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Abstract. Properties of the Erdős measure and the invariant Erdős measure for the golden ratio
and all values of the Bernoulli parameter are studied. It is proved that a shift on the two-sided
Fibonacci compact set with invariant Erdős measure is isomorphic to the integral automorphism for
a Bernoulli shift with countable alphabet. An effective algorithm for calculating the entropy of an
invariant Erdős measure is proposed. It is shown that, for certain values of the Bernoulli parameter,
this algorithm gives the Hausdorff dimension of an Erdős measure to 15 decimal places.
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Almost seventy years ago Erdős posed the following problem: What distribution function the
random variable ζ = ζ1ρ + ζ2ρ

2 + . . . , where ζ1, ζ2, . . . are independent identically distributed
random variables taking the values 0 and 1 with P (ζi = 0) = 1/2 and 0 < ρ < 1, can have?

We refer to the distribution of such a random variable ζ as an Erdős measure on the real line.
The problem of Erdős has been the subject of many papers. The authors of [3] defined an Erdős

measure on the unit interval [0, 1] and on the Fibonacci compactum, as well as an invariant Erdős
measure on the Fibonacci compactum for the case ρ = (

√
5 − 1)/2 (the reciprocal of the golden

ratio β = (
√

5+1)/2). It was also proved in [3] that an Erdős measure is equivalent to an invariant
Erdős measure on the Fibonacci compactum.

Vershik posed the problem about the ergodic properties of an invariant Erdős measure on the
Fibonacci compactum. This problem was solved in [3].

In the previous paper [1], we discovered a connection between the Erdős–Vershik problem and
the class of hidden Markov chains for the more general case of 0 < P (ζi = 0) = q < 1, P (ζi = 1) = p,
and ρ = (

√
5 − 1)/2. In what follows we consider this case.

With the help of this connection, we shall prove an analog of one of the main results of [3].
Namely, we shall prove that a shift on the two-sided Fibonacci compactum with invariant Erdős
measure is isomorphic to the integral automorphism for a Bernoulli shift with countable alphabet.
We also obtain a formula for the entropy of an invariant Erdős measure.

The ratio of the entropy of an invariant Erdős measure to lnβ is the Hausdorff dimension of
this invariant Erdős measure on the Fibonacci compactum with metric d(x, y) = ρn(x,y) , where
n(x, y) is the length of the longest common prefix of the words x and y. This dimension is equal
to the Hausdorff dimension of the corresponding Erdős measure on the real line. Recall that the
Hausdorff dimension of a probability measure is the infimum of the Hausdorff dimensions of all
sets of measure 1. The above statement follows from the equivalence of an Erdős measure and
the corresponding ergodic invariant Erdős measure. (See [2], where a method for calculating the
Hausdorff dimension of ergodic measures for symbolic dynamical systems and maps of the unit
interval is described.)

A formula for the Hausdorff dimension of an Erdős measure on the real line was obtained by
Feng in [6, Theorem 4.29]. Our formula coincides with Feng’s formula. Thus, we have given a new
derivation of Feng’s formula. Hausdorff dimension cannot be calculated directly by Feng’s formula
because of the slow convergence of the series in this formula.
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in part by RFBR-CNRS (grant no. 07-01-92215).
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In the case under consideration, Lalley [5] obtained yet another formula for the Hausdorff
dimension of an Erdős measure on the real line. Using this formula and the Monte Carlo method,
he obtained confidence intervals for the Hausdorff dimension of the Erdős measure at various values
of p.

For the same values of p as in [5], we calculate the Hausdorff dimension of the Erdős measure
to more decimal places, which, in particular, gives an idea of the accuracy of Lalley’s statistical
estimates. In our calculations we use the acceleration of convergence of the series in the formula for
Hausdorff dimension. This acceleration is similar to that applied by Alexander and Zagier in [4].

Note that Lalley’s calculations can be regarded as a calculation of the Lyapunov exponent for
some sequence of random matrices (see [5]). The same can be said about our calculations, but we
use a different sequence of random matrices.

1. An Invariant Erdős Measure on the Fibonacci Compactum

Below we give the definition of an invariant Erdős measure on the Fibonacci compactum bor-
rowed from [1]. In [1], the problem about the ergodic properties of an invariant Erdős measure was
reduced to the study of the hidden Markov chain {ηi = f(ξi)} generated by a Markov chain {ξi}
with 5 states 1, 2, 3, 4, and 5 and transition matrix P of the form

P =

⎛
⎜⎜⎜⎜⎝

q 0 0 pq p2

q 0 qp 0 p2

0 1 0 0 0
1 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠

.

The initial distribution l is the stationary distribution, and the gluing function f is 0 for
states 1, 2, and 3 and is 1 for states 4 and 5. The hidden Markov chain generates a probability
distribution µ on its space of realizations. It is convenient to regard µ as the distribution of the
infinite random binary word η1η2 · · · ηn · · · = f(ξ1)f(ξ2) · · · f(ξn) · · · . Its support is the Fibonacci
compactum consisting of all infinite binary Fibonacci words without subwords 11. This set is
compact with respect to the metric d(x, y) = ρn(x,y) , where n(x, y) is the length of the longest
common prefix of the words x and y. The measure µ is an invariant Erdős measure on the Fibonacci
compactum [1].

In the matrix P we take the blocks P (00), P (01), and P (10) corresponding to the partition of
the set {1, 2, 3, 4, 5} into the two subsets {1, 2, 3} and {4, 5}:

P (00) =

⎛
⎝

q 0 0
q 0 qp
0 1 0

⎞
⎠ , P (01) =

⎛
⎝

pq p2

0 p2

0 0

⎞
⎠ , P (10) =

(
1 0 0
0 1 0

)
.

Let l(0) denote the row whose entries are the first three entries of the row l. (Recall that l is
the stationary distribution of the Markov chain with transition matrix P .) By r(0) we denote the
column (1, 1, 1)� and by r(1), the column (1, 1)� .

Let n � 2, and let a = a1, . . . , an be a finite Fibonacci word. We set

P (a) = P (a1a2) · · ·P (an−1an).

Then
µ({x : x1 · · ·xn = a}) = µ(a) = l(a1)P (a)r(an), µ(a1) = l(a1)r(a1).

Let X̃ be the two-sided Fibonacci compactum consisting of all infinite two-sided binary Fi-
bonacci words without subwords 11 and with fixed first position. Let T be a shift on the space X̃ .
Consider the measure µ̃ on the space X̃ defined by

µ̃({x : x1+jx2+j · · ·xn+j = a1 · · · an = a}) = µ(a) for any j ∈ Z and n � 1.

The measure µ̃ is an invariant Erdős measure on the space X̃ .
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2. The Golden Shift

A finite Fibonacci word is called an elementary word if it has the form 1(0)k+1 , where k =
0, 1, 2, . . . . An elementary word is said to be even if k is even and odd if k is odd.

In [3], the subset of regular words was introduced. The definition of a regular word given in [3]
is as follows. Let X̃1 be the subset of Fibonacci words x = . . . x−1x0x1 . . . in the space X̃ with
x1 = 1 containing infinitely many 1’s both to the left and to the right of the first position. For each
x in X̃1 , we introduce numbers yi(x) for i ∈ Z, where yi(x) + 1 is the number of 0’s between the
ith and the (i + 1)st occurrence of 1 in the word x (the first 1 occupies the first position).

Definition. A word x ∈ X̃1 is said to be regular if in this word odd numbers yi(x) occur
infinitely many times both to the left and to the right of the first position (there are infinitely
many elementary Fibonacci words) and the number y0(x) is odd (the first elementary Fibonacci
word to the left of the first position is odd).

Following [3], we denote the set of regular words by X̃0 . On the space X̃0 , a conditional Erdős
measure µ̃0 is naturally defined. This measure is proportional to the measure µ̃, and µ̃0(X̃0) = 1.

According to [3], a finite Fibonacci word b is called a block if it is an odd elementary word or
the concatenation c1c2 · · · cs−1cs , where s � 2, the ci with i � s − 1 are even elementary words,
and the elementary word cs is odd.

Let B be the set of all blocks. We can identify this set with the set B′ of finite words b′ =
k1, . . . , ks such that if s = 1, then k1 is an odd number, if s > 1, then k1, . . . , ks−1 are even
numbers, and ks is an odd number.

The length of a block b for which b′ = k1, . . . , ks is equal to φ(b) = k1 + · · · + ks + 2s. The
correspondence b → b′ gives a parameterization of blocks important for our purposes. The authors
of [3] used another parameterization of blocks.

Any regular word x ∈ X̃0 has a unique expansion into blocks bi(x), where i ∈ Z. The block
b1(x) starts at the first position. The block b2(x) starts after the first block, etc. The block b0(x)
ends at position 0. The block b−1(x) ends before the block b0(x), etc.

Let x ∈ X̃0 . The least positive integer j such that T jx ∈ X̃0 is equal to the length of the
block b1(x). Let us denote the length of the block b1(x) by F (x) = φ(b1(x)); then the derivative
automorphism S = T ′ : x �→ TF (x)x is the left shift of the word x by F (x).

This map of the set of regular words was called the two-sided golden shift in [3]. It is clear that
bi(x) = b1(Si−1(x)) for i ∈ Z. Note that the measure µ̃0 on the space X̃0 is invariant with respect
to the two-sided golden shift.

From the above construction, we see that the golden shift S can be identified with the shift S̃

on the space Z̃ = {z̃ = · · · z−1z0z1 · · · } of two-sided words with distinguished first position over
the alphabet B . The isomorphism is given by the rule

x �→ · · · b−1(x)b0(x)b1(x) · · · .

We introduce the function F̃ (z̃) = φ(z1(z̃)), where φ(b) is the block length defined above.
We call 1(0)k+11 an elementary cycle. An elementary cycle is odd if k is an odd number.
In [3], a subset X̃reg ⊂ X̃ was introduced.
Definition. The subset X̃reg ⊂ X̃ consists of all words x = · · ·x−1x0x1 · · · in which odd cycles

occur infinitely many times both to the left and to the right of the first position.
The subset X̃reg is invariant with respect to T , and µ̃(X̃reg) = 1.
The integral automorphism T̂ constructed from the shift S̃ and the positive integer-valued

function F̃ (z̃) is the transformation of the space Ẑ of pairs (z̃, j), where j = 0, . . . , F (z̃) − 1 and
z̃ ∈ Z̃ , defined by the formulas

(z̃, j) �→ (z̃, j + 1)

if j < F̃ (z̃) − 1 and (z̃, F̃ (z̃) − 1) �→ (S̃z̃, 0).
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Theorem 1 [3]. The shift T on the space X̃reg is isomorphic to the integral automorphism
T̂ on the space Ẑ . The isomorphism is given by the formula T jx �→ (· · · b−1(x)b0(x)b1(x) · · · , j),
where 0 � j � F (x) − 1 and x ∈ X̃0 .

3. The Golden Shift and The Invariant Erdős Measure

Consider the matrices M(k) defined by

M(k) = P (10)P k(00)P (01) for k = 0, 1, 2, . . . .

The following lemma is valid.
Lemma 1. The matrix M(k) has the form

M(k) =

{
Mo(n), k = 2n + 1,

Me(n), k = 2n,

where

Mo(n) =

(
pq2n+2 p2q2n+1

pqn+2 pn+1−qn+1

p−q p2qn+1 pn+1−qn+1

p−q

)
,

Me(n) =

(
pq2n+1 p2q2n

pqn+2 pn−qn

p−q p2qn pn+1−qn+1

p−q

)
.

Proof. The characteristic polynomial of the matrix P (00) is equal to x3 − qx2 − pqx + pq2 .
By the Cayley–Hamilton theorem, this gives the following recurrent relation for the sequence of
matrices M(k) = P (10)(P (00))kP (01), where k = 0, 1, 2, . . . :

M(k + 3) = qM(k + 2) + pqM(k + 1) − pq2M(k), k = 0, 1, . . . .

A direct check shows that the sequence of matrices

M̂(k) =

{
Mo(n), k = 2n + 1,

Me(n), k = 2n,

satisfies the same recurrent relation. Moreover, a direct check gives M(0) = M̂(0), M(1) = M̂(1),
and M(2) = M̂(2). This means that M(k) = M̂(k) for k � 0, which proves the lemma.

The matrices Me(n) are nonsingular, and the matrices Mo(n) are singular. We can write the
matrices Mo(n) in the form Mo(n) = u(n)v, where

u(n) =

(
q2n+1

qn+1 pn+1−qn+1

p−q

)

and v = (pq, p2).
Consider the set B′ of finite words b′ = k1 · · · ks such that if s = 1, then k1 = 2n1 +1, if s > 1,

then kj = 2nj for j � s − 1, and ks = 2ns + 1.
For any block b ∈ B with b′ = k1 · · · ks we define the matrix

M(b) = M(k1 · · · ks) = M(k1) · · ·M(ks) = Me(n1) · · ·Me(ns−1)Mo(ns).

We set the notation u(b) = u(ns) and Me(b) = Me(n1) · · ·Me(ns−1) for s > 2; for s = 1, Me(b)
denotes the identity matrix. We have

M(b) = Me(b)u(b)v.

We also set
p(b) = vMe(b)u(b).
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Now let us calculate the distribution of the random variable b1(x) on the set X̃0 with measure
µ̃0 , that is,

µ̃0({x ∈ X̃0 : b1(x) = b}).
It follows from the definition of the measure µ̃0 that

µ̃0({x ∈ X̃0 : b1(x) = b}) =
∞∑

n=0

µ̃({x ∈ X̃0 : y0(x) = 2n + 1, b1(x) = b})
µ̃(X̃0)

=
∞∑

n=0

l(1)u(n)vM(b)r(1)

µ̃(X̃0)
=

∞∑
n=0

l(1)u(n)vMe(b)u(b)vr(1)

µ̃(X̃0)

= vMe(b)u(b)
∞∑

n=0

l(1)u(n)vr(1)

µ̃(X̃0)

= vMe(b)u(b)
∞∑

n=0

µ̃({x ∈ X̃0 : y0(x) = 2n + 1})
µ̃(X̃0)

= p(b).

Hence, in particular,
∑

b∈B p(b) = 1.
Since the golden shift S preserves the measure µ̃0 on the space X̃0 , it follows that the random

variables bi(x) = b1(Si−1x) with i ∈ Z are identically distributed and

µ̃0({x ∈ X̃0 : bi(x) = b}) = p(b).

In a similar way, we calculate the joint distribution of the random variables

b1(x), . . . , bm(x)

on the set X̃0 with measure µ̃0 :

µ̃0({x ∈ X̃0 : b1(x) = b1, . . . , bm(x) = bm})

=
∞∑

n=0

µ̃0({x ∈ X̃0 : y0(x) = 2n + 1, b1(x) = b1, . . . , bm(x) = bm})

=
∞∑

n=0

l(1)u(n)vMe(b1)u(b1)vMe(b2)u(b2) · · · vMe(bm)u(bm)vr(1)

µ̃(X̃0)

= p(b1) · · · p(bm).

Thus the identically distributed random variables bj(x) (defined on the space X̃0 with measure µ̃0)
are independent.

Consider the Bernoulli measure ν̂ on the space Z̃ with one-dimensional distribution

p(b) = ν̂({z̃ : zj = b}) = vMe(b)u(b), where b ∈ B and j ∈ Z.

Recall that F (x) = φ(b1(x)) and F̃ (z̃) = φ(z1(z̃)).
The T̂ -invariant measure µ̂ on the set of pairs {(z̃, j), z̃ ∈ Z̃, 0 � j � F̃ (z̃) − 1} is defined as

follows. The set of pairs (z̃, 0), where z̃ ∈ Z̃ , can be identified with the set Z̃ , on which the measure
ν̂ is defined; the measure µ̂ is given by the formula

∫
f(z̃, j) dµ̂(z̃, j) =

∫ ∑ eF (z̃)−1
j=0 f(z̃, j) dν̂(z̃)∫

F̃ (z̃) dν̂(z̃)
.

Theorem 2. The shift T on the subset X̃reg with invariant Erdős measure is isomorphic to
the integral automorphism T̂ with measure µ̂. The isomorphism is given by the formula T jx �→
(· · · b−1(x)b0(x)b1(x) · · · , j), where 0 � j � F (x) − 1 and x ∈ X̃0 .

The proof of Theorem 2 follows easily from the above considerations.
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Applying this theorem to p = 1/2, we immediately obtain a new proof of one of the main results
in the paper [3].

4. Probabilities of Blocks and the Passage to Binary Words

For the probabilities of blocks b with b′ = k1 · · · ks , where kj = 2nj , j < s, and ks = 2ns + 1,
we have the formula

p(b) = vMe(b)u(ns).
If s = 1, then

Me(b) =
(

1 0
0 1

)
,

and if s � 2, then
Me(b) = Me(n1) · · ·Me(ns−1).

Consider the function [n]α = 1 + α + α2 + · · · + αn−1 , where α = p/q, and the matrix

A(n) =
(

α[n + 1]α [n]α
α 1

)
.

Evidently,

A(n) =
(

α 1
0 1

)n (
α 0
α 1

)
.

We shall use this relation in what follows.
Let us rewrite the formula for p(b) in another form by using the relation

CMe(n)C = pq2n+1A(n), where C =
(

0 1
1 0

)
.

If s � 2, then

p(b) = vMe(n1) · · ·Me(ns−1)u(ns) = ps−1qk1+···+ks−1+s−1vCA(n1) · · ·A(ns−1)Cu(ns).

It is clear that Cu(ns) = q2ns+1(1/α)A(ns)(1, 0)� . Hence

p(b) = p(n1 · · ·ns) = αs−1qφ(b)(α, 1)A(n1) · · ·A(ns)(1, 0)�,

φ(b) = k1 + · · · + ks + 2s.

Now let us obtain a new formula for p(n1 · · ·ns) in terms of binary words.
Consider the matrices

M̃(0) =
(

α 1
0 1

)
and M̃(1) =

(
α2 0
α2 α

)
.

We have
αA(n) = (M̃(0))nM̃(1).

Let u = (α, α)� . Recall that by definition q = 1/(1 + α). Therefore

(1 + α)φ(b)p(b) = αs−1(α, 1)A(n1) · · ·A(ns)(1, 0)�

= (α, 1)M̃(0)n1M̃(1) · · · M̃(0)ns−1M̃(1)M̃(0)nsM̃(1)(1, 0)�/α

= (α, 1)M̃(0)n1M̃(1) · · · M̃(0)ns−1M̃(1)M̃(0)nsu = (α, 1)M̃(b)u.

In this formula,
M̃(b) = M̃(0)n1M̃(1) · · · M̃(0)ns−1M̃(1)M̃(0)ns .

Let Dn−1 , where n = 1, 2, . . . , denote the set of all binary words of length n − 1. The set
D1 contains only the empty word. Let us associate the block b for which b′ = (2n1) · · · (2ns + 1),
n1 + · · · + ns + s = n, and n � 2 (the length of the block b equals 2n + 1) with a binary word
d ∈ Dn−1 by the rule d = i1 · · · in−1 = (0)n11 · · · (0)ns−11(0)ns . In this word, if ni = 0, then (0)ni

is the empty word.
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The product of matrices corresponding to this binary word has the form

M̃(d) = M̃(i1) · · · M̃(in−1) = M̃(b).

The empty word with n = 1 gives the identity matrix.
Thus, for any word b with b′ = (2n1) · · · (2ns + 1) of length φ(b) = 2n + 1, we have

p(b) = (α, 1)M̃(b)(α, α)�q2n+1.

5. The Generating Function of the Block Length

The generating function of the block length φ(b) is defined by

Φ(z) =
∑

b

p(b)zφ(b) =
∑

b

(α, 1)M̃(b)(α, α)�q2n+1zφ(b)

=
∑
n=1

∑
d∈Dn−1

(α, 1)M̃(d)(α, α)�q2n+1z2n+1

= q3z3(α, 1)(Id−q2z2M̃)−1(α, α)�,

where M̃ = M̃(0) + M̃(1) and Id is the identity matrix.
Hence we obtain

Φ(z) =
pqz3

1 − (1 − pq)z2
.

Knowing the generating function of the block length, we calculate the mean value of the block
length:

Eφ( · ) = Φ′(1) = 1 +
2
pq

.

Let us expand Φ(z):

Φ(z) =
∞∑

n=0

pq(1 − pq)n−1z2n+1.

Thus, the probability that a block has length 2n + 1 is equal to pq(1 − pq)n−1 .

6. A Formula for Calculating the Entropy

In this section, we determine the entropy by using binary logarithms. It was shown that

p(b) =
1

(1 + α)φ(b)
(α, 1)M̃(b)(α, α)�.

Hence
log2 p(b) = −φ(b) log2(1 + α) + log2(α, 1)M̃(b)(α, α)�.

Therefore,
E(− log2 p( · )) = log2(1 + α) E φ( · ) − E(log2(α, 1)M̃( · )(α, α)�).

It follows from Theorem 2 and the Abramov formula [7] for the entropy of an integral auto-
morphism that the entropy of the invariant Erdős measure is equal to

H =
E(− log2 p( · ))

Eφ( · )

= log2(1 + α) − 1
Eφ( · )

∞∑
n=1

[ ∑
b∈Bn

log2((α, 1)M̃(b)(α, α)T )(α, 1)M̃(b)(α, α)�
]

1
(1 + α)2n+1

.

We know that

Eφ( · ) = 1 +
2
pq

= 1 +
2(1 + α)2

α
.
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Let Bn be the set of words b for which b′ = (2n1) · · · (2ns + 1), where n1 + · · · + ns + s = n. We
introduce the notation

kn =
∑
b∈Bn

log2((α, 1)M̃(b)(α, α)�)((α, 1)M̃(b)(α, α)�),

or
kn =

∑
d∈Dn−1

log2((α, 1)M̃(d)(α, α)�)((α, 1)M̃(d)(α, α)�).

We have

H = log2(1 + α) − 1

1 + 2(1+α)2

α

∞∑
n=1

kn

(
1

1 + α

)2n+1

.

The following statement holds: the entropy H does not change under the replacement of α by
1/α. This follows from the formula for the entropy, because under the replacement of α by 1/α the
matrices M̃(0) and M̃(1) are transformed accordingly into the matrices

1
α2

CM̃(1)C and
1
α2

CM̃(0)C, where C =
(

0 1
1 0

)
.

Another proof is based on the fact that the replacement of α by 1/α corresponds to the passage
from the random variable ρζ = ζ1ρ

2 + ζ2ρ
3 + · · · to the random variable 1 − ρζ . The Hausdorff

dimension of a set is an invariant of the isometry x �→ 1−x, where x ∈ [0, 1]. Hence, the definition of
the Hausdorff dimension of a measure implies the required assertion. Of course, for a > 1 the series
converges more rapidly. Below we use the above statement to calculate the Hausdorff dimension.

If q = 1/2, then

H = 1 − 1
9

∞∑
n=1

kn
1

22n+1
.

Note that the formula H/ log2 β for the Hausdorff dimension of an invariant Erdős measure on
the Fibonacci compactum coincides with the Alexander–Zagier formula for the Hausdorff dimension
of an Erdős measure on the real line. The Alexander–Zagier formula was obtained in [4] with the help
of the combinatorics of the Euclidean tree. Possibly, our formula corresponds to the combinatorics
of the α-Euclidean tree.

The main difficulty in the calculation of the entropy H is the slow convergence of the cor-
responding series. The series for H converges too slowly for effective computation. Following the
approach of Alexander and Zagier [4], we use some rearrangement of the series for H in order to
accelerate convergence.

Let
µn = kn − [3]αkn−1.

Then

(1 − [3]αx)
∞∑

n=1

knxn =
∞∑

n=1

µnxn.

Consider
λn = 2λn−1 − λn−2 + µn − [3]αµn−1.

It is clear that
∞∑

n=1

knxn =
1

1 − [3]αx

∞∑
n=1

µnxn,

(1 − x)2
∞∑

n=1

λnxn = (1 − [3]αx)
∞∑

n=1

µnxn,

∞∑
n=1

knxn =
(1 − x)2

(1 − [3]αx)2

∞∑
n=1

λnxn.



91

Using the last relation and setting x = 1/(1 + α)2 , we obtain

H = log2(1 + α) − α(2 + α)
(1 + 2α)

∞∑
n=1

λn

(
1

1 + α

)2n+1

.

This series converges more rapidly than the original series.

7. Results of Calculations

In the following table, we give the values of the Hausdorff dimension Hdim = H/ log2 β of
invariant Erdős measures on the Fibonacci compactum.

The second column in the table contains the values of the Hausdorff dimension of Erdős mea-
sures for different probabilities p. In the third column, it is shown how many terms of the series are
used in the formula for the Hausdorff dimension of the corresponding Erdős measure. The fourth
column shows the results of Lalley’s calculations.

p Hdim n Lalley
0.05 0.392167680782199076 15 0.3877± 0.03
0.05 0.392167680782199076 14
0.1 0.6101383374950678578 20 0.6085± 0.008
0.1 0.6101383374950678578 19
0.2 0.849903398027151976 23 0.8499± 0.004
0.2 0.849903398027151972 22
0.3 0.9513889802259870 24 0.9501± 0.002
0.3 0.9513889802259869 23
0.4 0.9875456832532938 25 0.9868± 0.001
0.4 0.9875456832532931 24
0.5 0.995713126685555526 24 0.9954± 0.0008
0.5 0.9957131266855555560 23
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