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INTRODUCTION

Many pattern recognition problems can be efficiently solved by algorithms using sign�based image rep�
resentations. In [1], sign�based image representations were applied to face detection problem, which con�
sists in finding image parts containing faces and not containing the background. Face detection is an
important preliminary stage for face recognition, face identification, gender recognition, age estimation
and emotions recognition, etc. In [1, 2], this approach was employed for identification of faces, when in
response to a query face, the most similar faces belonging to the image base are found. The application of
sign�based image representation in models of active contours [2] makes it possible to solve efficiently in
computation the problem of localizing anthropometric face features such as eyebrows contours, the coor�
dinates of eye corners and the centers of pupils, nose and lips contours, and the face boundary. Sign�based
representation has also shown its advantage in near duplicates detection in large image collections [3].
This problem is topical, e.g., in search engines [4, 5], since one of the cost functions of data retrieval is the
diversity of query results. In addition, detection of fuzzy duplicates is of great interest in the struggle
against spam [6], distributed as graphical files. The idea of the transition from the source signal or image
representation to signs of a certain functional is widely applied both in pattern recognition and analysis of
stochastic processes.

One of the analogs of sign�based representation is the description of the shape of an object in the form
of a chain code, first proposed by H. Freeman [7]. A chain code is a method for specifying a contour by a

sequence of adjacent pixels, i.e., , where two�dimensional vectors  have integer coordinates, and if
Δxi = xi + 1 – xi = (l, m), where , then . Therefore in the chain code, the posi�
tion of the next pixel relative to the previous one is coded by a pair of numbers  or, which is equivalent,
by their signs). Thus the chain code can be considered as one of the examples of sign�based data represen�
tation.

The closest analog of sign�based representation is the well�known morphological approach proposed
by Yu.P. Pyt’ev [8]. The Pyt’ev morphology is based on the idea of dividing the image into parts charac�
terized by constant image intensities, and the image itself is represented in the form of orthogonal char�
acteristic functions, which differ from zero only on the subsets corresponding to regions with constant
intensity values. The set of images that can be obtained from the initial image under the action of a certain
function of intensity values are called an image “shape” [9, 10]. In the proposed approach, complete and
neighborhood sign�based representations are considered. The set of images corresponding to complete
sign�based representation coincides with the Pyt’ev shape concept in the class of strictly increasing inten�
sity transformations. However the set of images obtained based on neighborhood sign�based representa�
tion is wider that the Pyt’ev image shape.

Despite a wide range of problems solved using sign�based representations, its properties have not been
investigated yet. Note that the most interesting is the problem on an information measure for this image
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representation. Information measures of a special type were applied in image processing in [11–13].
Within the scope of this paper, we propose an axiomatic approach to introducing information measures in
images and the sign�based representations corresponding to them, as well as an uncertainty measure of a
sign�based representation, describing quantitatively information loss in the transition from an image to its
sign�based representation.

1. SIGN�BASED IMAGE REPRESENTATION

By an image we mean a nonnegative integer�valued function  given at points of a integer
grid Ω = IN × IM = {1, …, N} × {1, …, M}, i.e., f: . A pair of numbers x = (x1, x2), , 
is called a pixel, and  is the intensity value of the image  at the pixel x. The set of all images

 is denoted by .
D e f i n i t i o n  1. A relation  is a sign�based representation of the image f ∈ � if the follow�

ing properties hold:
(1) if , then ;

(2) if , , then .
As examples, consider certain methods of introducing a sign�based representation in images. By a com�

plete sign�based representation, we mean a representation such that possesses the connectivity property,
i.e., contains all pairs of image points such that

(1.1)

Note that a complete sign�based representation of the image  is uniquely determined by the connec�
tivity property of the relation. Let us also introduce a window sign�based relation, which is a compact vari�
ant of sign�based representation, when only relations on adjacent pixels

(1.2)

are considered, where  is a neighborhood of the point x, e.g.,

 (1.3)

where .
Figure 1 presents an example of neighborhood sign�based representation. Note that for applied prob�

lem, it is the neighborhood sign�based representation (1.2) with neighborhood (1.3) that is of the greatest
interest; therefore in what follows, we consider sign�based representations given by relations on adjacent
pixels.

The class of images corresponding to a sign�based representation τ is denoted by . Let τ be a certain

sign�based representation of image , and let  be the transitive closure of the relation τ. Then it is
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Fig. 1. Example of neighborhood sign�based representation (1.2), when the neighborhood of each pixel consists of
directly adjacent pixels.
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obvious that  is also a sign�based representation of f, and . Keeping this in mind, we can
restrict ourselves with reflexive and transitive relations (i.e., quasi�order relations). We denote by  the set
of these relations.

The set of images  is an analog of the concept of shape in the Pyt’ev morphology. Let Φ be a set of
mappings ϕ:  simulating the conditions of image registration. Then by shape in the Pyt’ev mor�
phology, we mean the set of images . It can easily be seen that if we take as Φ the class
of all strictly increasing images, then . The inverse inclusion  holds only for the case of
the complete sign�based representation of the image f, and, in this situation, the concepts of the Pyt’ev
shape and the sign�based representation coincides. In the other cases, in particular, for neighborhood
sign�based representations, the set  is wider than the set .

We can attach to a sign�based representation of the image f an oriented graph Gτ = , whose set
of vertices is generated by the set , and the set of edges  coincides with the set τ, and if , then
the corresponding graph edge is directed from the vertex x to the vertex y. It is convenient to interpret a
sign�based representation as a graph  in order to apply it for studying the properties of the sign�based
representation, as well in its visualization.

Let us formulate necessary and sufficient conditions to provide that an arbitrary relation  given on Ω
is a neighborhood sign�based representation of a certain image. For this purpose, we use the graph struc�
ture of the sign�based representation.

Denote by E the set of all edges (including loops) that join adjacent pixels, and also introduce the graph
 (here strictly speaking, the graph  is not supplementary to ). Consider the equivalence

relation θ = , where  is the inverse relation to τ, i.e., , as well as the
partition of the set of vertices of Ω into factor�sets  connected with the relation θ. Note that the given
partition is uniquely determined. If τ is a neighborhood sign�based representation of an image, then equiv�
alence classes correspond to connected sets of pixels having the same intensity. Then we introduce the fol�

lowing graphs on the set  of all equivalence classes of the relation θ:  and  =

(V, ), where , if there exists a pair  such that  and ; similarly if there

(vi, vj) ∈  is a pair  such that  and . Thus the graph  is the extension
of the graph Gτ = (Ω, Eτ) to the set of equivalence classes V. The adjacency relation of pixels can also be
extended to equivalence classes. We assume that equivalence classes  and  are adjacent if there are
adjacent pixels  and . If we denote by Eθ the set of all edges (including loops) between adjacent

equivalence classes, then it is clear that  = (V, Eθ\ ). In what follows, we also suppose that the func�
tion  is also defined on equivalence classes, i.e., f(v) = f(x) when  and x ∈ v.

The following proposition gives necessary and sufficient conditions for an arbitrary given graph
 to be a graph of a neighborhood sign�based representation of an image f.

P r o p o s i t i o n  1. A graph  is a neighborhood sign�based representation of an image  if
and only if

(a) , where E is the set of all pairs of adjacent vertices;

(b)  is an acyclic graph;

(c)  is an asymmetric graph on the set of edges Eθ; i.e.,  for  if and only if

.

P r o o f. Necessity. Let Gτ =  be the graph of sign�based representation of the image f. Then

 by definition. Let us show that  is an acyclic graph. Indeed if in this graph there exists a loop
consisting of the vertices , then the inequality holds

which is impossible for obvious reasons. Thus, the necessity is proved.
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Sufficiency. Let all hypotheses of the proposition hold. We show that in this case there is a function
 such that the graph  is its sign�based representation. We prove this using an iterative proce�

dure of construction of acyclic transitive graphs , , such that

(1) E(1) = ;

(2) .

We proceed with this procedure until, at a certain step n, the graph  becomes asymmetric;

i.e., for any pair  of different vertices , we have the condition  if and

only if . Let us show how to construct the graph  at the step k if we have the

acyclic transitive graph G(k) = (V, E(k)). Suppose that the graph G(k) is not asymmetric (otherwise, the con�
struction of the extension of graphs is not required). Then there exists a pair of vertices (vi, vj) ∈ V × V

such that  and . We add to the graph  the edge  and obtain as a result

the graph . Note that this graph is acyclic, since otherwise there exists a cycle
 containing the edge . However this is impossible since because of the transitivity

of the graph , this implies that , which contradicts the choice of the pair of vertices .
Then we find the transitive closure of this graph and choose G(k + 1) = (V, (E(k) ∪ {(vi, vj)})Tr), which sat�
isfies all necessary conditions. Note that since the set V × V is finite, by all means, at some step we arrive

at an asymmetric, acyclic, transitive graph . This graph is a graph of a certain strict�order relation;

therefore there is a function  such that  if and only if . Then we extend
the function  from the equivalence classes to all pixels  by f(x) = f(v) if x ∈ v. It is obvious that the con�
structed function f : Ω → �+ satisfies all necessary conditions; i.e., the sufficiency and the whole proposi�
tion are proved.

R e m a r k  1. In the proof of Proposition 1, we actually showed how to construct images corresponding
to a given sign�based representation. However enumerating in this way all possible variants, we do not enu�
merate all possible images up to an increasing monotonous transformation. This is the case since all equiv�
alence classes are arranged by the strict�order relation. Nevertheless, cases when the image  corresponds
to the available sign�based representation are possible, and there are indices i, j such that for nonadjacent
equivalence classes  and , we have .

To enumerate all variants, we should change the procedure of generating acyclic transitive graphs con�
sidered in the proof of Proposition 1. In this case, the sequence of acyclic transitive graphs

, , is constructed as follows.

We set G(1) = ( )Tr. Let  be the acyclic transitive graph generated at the kth step, and

let  be not the graph of a strict�order relation. Then there exist a pair of vertices  such

that  and . Then we construct the graph  either in Proposition 1, i.e., G(k + 1) =
(V(k), (E(k) ∪ {(vi, vj)})Tr) or by merging the vertices  and  into a single vertex . As a result, we

obtain the graph (V(k + 1), E*), where  and

after the operation of its transitive closure, we arrive at the desired graph .
Using the same method as in Proposition 1, it is easy to show that at each step, we obtain an acyclic

transitive graph , and the procedure for constructing graphs will surely terminate at a certain graph 
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of a strict�order relation. It is easy to notice that applying this procedure, we can enumerate all possible
images corresponding to a given sign�based representation.

2. AXIOMATIC INTRODUCTION OF AN INFORMATION IMAGE MEASURE

Since a certain set of images correspond a sign�based representation, there arises the problem of choice
from this set of images an image such that preserves contour information containing in the sign�based rep�
resentation and which, at the same time, is the most “typical” representative; i.e., it does not contain
redundant information on intensity grade of pixels. For this purpose we analyze how to measure the
amount of given information for images.

We will construct the image information measure within the framework of axiomatic approach,
according to which it is necessary to define a certain finite number of axioms (desired properties of the
information measure), which determine it uniquely. Taking into consideration the fact that we do not sup�
pose to take into account the positional relationship of pixels in the information measure (only informa�
tion connected with intensity grades is investigated), as the image we consider an arbitrary function

, which maps a finite set of pixels Ω in the set of nonnegative integers. It is necessary to note
that the axioms introduced in what follows not completely reflect the properties of the sign�based image
representation. The information measure taking into account the properties of the sign�based representa�
tion is introduced and investigated in the next section.

A x i o m  1. An information measure is a functional .
We assume that intensity values in themselves do not convey any information, and information is con�

tained in intensity discontinuities. Thus, the amount of information in an image with intensity constant
at each point is zero.

A x i o m  2. Let , and let the set of values  of the function  be single�
element, i.e., . Then .

Then we formulate axioms that allow one to determine classes of image transformations that do not
change their information. Since in the information measure, we take into account only intensity grades,
the transformation that implements “mixture” of pixels in images does not affect the information.

A x i o m  3. Let , and let ψ : Ω1 → Ω2 be a bijection. Then .
The transformation that is connected with assignment of new intensity values to pixels by means of

bijective mappings also does not affect the information of intensity grades, since the fact of distinction of
intensity grades itself, rather than their particular values is important. Taking this into account, we formu�
late the following axiom.

A x i o m  4. Let , and let ϕ : �+ → �+ be a bijection. Then .
Assume that hf : �+ → �+ is the histogram of the image f, whose value hf(i) gives the number of pixels

in the image with intensity i (see Fig. 2). It is obvious that this function is not zero only on a certain finite
set of integers. Axioms 3 and 4 imply the following important corollary.
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Fig. 2. Histogram of the model image presented in Fig. 1.
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C o r o l l a r y  1. Let images be given by functions  and . Then  if
there exists a bijection ϕ : �+ → �+ such that  for any .

P r o o f. Since hg(i) = hf (ϕ(i)) for any , we can construct the bijection  between the
sets  and  satisfying the following condition: if , then . Therefore the image g
admits a representation in the form . Applying successively axioms 2 and 3, we find that
U(g) = .

Note that the proved corollary makes it possible to simplify the problem since it is sufficient to deter�
mine the value of the functional U on all possible sequences of the form .

In what follows, we also consider the functional  showing the mean value of the pixel
information for the image f : Ω → �+. Assume that the image g consists of k copies of the image f; in this
case  for any . This condition can be expressed in terms of frequencies of occurrence of
pixels in the images f and g

in the form  for any . It is natural to suppose that  for these images. Taking
axiom 2 into account, we formulate the following axiom.

A x i o m  5. Let , and let  for all . Then .

Let  be an arbitrary mapping (not necessarily injective), and let  be the image obtained
as a result of action of the transformation  on the image . If  is not an injection, then we lose
a part of information about the intensity grades in the initial image f, namely, in this case, the sets

 for  are not singletons necessarily. This means that the initial
image is “coarsened” by assigning to pixels that are “close in intensity” the same value. Note that the given
transformation is widespread in image processing, when it is necessary to reduce the number of intensity
grades saving the most typical cuts of the image function.

We assume that ; then the sets Ωk =  k = 1, …, n obviously
specify a partition of the set . If the mapping  is injective, then the images fk : Ωk → �+ that are the
restrictions of the function  on the sets  have zero information according to axiom 2 since .

When the mapping φ is injective, . Therefore the quantities  characterize the total

information loss under the mapping. Thus assuming this additive nature of accumulation of uncertainty,
we can introduce the following additivity axiom.

A x i o m  6. Let ,  and , and let Ωk = .

Consider the set , as well as the restrictions of the functions f to the sets . Then  +

.

Let us express the axioms presented above in terms of the functional . By axiom 5, it is sufficient to
determine this functional for the number sequence P =  such that  and . Note

that the value  can be interpreted as the probability of occurrence in the image of a pixel with intensity i;
therefore P can be treated as a probability measure. Then we can define the probability  of any subset

 by the expression 
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In what follows, we use standard notation of probability theory; in particular, let , then 

is the probability measure given by the equality . Note that within the scope of
the posed problem, it is not necessary to consider all possible probability measures. By construction, all

 are rational numbers and only a finite set of these numbers are different from zero. We denote by ,
the set of these probability measures on the algebra of subsets of .

C o r o l l a r y  2. The functional  on  has the following properties:

(1)  for all .

(2)  if there exists  such that .

(3) Assume that the mapping  is injective, then  for all .

(4) Let , , and A = . Consider the partition of the set A into subsets
representing the preimages of elements of the set ; i.e., the partition consists of the
sets Ak = . Then 

where the conditional probability measures  are given by the expression ,
.

P r o o f. Properties (1)–(3) directly follows from axioms 1–4. Let us show that property (4) follows
from axiom 6. Let , and let the notation of Corollary 2 be used. Let us choose a function

 so that , where . We write the equality from axiom 6 using the func�

tional 

where hf(A) = . Note that P(Ak) = hf(Ak)/hf(A) and the probability measures  correspond to

the images . Thus we arrive at the conclusion that property (4) also holds.

The properties listed in Corollary 2 are well�known properties of the Shannon entropy. For example,
property (2) accumulates properties of symmetry and extension. Property (4) is an additivity property,
which is formulated as follows. Let  be a random variable with values in  and . Then for the
Shannon entropy S, we have . In this case,  since values of η
completely depend on values of ξ.

It can easily be shown that properties (2) and (3) can be obtained from properties (1) and (4). Indeed

if in property (4) we take the bijection φ(i) = i as φ for all , then , i.e., 

This equality is possible by property (1) only in the case when  for all k. Therefore it remains
to notice that in this case the probability measures  are the Dirac measures, i.e., they are such as in
property (2). Thus property (2) follows from properties (1) and (4).

Assume that the mapping  is injective. Then applying the formula from property (4), we
find out that

since all probability measures  are Dirac measures; i.e., property (3) also follows from properties (1)–(4).
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P r o p o s i t i o n  2. Let the functional  on  satisfy the properties listed in Corollary 2. Then  is
the Shannon entropy; i.e.,

(2.1)

where , , and .

P r o o f. Usually, when numbers  are real, the uniqueness of the Shannon entropy is proved by the
continuity axiom. In the proposed proof, the continuity axiom is unnecessary. First we find out what the
values of the functional  are on the probability measures , for which  if , and

 otherwise. Let us introduce the function . Assume that  is a partition of the
set , where k and m are natural numbers possessing the property , i = 1, …, m. Consider
the mapping φ(1, …, km) →  such that  if . Applying the formula from property (4)
of Corollary 2 to the probability measure , we find that

It is clear that , ; therefore  or u (km) = u (k) +
u (m). It is known from the theory of functional equations [14] that if a function  has the
properties  and  for any k, m ∈ �, then it can be represented in the form

, where  and n ∈ �. Therefore , n ∈ �.

Then we consider the probability measure P ∈ Mpr for which , where , i = 1, …, m,

. Let PN be a probability measure and let the partition  of the set  be such that

, . We assume that the mapping  is given by φ(i) = j if . Then
using the formula of property (4) of the Corollary 2 for the probability measure , we have

Note that in this formula , , , . Therefore we have

We can conditionally assume that  if . Then the expression for information takes
the form

It is clear that for an arbitrary image , the information measure is

where  and . The information measure is defined uniquely by the normalization
condition. For example, if we assume that the most informative image of n pixels has the information value
equal to 1, then .

Note that there is the following probability interpretation of the mean information  of a pixel of
the image . Let P be a probability measure on the algebra of all subsets of Ω given by the equal�
ity . Then the mapping  can be considered as a random variable, and obviously
the mean information of the image is the Shannon entropy .
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Then we introduce a vector random variable , where  and random variables are
independent and have the same probability distribution as the variable f. Then

Note also that the entropy is widely applied in estimating the information amount of an image in the
coding theory [15], and to determine the entropy, the probabilities of appearance of an image with fixed
intensity values at each pixel are considered. The estimation or simulation of these probabilities is a quite
complex problem, as a result of this, to calculate entropy, as a rule, we should pass to analysis of condi�
tional probabilities and make the assumption that the image is a Markovian process of order no more than k,
simplifying in this way the procedure of estimating the conditional probabilities. In the proposed
approach, we take into account the probability of a pixel separately taken, rather than the whole image,
and, based on the introduced axioms, prove that the information measure obtained as a result has the
properties of the Shannon entropy.

3. INFORMATION AND UNCERTAINTY MEASURES 
FOR A SIGN�BASED REPRESENTATION

Let us discuss the problem of measuring the uncertainty of information about the intensity grades of
the image if we only know its sign�based representation. We describe a sign�based representation using
quasi�order relations on Ω, i.e., reflexive and transitive relations. The graph of this relation is obtained as
a transitive closure of the graph . In what follows, we do not take into account the method of generating
this relation. Only the fact that a class of images  corresponds to the sign�based representation τ is
the only important for us. Thus it is necessary to construct a functional on the set of quasi�order relations
that measure the uncertainty of image description quantitatively using the sign�based representation. We

denote by  this functional and by , the set of all quasi�orders on the set Ω.

As above, this functional is defined in terms of a set of its desired properties; however the functional 
should interact in a certain way with the functional U on  characterizing the information amount of the
image. Note that each sign�based representation also has its information amount, which is measured using
the functional, also denoted by U. The interaction of the given functional is described by the following
axiom.

A x i o m  7. Let , Umax(τ) = , then

(3.1)
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S ξ( ) S ξi( )

i 1=

N

∑ NU f( ) U f( ).= = =

G
τ

τ
⊆� �
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Fig. 3. Graph of the equivalence relation θ of the
model image. Equivalence classes vi correspond to
connected components of the graph.
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Fig. 4, Graph of extension of the relation τ to the
equivalence classes of the model image.
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We stress that axiom 7 expresses the known principle in information theory proposed by G.J. Klir [16],
according to which the property of being informative and uncertainty are connected with each other and
their sum is a certain constant value. Note that the right side of formula (3.1) corresponds to information
of the most informative image with the sign�based representation τ. Therefore, we deduce from for�

mula (3.1) that (τ) = . Thus the uncertainty amount of the sign�based representation τ of
the image f is the difference of the information amount of the image and the information amount of its
sign�based representation, and the image  is chosen from the principle of maximum of uncertainty.

We accept that the images  are equivalent if the there is a monotonously increasing bijection
 such that . Assume that equivalent images contain the same information.

Then the following axiom has to hold.

A x i o m  8.  if the relation  is connected; i.e., any two elements  are compara�
ble with each other.

If the relation  is connected, then the class  consists of images that are equivalent, and by
the assumption equivalent images contain the same information. Therefore in this case, the sign�based
representation τ preserves all necessary information about the image. Therefore, we can assume that

. Note that U(τ) = Umax(τ) according to axiom 7.

A x i o m  9. Let  for , then .

In the case when , we have more information describing the image with the help of the sign�
based representation  compared with the sign�based representation . Therefore axiom 9 should hold.

A x i o m  10. Let  be the graph of a sign�based representation , and let the sets

 determine the connected components of the graph . Then , where

 is a restriction of the relation  to the set , k = 1, …, m.

The meaning of Axiom 10 is that the connected components of the graph  are fragments of indepen�
dent information; therefore the information amount of the whole representation has to be equal to the
sum of information amounts of the given independent components.

The next problem is to study theoretically the properties of the functional , ,  on  and to con�

sider the methods of determining  and . Let , then the relation  is an equivalence rela�
tion. Figure 3 presents the graph of the equivalence relation  for a model image. Let  be the
set of all equivalence classes defined by the relation θ on Ω, and let τθ be the extension of the relation to

the equivalence classes. We assume that  if there is a pair  such that  and

. Figure 4 presents the graph of the relation  for the model image. It is known that the relation
τθ on V obtained in this way is reflexive, antisymmetric, and transitive relation; i.e, a partial order relation,

and we can always construct a relation of non�strict linear order  so that . Then a class of images
in which all vi have different intensity grades correspond to the relation . This implies the following prop�
osition.

P r o p o s i t i o n  3. Let , , and τθ be the extension of the relation τ on the set V of the
equivalence classes generated by θ, then

(3.2)

where  and .
Definition 1 implies that any quasi�order relation is a sign�based representation of an image, in partic�

ular, the quasi�order relation . Proposition 3 implies Corollary 3.
C o r o l l a r y  3. Let θ = τ, i.e., τ is the equivalence relation. Then

where  and .
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U Û maxU �

U Û τ ∈ � 1−
θ = τ ∩ τ

θ { }1 nV …= , ,v v

( )i j
θ

, ∈ τv v ( )l kω ,ω ∈ τ l iω ∈v

k jω ∈v

θ
τ

ρ
θ

ρ ⊇ τ

ρ

τ ∈ � 1−
θ = τ ∩ τ

max

1

( ) ( ) ln ( )
n

i

U cN p i p i
=

τ = − ,∑

| |/( ) ip i N= v | |N = Ω

1−
τ = τ τ = θ∩

1

ˆ( ) ( ) ln ( )
n

i

U cN p i p i
=

τ = − ,∑

| |/( ) ip i N= v | |N = Ω



JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 50  No. 1  2011

AN AXIOMATIC APPROACH TO MEASURING OF INFORMATION 61

P r o o f. In this case the sets v1, …, vn are connected components of the graph G
τ
, and

 by axiom 9. Since  are connected relations, , i.e., U(τ) = 0 and

. This implies the required proof.

C o r o l l a r y  4. Assume that  is the graph of a relation  and its connected components are

determined by the sets , and , i = 1, …, m are connected relations. Then

where p(i) =  and .

P r o o f. By the definition of , there exists  such that Umax(τ) = U( f ). Since each relation

 is connected, any two functions from the class  are equivalent. This means that

, where  is the restriction of the function  to the set . Thus by axioms 7–10,
we have

 and 

It is easy to test that the partition  is smaller than the partition ; i.e., each set

 can be represented as a union of sets . Therefore we can choose the mapping  so

that . This is satisfied if  for . Then by axiom 6 (additivity of

the information measure) for the information measure  on , we obtain
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Fig. 5. Example of restored image based on the sign�based representation of the model image (Fig. 1).
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Note that the image  is defined by the equality  if  and its information can be
calculated by the formula

where  and .
R e m a r k  2. The result formulating in Corollary 3 can be represented in a simpler form. It is easy to

prove that if the condition of Corollary 4 holds, then the relation  is an equivalence relation, and

the partition  is connected with this relation and  by Corollary 3.

P r o p o s i t i o n  4. Let , and let  be an equivalence relation. Then .
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Fig. 6. Example of restoration of the image f based on neighborhood sign�based representations τf(ε): (a) for original
image; (b)–(e) for images restored based on neighborhood sign�based representations τf(ε) with different parameters of
the neighborhood ε ((b) ε = 1, (c) ε = 2, (d) ε = 4, (e) ε = 6); (f) for the image restored based on complete sign�based
representation.
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P r o o f. Let . It is clear that it is a reflexive, antisymmetric, and transitive relation, i.e.,

. Then we recall that = = α. Therefore, taking into

account Remark 2, we have . Since  and by axiom 9, we have , i.e.,

.

Proposition 4 makes it possible to introduce the upper estimate  of the uncertainty measure . Let

 be a set of all equivalence relations which are involved in the relation . Then the func�

tional  is defined as follows:

by Proposition 4,  for all .

P r o p o s i t i o n  5. The functional  as an uncertainty measure of the sign�based representation and

the functional  as an information measure on the set of sign�based representations  satisfy
axioms 7–10.

P r o o f. It is necessary to prove that axioms 7–10 are satisfied. Let  and = . It is clear

that max(τ) = (τ ∩ τ–1) and τ ∩ τ–1 ∈ . Therefore . Then we can determine

the information amount of the sign�based representation by U(τ) = Umax(τ) – ; i.e., Axiom 7 holds.

Axiom 8 also holds since  is an equivalence relation determining the trivial partition {Ω}, and obvi�

ously . Axiom 9 takes place since  ⊆  if  and

.

Let us prove that Axiom 10 holds. Let  be a graph of sign�based representation  and let

the sets  determine connected components of the graph . Assume that . Since the
optimization problem of finding α in this case is decomposed into m independent optimization problems

for each set Ωi, we can assume that . Taking this into account, we have
, i = 1, …, m, and . We should show that

or

(3.3)

Equality (3.3) is transformed to the form
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We transform the right and left sides of this equality. By definition, there is a function  such that
. Note that the choice of  is reduced to solving independent optimization problems on the

sets ; therefore , where  is the restriction of the function  to the set , .
Thus the right side of (3.4) takes the form

In accordance with the proposition, the function  has different values on the partition V = ,

which is induced by the equivalence relation . Since the partition  is smaller than the partition
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, we can choose the function  so that . This is the
case when  for . Then by Axiom 6 for the information measure  on , we obtain

Here the function  is calculated by the rule  if . Proceeding in this way, we can
find out that

i.e., Equality (3.4) holds and Axiom 10 also holds.

Thus the proved proposition allows us to use the functional  as the uncertainty measure of a sign�
based representation. In addition Proposition 5 shows that axioms 7–10 are not contradictive.

The calculation of the value ,  and , τ ∈�, is not difficult, while the calculation of

values of , , is a rather cumbersome problem. Consider the calculation of , , and

, by the example of a model image. For finding , it is necessary to calculate the number of pix�
els in the image for each intensity level. Figure 2 presents the histogram of the model image, which con�
tains six intensity levels with the frequencies 2/20, 2/20, 6/20, 7/20, 2/20, 1/20. Substituting the values of
frequencies in expression (2.1) and taking into account the fact that , we have

, where c is the coefficient in expansion (3.2).

The calculation of maximum information amount of a sign�based representation is based on the anal�

ysis of equivalence classes of the relation . Figure 3 presents the graph of equivalence relation for
the model image, consisting of seven connected components, containing 2, 6, 7, 1, 2, 1, and 1 elements,
respectively. Substituting these values into expression (3.2), we obtain . In this case,
U( f) < Umax(τf), since the same intensity values in the image correspond to different equivalence classes of

the relation . Figure 4 shows the graph of extension of the relation  to the equivalence classes 

generated by the equivalence relation .

Figure 5 shows the image obtained by the restoration algorithm, which is a modified procedure of gen�
erating vertices of the graph (see the proof of Proposition 1 and Remark 1), in which at each step the next
vertex is chosen based on the criterion of minimum information amount. For this purpose, we find in the

graph G(i) a path with the greatest cost . We construct the graph G(i + 1) by eliminating vertices

 from the graph G(i). Let us generate the set Ωi + 1 as follows:
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Results of estimating the introduced information and uncertainty measures by an example of a facial image, c = (NM)–1

ε U(f) Umax(τf)

1 4.683 6.264 5.230

2 4.683 6.151 4.232

4 4.683 5.919 2.988

6 4.683 5.662 2.184

∞ 4.683 4.683 0.0

Ûup τf( )
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The result of operation of this algorithm is the partition {Ω1, …, Ωm} of the set of pixels Ω. Let us cal�

culate the upper estimate  by the following formula:

(3.5)

where p(i) = |Ωi|/N and N = |Ω|. In this example, the path in the graph G(0) with the greatest cost is Ω1 =

{0, 1, 2, 5, 6}, |Ω1| = 17. Let us construct the graph  by eliminating from the graph  the vertices of
; finally we obtain the graph consisting of the components Ω2 = {4}, , , . Thus in

accordance with (3.5), the value of the maximum uncertainty measure of the sign�based representation is

(τf ) ≤ 10.36c. In other words, in the transition from the initial image to the corresponding sign�based
representation, a significant part of information contained in the image is preserved. The information loss
can easily be seen in the image restored based on the sign�based representation using the minimum infor�
mation principle. Figure 6 shows that the restored image contains a minimum number of grades required
for saving the order relation on adjacent pixels (see for comparison Fig. 4, in which it is clear that equiv�
alence classes 0 and 4 have different intensities).

Figure 6 presents the results of restoring a facial image based on neighborhood sign�based representa�
tions constructed based on the initial image, as well as for different values of the parameter ε in expression (1.3).

The table shows the results of calculating the functional , , and  for a facial image
(Fig. 6) and the neighborhood sign�based representations corresponding to it. As can be seen from the
table, with the growth of the size of the neighborhood within which relations on pixels in the neighbor�
hood sign�based representation are considered, the upper estimate of the uncertainty measure reduces
and becomes zero for the complete sign�based representation. In addition, the maximum information
measure of the sign�based representation also reduces, and for the complete sign�based representation it
coincides with the image information amount.

CONCLUSIONS

In this paper, a sign�based image representation was introduced and its most important properties were
investigated. In view of the fact that a set of images correspond to a single sign�based representation, there
arises the problem of choosing an image that characterizes the class of equivalent images in the best way.
As the criterion of choice of the best image, we propose to use the minimum information principle, whose
application is based on information and uncertainty measures of sign�based image representations. The
axiomatic approach to information and uncertainty measures developed in the paper results in measures
possessing the well�known properties of the Shannon entropy. In the concluding part of the paper, an
example of calculating the information and uncertainty measures of sign�based representations was con�
sidered.
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