
properness of the potential is equivalent to the weight bundle having monodromy
Z. Later on, we proved in [OV6] that on any compact LCK manifold with automor-
phic potential, there exists another LCK metric with automorphic potential and
monodromy Z. The proof amounts to a deformation of the weight bundle together
with its connection form.

However, we have strong reasons to believe that the deformation is not neces-
sary:

Conjecture 1. Any compact LCK manifold with automorphic potential has mon-
odromy Z.

The existence of a potential for the Kähler metric of the covering can be shown
to be equivalent with the equation (∇θ)1,1 = 0, introduced in [K] under the name
of pluricanonical Kähler-Weyl and studied also in [KK].

Proposition 2.1. [OV7] M admits a Kähler covering with automorphic potential
if and only if (∇θ)1,1 = 0.

For the proof, one first proves by direct computation that (∇θ)1,1 = 0 is equiv-
alent with the equation:

d(Jθ) = ω − θ ∧ Jθ.
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This can also be put in terms of Weyl connection as:

(Dθ)1,1 = (θ ⊗ θ)1,1 − 1

2
g.

Now, let M̃ be a covering of M on which the pull-back of θ is exact. Denote, for
convenience, with the same letters the pull-backs to M̃ of θ, ω and D. As locally
D is the Levi-Civita connection of the local Kähler metrics, its pull-back on M̃ is
the Levi-Civita connection of the Kähler metric on M̃ globally conformal with ω.
Then let ψ := e−ν , where dν = θ. We have

ddcψ = −e−νddcν + e−νdν ∧ dcν = e−ν(dcθ + θ ∧ Jθ) = ψω,

and hence the pluricanonical condition implies that ψ is an automorphic potential
for the Kähler metric ψω. The converse is true by a similar argument.

A second characterization can be given in terms of Bott-Chern cohomology.
Let Λ1,1

χ,d(M̃) be the space of closed, automorphic (1, 1)-forms on M̃ , and C∞
χ (M̃)

the space of automorphic functions on M̃ . Then

H1,1
BC(M,L) :=

Λ1,1
χ,d(M̃)

ddc(C∞
χ (M̃))

is the Bott-Chern group of the LCK manifold (it is finite-dimensional and does
not depend on the choice of the presentation). It is now clear that

Lemma 2.3. [OV6] M is LCK with potential if [Ω] = 0 ∈ H1,1
BC(M,L).

The main properties of LCK manifolds with automorphic potential are listed
in the following:

Theorem 2.4. [OV3] i) The class of compact LCK manifolds with potential is
stable to small deformations.

ii) Compact LCK manifolds with potential, of complex dimension at least 3,
can be holomorphically embedded in a (non-diagonal), Hopf manifold.

From i), it follows that the Hopf manifold (CN \ 0)/Γ, with Γ cyclic, generated
by a non-diagonal linear operator, is LCK with potential. This is the appropriate
generalization of the (non–Vaisman) non-diagonal Hopf surface. Then ii) says that
the Hopf manifold plays in LCK geometry the rôle of the projective space in Kähler
geometry.

2.1. Vaisman manifolds. Among the LCK manifolds with potential, a most
interesting class is the Vaisman one. A Vaisman metric is a Hermitian metric with
parallel Lee form. It can be easily seen that the Kähler metric of the covering has
global automorphic potential ϕ = ω̃(π∗θ, π∗θ).

The Lee field of a Vaisman manifold is Killing and, being parallel, it has con-
stant length. Conversely, a LCK metric with Killing Lee field of constant length
is Vaisman (see, e.g. [DO, Proposition 4.2]). On the other hand, it was proven in
[Ve, Proposition 6.5] that a complex compact submanifold of a compact Vaisman
manifold must be tangent to the Lee field. In particular, the submanifold enherits
a LCK metric whose Lee field is again Killing and of constant length. Hence:

Proposition 2.2. Complex compact submanifolds of a compact Vaisman manifold
are again Vaisman.
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As the LCK metric of the diagonal Hopf manifold is Vaisman, this provides a
wide class of examples. On the other hand, on surfaces there exists the complete
list of compact examples, see above.

On Vaisman manifolds, the vector field θ♯ is holomorphic and Killing, and hence
it generates a totally geodesic, Riemannian, holomorphic foliation F . When this
is quasi-regular, one may consider the leaf space and obtain a fibration in elliptic
curves over a Kähler orbifold. Similarly, when θ♯ has compact orbits, the leaf space
is a Sasakian orbifold, [Bl], over which M fibers in circles. The two principal
fibrations are connected by the Boothby-Wang fibration in a commutative diagram
whose model is the classical Hopf fibering:

M
S1

{{ww
ww

ww
ww

w

	

T 1

C

$$IIIIIIIII

M/<θ>
S1

// M/<θ,Jθ>

Sasakian orbifold Kähler orbifold

S1 × S2n+1

xxqqqqqqqqqq

	

&&LLLLLLLLLL

S2n+1 // CPn

θ=dt=length element ofS1

This is, in fact, the generic situation, because we proved in [OV2] that the
Vaisman structure of a compact manifold can always be deformed to a quasi-regular
one.

From the above, it is clear that Vaisman structures may exist on the total space
of some elliptic fibrations on compact Kähler manifolds. The precise statement is:

Theorem 2.5. [Vu2] Let X,B be compact complex manifolds, X → B an ellip-
tic principal bundle with fiber E. If the Chern classes of this bundle are linearly
independent in H2(B,R), then X carries no locally conformally Kähler structure.

This contrasts with the case of an induced Hopf fibration over a projective
manifold B, when one of the Chern classes vanishes.

For surfaces, we have a complete list of those who admit Vaisman metrics:

Theorem 2.6. [Be] Let M be a compact complex surface with odd b1. Then M
admits a Vaisman metric if and only if M is an elliptic surface (a properly elliptic
surface, a - primary or secondary - Kodaira surface, or an elliptic Hopf surface) or
a diagonal Hopf surface.

Using the “if” part of this result we can prove:

Theorem 2.7. Let be a minimal, non-Kähler compact surface, which is not of
class VII. Then M is a Vaisman elliptic surface.

Indeed, recall that a compact complex surface surface is called class VII if
it has Kodaira dimension −∞ and b1(M) = 1. It is called minimal if it has
no rational curves with self-intersection −1. Now, from Kodaira’s classification of
surfaces, it follows that the algebraic dimension of M is 1 (see e.g. [T, Theorem
5]). Also from Kodaira’s classification it follows that M is elliptic [T, Theorem 3].
On the other hand, a non-Kähler compact complex surface has odd b1 ([Bu] and
[L]) It only remains to apply Belgun’s result.

The transversal Kählerian foliation F permits the use of transversal foliations
techniques (basic operators etc.) The following result concerning unicity of Vaisman
structures was obtained this way:
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Theorem 2.8. [OV5] Let (M,J) be a compact complex manifold admitting a Vais-
man structure, and V ∈ Λn,n(M) a nowhere degenerate, positive volume form.
Then M admits at most one Vaisman structure with the same Lee class, such that
the volume form of the corresponding Gauduchon metric is equal to V .

Another recent application of this technique is the following:

Theorem 2.9. [OP] Let (M2m, g, J) be a compact Vaisman manifold. The metric
g is geometrically formal (i.e. the product of every harmonic forms is again har-
monic) if and only if bp(M) = 0 for 2 6 p 6 2m− 2 and b1(M) = b2m−1(M) = 1,
hence M has the real homology of a Hopf manifold.

The connection between Vaisman and Sasakian geometries is clearly seen in:

Theorem 2.10. [OV1] Compact Vaisman manifolds are mapping tori over S1

with Sasakian fibre. More precisely: the universal cover M̃ is a metric cone N ×
R>0, with N compact Sasakian manifold and the deck group is isomorphic with Z,
generated by (x, t) 7→ (λ(x), t + q) for some λ ∈ Aut(N), q ∈ R>0.

This result was recently used to prove the following:

Theorem 2.11. [MO] On compact Vaisman manifolds whose Weyl connection
does not have holonomy in Sp(n) and which are not diagonal Hopf manifolds,
conf(M, [g]) = aut(M).

Indeed, the statement follows from the fact that Killing fields with respect
to the Gauduchon metric (and a Vaisman metric is Gauduchon) are holomorphic,
[MO], and from the more general, referring to Riemannian cones:

Theorem 2.12. [MO] Let (M, g) := (W,h)×R/{(x,t)∼(ψ(x),t+1)}, with ψ ∈ Iso(W,h),
W compact. Then conformal vector fields on (M, g) are Killing.

For Vaisman manifolds, the conclusion of ii) in Theorem 2.4 can be sharpened:

Theorem 2.13. [OV3] A compact complex manifold of dimension of least 3 admits
a Vaisman metric if and only if it admits a holomorphic embedding into a diagonal
Hopf manifold.

Taking into account also the relation between Sasaki and Vaisman geometries,
a first application of this Kodaira-Nakano type theorem was a corresponding em-
bedding result in Sasakian geometry:

Theorem 2.14. [OV4] A compact Sasakian manifold M admits a CR-embed-
ding into a Sasakian manifold diffeomorphic to a sphere, and this embedding is
compatible with the respective Reeb fields.

Moreover, we showed that this is the best result one may hope: assuming the
existence of a model manifold in Sasakian geometry, analogue of the projective
space in complex geometry, leads to a contradiction. A key point in the proof of
the theorem was showing that if Z is a closed complex submanifold of a compact
Kähler manifold (M,ω), [ω] ∈ H2(M) is the Kähler class of M , and ω0 is a Kähler
form on Z such that its Kähler class coincides with the restriction [ω]|Z , then there
exists a Kähler form ω ∈ [ω] on M such that ω|Z = ω0. Recently, using a same
type of argument, van Coevering gave a more direct proof of the embedding in [C].

We also used Theorem 2.13 to prove that, diffeomorphically, LCK with auto-
morphic potential and Vaisman manifolds are the same:
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Theorem 2.15. [OV7] Let (M,ω, θ) be an LCK manifold with potential with com-
plex dimension at least 3. Then there exists a deformation of M which admits a
Vaisman metric.

For the proof, one considers a holomorphic embedding ofM in a Hopf manifold
H = (CN \ {0})〈A〉, then observes that M corresponds to a complex subvariety Z
of CN , smooth outside of {0} and fixed by A. The operator A admits a Jordan-
Chevalley decomposition A := SU , with S diagonal and U unipotent and one can
show that S preserves Z. Then M1 := (Z \ {0})/〈S〉 is a deformation of M (as
S is contained in a GL(Cn)-orbit of A) and is Vaisman as contained in the Hopf
manifold HS := (Cn \ {0})/〈S〉.

The above result shows that all known topological obstructions to the existence
of a Vaisman metric on a compact complex manifold (see e.g. [DO]) apply to LCK
manifolds with potential. It allows, in particular, to determine the fundamental
group of compact LCK manifolds with potential. Indeed, one first deforms the
structure to a Vaisman one, then deforms this one to a quasi-regular one (see
above) which fibers in elliptic curves over a Kähler basis X . At this point, one
considers the homotopy sequence of the fibering:

π2(X)
δ−→ π1(T

2)−→ π1(M)−→ π1(X)−→ 0

and observes that rk(Im(δ)) 6 1 in π1(T
2), as the Chern classes of the S1 × S1-

fibration are: one trivial (as M fibers on S1), the other one non-trivial, as M is
non-Kähler, and the total space of an elliptic fibration with trivial Chern classes is
Kähler. Hence:

Corollary 2.1. [OV7] The fundamental group of a compact LCK manifold M with
an automorphic potential admits an exact sequence

0−→G−→ π1(M)−→ π1(X)−→ 0

where π1(X) is the fundamental group of a Kähler orbifold, and G is a quotient of
Z2 by a subgroup of rank 1.

Remark 2.16. In fact, in [OV7] we only proved that the rank of the subgroup
must be 6 1, but the recent Theorem 2.5 above ([Vu2]) shows that rk(M) = 0
would imply M is Kähler (see also Remark 1.2).

Corollary 2.2. [OV7] A non-Abelian free group cannot be the fundamental group
of a compact LCK manifold with potential.

This corollary, as well as other topological restrictions, was first obtained by
Kokarev and Kotschick using harmonic forms and a LCK version of Siu-Beauville
result:

Theorem 2.17. [KK] LetM be a closed complex manifold admitting a LCK struc-
ture with potential (pluricanonical Kähler-Weyl). Then the following statements are
equivalent:

i) M admits a surjective holomorphic map with connected fibers to a closed
Riemann surface of genus > 2;

ii) π1(M) admits a surjective homomorphism to the fundamental group of a
closed Riemann surface of genus > 2;

iii) π1(M) admits a surjective homomorphism to a non-Abelian free group.

The above can be generalized to:
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Theorem 2.18. [KK] LetM be a closed complex manifold admitting a LCK struc-
ture with potential, and N a closed Riemannian manifold of constant negative cur-
vature. If ϕ : π1(M) → π1(N) is a representation with non-cyclic image, then
there exists a compact Riemann surface S and a holomorphic map h :M → S with
connected fibers such that ϕ factors through h∗.

In particular, if N is a closed real hyperbolic manifold, dimN > 4, then any
map f :M → N has degree zero.

Other topological obstructions to the existence of a LCK structure with po-
tential were obtained by Kokarev in [K] using harmonic maps techniques. For
example, one of his results is:

Theorem 2.19. [K] Let M be a compact LCK manifold of the same homotopy
type as a locally Hermitian symmetric space of non-compact type whose universal
cover does not contain the hyperbolic plane as a factor. If M admits a LCK metric
with potential, then it admits a global Kähler metric.

On the other hand, on compact Vaisman manifolds the cohomology of L (which
is the Morse-Novikov cohomology of the operator d−θ∧) is simple: H∗(M,Lθ) = 0
follows easily from the Structure theorem 2.10 (here the subscript θ makes precise
the structure of local system of L).

Theorem 2.20. [OV6] Let (MJ) be a compact complex manifold, of complex
dimension at least 3, endowed with a Vaisman structure with 2-form ω and Lee
form θ. Let ω1 be another LCK-form (not necessarily Vaisman) on (MJ), and
let θ1 be its Lee form. Then θ1 is cohomologous with the Lee form of a Vaisman
metric, and [ω1] = 0 ∈ H2(M,Lθ1).

By contrast, on an Inoue surface, which does not admit any Vaisman metric,
there exists a LCK metric, compatible with the solvmanifold structure, with non-
vanishing Morse-Novikov class of the LCK two-form, [Ba].

We end this section with a result which determines all compact nilmanifolds ad-
mitting an invariant LCK structure (generalizing a result of L. Ugarte in dimension
4):

Theorem 2.21. [S] Let (M,J) be a non-toral compact nilmanifold with a left-
invariant complex structure. If (M,J) has a locally conformally Kähler structure,
then (M,J) is biholomorphic to a quotient of (H(n) × R, J0), where H(n) is the
generalized Heisenberg group and J0 is the natural complex structure on the product.

The author mentions that he does not know if the biholomorphism he finds
passes to the quotient; in other words, he does not know if the compact LCK
nilmanifold is isomorphic or biholomorphic with H(n) × S1. On the other hand,
one sees that, in particular, left invariant LCK structures on compact nilmanifolds
are of Vaisman type. We tend to believe that the result is true in more general
setting, namely without the assumption of left (or right) invariance. It is tempting
to state:

Conjecture 2. Every LCK compact nilmanifod is, up to covering, the product of
the generalized Heisenberg group with S1.
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3. Transformation groups of LCK manifolds

The study of this topic went in two directions. The first one is characterizing
the various groups appearing in LCK geometry (conformalities, isometries, affini-
ties with respect to the Levi-Civita or the Weyl connection, holomorphicities) and
determination of their interrelations. The second one is characterizing different
subclasses of LCK manifolds by the existence of a particular subgroup of one of
these groups.

In the first direction, we mention the above Theorem 2.11 and the following
local result:

Theorem 3.1. [MO] On any LCK manifold, aff(M,∇) = aut(M), provided that
Hol0(D) is irreducible and Hol0(D) is not contained in Sp(n).

For the proof, one first shows that aff(M,∇) ⊆ h(M,J) (thus generalizing the
analogue result for Kähler manifolds). Indeed, let f ∈ Aff(M,D). We show that it
is ± - holomorphic.

Define J ′
x := (dxf)

−1 ◦ Jf(x) ◦ (dxf). Then J ′ is D-parallel. To show that
J ′ = ±J , we decompose JJ ′ = S (symm.) + A (antisymm.). Then S is ∇-parallel
and hence it has constant eigenvalues; thus the corresponding eigenbundles are
D-parallel.

By Hol0(D) irreducible, S = k id, k ∈ R. Similarly, A2 = p id, p ∈ R.
Now, if A 6= 0, then A(X) 6= 0 for some X ∈ TM , so 0 > −g(AX,AX) =

g(A2X,X) = pg(X,X), whence p < 0. Then K := A/
√−p is D-parallel, K2 =

− id, KJ = −JK, so (J,K) defines a D-parallel quaternionic structure structure
on M , contradiction.

Hence A = 0, JJ ′ = k id, so J ′ = −kJ . But J ′2 = − id, thus k = ±1 and so
J ′ = ±J .

With similar arguments one proves that aff(M,D) ⊆ conf(M, [g]).

In the second direction, we first recall the following characterization of Vaisman
manifolds:

Theorem 3.2. [KO] A compact LCK manifold admits a LCK metric with par-
allel Lee form if its Lie group of holomorphic conformalities has a complex one-
dimensional Lie subgroup, acting non-isometrically on its Kähler covering.

We note that the above criterion assures the existence of a Vaisman metric
in the conformal class of the given LCK one. We recently extended this result to
obtain the existence of a LCK metric with automorphic potential, not necessarily
conformal to the starting LCK one:

Theorem 3.3. [OV8] Let M be a compact LCK manifold, equipped with a holo-
morphic S1-action. Suppose that the holonomy of the weight bundle L restricted to
a general orbit of this S1-action is non-trivial. Then M̃ admits a global automorphic
potential.

For the proof, a first step is to show that one can assume from the beginning
that ω, and hence, as J remains unchanged, g, is S1-invariant (i.e. the action is
isometric). Note that a similar argument was used in the proof of Theorem 2.20.

Indeed, we average θ on S1 and obtain θ′ = θ + df which is S1-invariant. The
cohomology class is conserved: [θ] = [θ′]. Now we let ω′ = e−fω: it is LCK,
conformal to ω and with Lee form θ′.
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Hence, we may assume from the beginning that θ (corresponding to ω) is S1-
invariant.

We now average ω over S1, taking into account that:

(3.1) d(a∗ω) = a∗ω ∧ a∗θ = a∗ω ∧ θ, a ∈ S1.

We thus find an ω′ which is S1-invariant, with

dω′ = θ ∧ ω′.

As the monodromy of L along an orbit S of the S1-action is precisely
∫

S
θ, it

is not changed by this averaging procedure.
This means that it is enough to make the proof assuming ω is S1-invariant.
On the other hand, the lift of S1 to M̃ acts on ω̃ by homotheties, and the

corresponding conformal constant is equal to the monodromy of L along the orbits
of S1. Thus, the image of the restriction of the character χ to the lifted subgroup
cannot be compact in R>0 unless it is trivial, hence the S1 action lifts to an R

action.
In conclusion, we may assume from the beginning that S1 is lifted to an R

acting on M̃ by non-trivial homotheties.
Now, let A be the vector field on M̃ generated by the R-action. A is holomorphic

and homothetic (LieA Ω = λΩ).
Let Ac = JA. Then:

ddc|A|2 = λ2Ω+ Lie2Ac Ω

Read in Bott-Chern cohomology, this implies:

Lie2Ac [Ω] = −λ2[Ω] ∈ H2
BC(M,L).

Hence V := span{[Ω],LieAc [Ω]} ⊂ H2
BC(M,L) is 2-dimensional.

As LieAc acts on V with two 1-dimensional eigenspaces, corresponding to
√
−1λ

and−
√
−1λ, it is essentially a rotation with λπ/2, and hence the flow of Ac satisfies:

etA
c

[Ω] = [Ω], for t = 2nπλ−1, n ∈ Z.

But also
∫ 2πλ−1

0

etA
c

[Ω]dt = 0.

and hence

Ω1 :=

∫ 2πλ−1

0

etA
c

Ωdt

is a Kähler form, whose Bott-Chern class vanishes, [Ω1] = 0 ∈ H2
BC(M,L), thus

defining a LCK metric with automorphic potential by Lemma 2.3.
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[L] A. Lamari, Courrants kählériens et surfaces compactes, Ann. Inst. Fourier 49 (1999), 263–

285
[MO] A. Moroianu, L. Ornea, Transformations of locally conformally Kähler manifolds,

Manuscripta Math. 130 (2009), 93–100.
[OT] K. Oeljeklaus, M. Toma, Non-Kähler compact complex manifolds associated to number

fields, Ann. Inst. Fourier 55 (2005), 1291–1300.
[O] L. Ornea, Locally conformally Khler manifolds. A selection of results, Lecture notes of

Seminario Interdisciplinare di Matematica. Vol. IV, 121–152, Lect. Notes Semin. Interdiscip.
Mat., IV, S.I.M. Dep. Mat. Univ. Basilicata, Potenza, 2005.

[OP] L. Ornea, M.V. Pilca, Remarks on the product of harmonic forms, . arXiv:1001.2129.
[OV1] L. Ornea, M. Verbitsky, Structure theorem for compact Vaisman manifolds, Math. Res.

Lett. 10 (2003), 799–805.
[OV2] L. Ornea, M. Verbitsky, An immersion theorem for Vaisman manifolds, Math. Ann. 332

(2005), 121–143.
[OV3] L. Ornea and M. Verbitsky, Locally conformal Kähler manifolds with potential, Math. Ann.

DOI: 10.1007/s00208-009-0463-0. arXiv:math/0407231
[OV4] L. Ornea and M. Verbitsky, Embeddings of compact Sasakian manifolds, Math. Res. Lett.

14 (2007), 703–710.
[OV5] L. Ornea and M. Verbitsky, Einstein-Weyl structures on complex manifolds and conformal

version of Monge-Ampère equation Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 51(99)
(2008), 339–353.

[OV6] L. Ornea and M. Verbitsky, Morse-Novikov cohomology of locally conformally Kähler man-

ifolds, J.Geom.Phys. 59,(2009), 295–305. arXiv:0712.0107
[OV7] L. Ornea and M. Verbitsky, Topology of locally conformally Kähler manifolds with potential,

Int. Math. Res. Notices doi:10.1093/imrn/rnp144. arXiv:0904.3362.
[OV8] L. Ornea and M. Verbitsky, Automorphisms of locally conformally Kähler manifolds,

arXiv:0906.2836.
[PV] M. Parton, V. Vuletescu, Examples of non-trivial rank in locally conformal Kähler geometry,

arXiv:1001.4891.
[S] H. Sawai, Locally conformal Kähler structures on compact nilmanifolds with left-invariant

complex structures Geom. Dedicata 125 (2007), 93–101.
[Th] W.P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55

(1976), 467–468.
[Tr] F. Tricerri, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ.

Politec. Torino 40 (1982), 81–92.
[Va] I. Vaisman, On locally and globally conformal Kähler manifolds, Trans. Amer. Math. Soc.

262 (1980), 533–542.

http://arxiv.org/abs/1001.0530
http://arxiv.org/abs/0903.1320
http://arxiv.org/abs/1001.2129
http://arxiv.org/abs/math/0407231
http://arxiv.org/abs/0712.0107
http://arxiv.org/abs/0904.3362
http://arxiv.org/abs/0906.2836
http://arxiv.org/abs/1001.4891


14 LIVIU ORNEA AND MISHA VERBITSKY

[T] M. Toma, Holomorphic vector bundles on non-algebraic surfaces Dissertation, Bayreuth
1992 http://www.mathematik.uni-osnabrueck.de/staff/phpages/tomam/preprints.html

[Ve] I. Verbitsky, Theorems on the vanishing of cohomology for locally conformally hyper-Kähler

manifolds, (Russian) Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i
Prilozh., 64–91; translation in Proc. Steklov Inst. Math. 246 (2004), 54–78.

[Vu1] V. Vuletescu, Blowing-up points on locally conformally Kähler manifolds, Bull. Math. Soc.
Sci. Math. Roumanie 52(100) (2009) 387–390.

[Vu2] V. Vuletescu, LCK metrics on elliptic principal bundles, arXiv:1001.0936.

University of Bucharest, Faculty of Mathematics, 14 Academiei str., 70109 Bucharest,

Romania and Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21,

Calea Grivitei str. 010702-Bucharest, Romania

E-mail address: lornea@gta.math.unibuc.ro, liviu.ornea@imar.ro

Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya, 25,

Moscow, 117259, Russia

E-mail address: verbit@verbit.ru

http://www.mathematik.uni-osnabrueck.de/staff/phpages/tomam/preprints.html
http://arxiv.org/abs/1001.0936

	1. Locally conformally Kähler manifolds
	2. Locally conformally Kähler manifolds with potential
	3. Transformation groups of LCK manifolds
	References

