LIE ELEMENTS IN THE GROUP ALGEBRA

YURII M. BURMAN

Abstract

Given a representation V of a group G, there are two natural ways of defining a representation of the group algebra $k[G]$ in the external power $V^{\wedge m}$. The set $\mathcal{L}(V)$ of elements of $k[G]$ for which these two ways give the same result is a Lie algebra and a representation of G. For the case when G is a symmetric group and $V=\mathbb{C}^{n}$, a permutation representation, these spaces $\mathcal{L}\left(\mathbb{C}^{n}\right)$ are naturally embedded into one another. We describe $\mathcal{L}\left(\mathbb{C}^{n}\right)$ for small n and formulate questions and conjectures for future research.

1. Setting and motivation

Let V be a finite-dimensional representation of a group G over a field k. For every $g \in G$ and every m define linear operators $A_{m}(g), B_{m}(g): V^{\wedge m} \rightarrow V^{\wedge m}$ as follows:

$$
\begin{aligned}
& A_{m}(g)\left(v_{1} \wedge \cdots \wedge v_{m}\right)=g\left(v_{1}\right) \wedge \cdots \wedge g\left(v_{m}\right) \\
& B_{m}(g)\left(v_{1} \wedge \cdots \wedge v_{m}\right)=\sum_{p=1}^{m} v_{1} \wedge \cdots \wedge g\left(v_{p}\right) \wedge \cdots \wedge v_{m}
\end{aligned}
$$

(here and below v_{1}, \ldots, v_{m} are arbitrary vectors in V). Then extend the operators $A_{m}, B_{m}: G \rightarrow \operatorname{End}\left(V^{\wedge m}\right)$ to the group algebra $k[G]$ by linearity. Also take by definition $A_{0}(g)=1$ (an operator $k \rightarrow k$) and $B_{0}(g)=0$ for every $g \in G$.

Definition. An element $x \in k[G]$ satisfying $A_{m}(g)=B_{m}(g)$ for all $m=0,1, \ldots, \operatorname{dim} V$ is called a Lie element of $k[G]$ (with respect to the representation V). The set of Lie elements is denoted by $\mathcal{L}(V)$.

Besides the associative algebra structure in $k[G]$ and $\operatorname{End}\left(V^{\wedge m}\right)$ consider an associated Lie algebra structure in them, taking $[p, q]=p q-q p$.
Proposition 1. Maps $A_{m}, B_{m}: k[G] \rightarrow \operatorname{End}\left(V^{\wedge m}\right)$ are Lie algebra homomorphisms.

Proof. It is clear that $A_{m}: G \rightarrow \operatorname{End}\left(V^{\wedge m}\right)$ is an associative algebra homomorphism $\left(A_{m}(x y)=A_{m}(x) A_{m}(y)\right.$ for all $\left.x, y \in G\right)$, hence a Lie algebra homomorphism. For B_{m} take $x=\sum_{g \in G} a_{g} g, y=\sum_{h \in G} b_{h} h$, to obtain

$$
\begin{aligned}
B_{m}(x) & B_{m}(y) v_{1} \wedge \cdots \wedge v_{m}=\sum_{h \in G, 1 \leq p \leq m} b_{h} B_{m}(x) v_{1} \wedge \cdots \wedge h\left(v_{p}\right) \wedge \cdots \wedge v_{m} \\
= & \sum_{g, h \in G, 1 \leq p \leq m} a_{g} b_{h} v_{1} \wedge \cdots \wedge g\left(h\left(v_{p}\right)\right) \wedge \cdots \wedge v_{m} \\
& +\sum_{g, h \in G, 1 \leq p, q \leq m, p \neq q} a_{g} b_{h} v_{1} \wedge \cdots \wedge h\left(v_{p}\right) \wedge \cdots \wedge g\left(v_{q}\right) \wedge \cdots \wedge v_{m}
\end{aligned}
$$

whence $B_{m}([x, y])=\left[B_{m}(x), B_{m}(y)\right]$.

Corollary. The set of Lie elements $\mathcal{L}(V) \subset k[G]$ is a Lie subalgebra.
Proposition 2. For any $x, y \in k[G]$ and any m one has $y A_{m}(x) y^{-1}={ }_{m}\left(y x y^{-1}\right)$ and $y B_{m}(x) y^{-1}=B_{m}\left(y x y^{-1}\right)$.

The proof is evident.
Corollary. The set $\mathcal{L}(V) \subset k[G]$ is a representation of G where elements of the group act by conjugation.

This note takes its origin from the paper [1]. The paper contains a formula for the so called Hurwitz generating function which lists factorizations of a cyclic permutation $(12 \ldots n)$ to a product of transpositions. The key ingredient of the proof of the formula is the fact that $1-(i j) \in \mathcal{L}\left(\mathbb{C}^{n}\right)$ where \mathbb{C}^{n} is the permutation representation of the symmetric group (see Proposition 3 below). Any other element $x \in \mathcal{L}\left(\mathbb{C}^{n}\right)$ corresponds to a generalization of this result producing a formula listing factorizations of the cycle to a product of various permutations with various weights; the weights depend on x. Equivalently, the same formula lists graphs embedded into oriented surfaces so that their complement is homeomorphic to a disk; any $x \in \mathcal{L}\left(\mathbb{C}^{n}\right)$ generates a formula listing similar embeddings of multi-graphs (again, with the weights depending on x).

This note is a description of research in progress; see the list of questions and conjectures at the end.

2. The symmetric group case

Here we take $G=S_{n}, n=2,3, \ldots$ Let $k=\mathbb{C}$ and V be an n-dimensional permutation representation of S_{n} (the group acts on elements of the basis $x_{1}, \ldots, x_{n} \in \mathbb{C}^{n}$ permuting their indices). We'll be writing \mathcal{L}_{n} for short, instead of $\mathcal{L}\left(\mathbb{C}^{n}\right)$.

Proposition 3 (cf. [1]). $1-(i j) \in \mathcal{L}_{n}$ for all $1 \leq i<j \leq n$.
Proof. Take any $v_{1}, \ldots, v_{m} \in V$; then $A_{m}(1) v_{1} \wedge \cdots \wedge v_{m}=v_{1} \wedge \cdots \wedge v_{m}$ and $B_{m}(1) v_{1} \wedge \cdots \wedge v_{m}=m v_{1} \wedge \cdots \wedge v_{m}$.

It follows from Proposition 2 that without loss of generality one may assume $i=1, j=2$. Apparently, this is enough to take for v_{s} basic vectors: $v_{s}=x_{i_{s}}$ for all $s=1, \ldots, m$, where $1 \leq i_{1}<\cdots<i_{m} \leq n$ are any indices. Consider now three cases:

1. $i_{1}, \ldots, i_{m} \neq 1,2$. Then

$$
\begin{aligned}
& A_{m}((12))\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{m}}\right)=x_{i_{1}} \wedge \cdots \wedge x_{i_{m}} \\
& B_{m}((12))\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{m}}\right)=m x_{i_{1}} \wedge \cdots \wedge x_{i_{m}}
\end{aligned}
$$

so that

$$
A_{m}(1-(12))\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{m}}\right)=0=B_{m}(1-(12))\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{m}}\right)
$$

2. $i_{1}=1, i_{2}, \ldots, i_{m} \neq 1,2$. Then

$$
\begin{aligned}
& A_{m}((12))\left(x_{1} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{m}}\right)=x_{2} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{m}} \\
& \left.B_{m}((12))\left(x_{2}+(m-1) x_{1}\right) \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{m}}\right)=x_{2} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{m}}
\end{aligned}
$$

so that

$$
\begin{aligned}
A_{m}(1-(12))\left(x_{1} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{m}}\right) & =\left(x_{1}-x_{2}\right) \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{m}} \\
& =B_{m}(1-(12))\left(x_{1} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{m}}\right)
\end{aligned}
$$

3. $i_{1}=1, i_{2}=2$. Then

$$
\begin{aligned}
& A_{m}((12))\left(x_{1} \wedge x_{2} \wedge x_{i_{3}} \wedge \cdots \wedge x_{i_{m}}\right)=-x_{1} \wedge x_{2} \wedge x_{i_{3}} \wedge \cdots \wedge x_{i_{m}} \\
& B_{m}((12))\left(x_{1} \wedge x_{2} \wedge x_{i_{3}} \wedge \cdots \wedge x_{i_{m}}\right)=(m-2) x_{1} \wedge x_{2} \wedge x_{i_{3}} \wedge \cdots \wedge x_{i_{m}}
\end{aligned}
$$

so that

$$
\begin{aligned}
A_{m}(1-(12))\left(x_{1} \wedge x_{2} \wedge x_{i_{3}} \wedge \cdots \wedge x_{i_{m}}\right) & =2 x_{1} \wedge x_{2} \wedge x_{i_{3}} \wedge \cdots \wedge x_{i_{m}} \\
& =B_{m}(1-(12))\left(x_{1} \wedge x_{2} \wedge x_{i_{3}} \wedge \cdots \wedge x_{i_{m}}\right)
\end{aligned}
$$

Denote by $\iota_{n}: S_{n} \rightarrow S_{n+1}$ a standard embedding: for any permutation $\sigma \in S_{n}$ take $\iota_{n}(\sigma)(k)=\sigma(k)$ for any $1 \leq k \leq n$ and $\iota_{n}(\sigma)(n+1)=n+1$. The embedding can be extended by linearity to an algebra homomorphism $\iota_{n}: \mathbb{C}\left[S_{n}\right] \rightarrow \mathbb{C}\left[S_{n+1}\right]$.
Proposition 4. $\iota_{n}\left(\mathcal{L}_{n}\right) \subset \mathcal{L}_{n+1}$.
Proof. Let $u=\sum_{\sigma \in S_{n}} a_{\sigma} \sigma \in \mathcal{L}_{n}$. Like in Proposition 3 above, it is enough to consider the action of $\iota_{n}(u)$ on $x \stackrel{\text { def }}{=} x_{i_{1}} \wedge \cdots \wedge x_{i_{m}}$ where $1 \leq i_{1}<\cdots<i_{m} \leq n+1$. Consider two cases.

1. $i_{m} \leq n$. Then $A_{m}\left(\iota_{n}(u)\right)(x)=A_{m}(u)(x)=B_{m}(u)(x)=B_{m}\left(\iota_{n}(u)\right)(x)$, so that $\iota_{n}(u) \in \mathcal{L}_{n+1}$.
2. $i_{m}=n+1$. Then $A_{m}\left(\iota_{n}(u)\right)(x)=A_{m-1}(u)\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{m-1}}\right) \wedge x_{n+1}$. On the other hand,
$B_{m}\left(\iota_{n}(u)\right)(x)=\left(\sum_{\sigma \in S_{n}} a_{\sigma} \sum_{p=1}^{n} x_{i_{1}} \wedge \cdots \wedge x_{\sigma\left(i_{p}\right)} \wedge \cdots \wedge x_{i_{m-1}}\right) \wedge x_{n+1}+\sum_{\sigma \in S_{n}} a_{\sigma} \cdot x$.
One has $A_{0}(u)=\sum_{\sigma \in S_{n}} a_{\sigma}$ and $B_{0}(u)=0$. Once $u \in \mathcal{L}_{n}$, the last term in the equation above is zero, so

$$
B_{m}\left(\iota_{n}(u)\right)(x)=B_{m-1}(u)\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{m-1}}\right) \wedge x_{n+1}
$$

whence $A_{m}\left(\iota_{n}(u)\right)(x)=B_{m}\left(\iota_{n}(u)\right)(x)$, and again $\iota_{n}(u) \in \mathcal{L}_{n+1}$.

3. \mathcal{L}_{n} FOR SMALL n

One has $\operatorname{dim} \mathcal{L}_{2}=1$. The space is spanned by $1-(12) \in \mathbb{C}\left[S_{2}\right]$, is a trivial Lie algebra and a trivial representation of $S_{2}=\mathbb{Z} / 2 \mathbb{Z}$.

The space \mathcal{L}_{3} contains elements $1-(12), 1-(23)$ and $1-(13)$ by Proposition 3 , By the corollary of Proposition 1 it also contains $[1-(12), 1-(23)]=(123)-(132)$ (by $\left(i_{1} \ldots i_{k}\right) \in S_{n}$ we mean a cyclic permutation sending every i_{s} to $\left.i_{s+1} \bmod k\right)$. Easy calculations show that these elements form a basis in \mathcal{L}_{3}, so that $\operatorname{dim} \mathcal{L}_{3}=4$. The space \mathcal{L}_{3} splits, as a representation of S_{3}, to the trivial representation V_{0} (spanned by $1-(12) / 3-(13) / 3-(23) / 3)$, sign representation V_{1} (spanned by (123) - (132)) and a two-dimensional representation V_{2} (spanned by (12) - (13), (13) - (23) and (23) - (12); the elements sum up to zero, and any two of them form a basis). As a Lie algebra \mathcal{L}_{3} is a direct sum of the center V_{0} and a three-dimensional subalgebra spanned by $V_{1} \cup V_{2}$. (This statement is partly true for any n : \mathcal{L}_{n} contains a trivial representation, which lies in its center as a Lie algebra.)

The space \mathcal{L}_{4} contains, by Proposition 3, the 6 elements $1-(i j), 1 \leq i<j \leq 4$. By Propositions 1 and 2 it also contains all the elements $(i j k)-(i k j)=[1-(i j),(1-$
$(j k)], 1 \leq i<j<k \leq 4($ totally 4$)$, and the elements $\gamma_{1}=[1-(14),(123)-(132)]=$ $(1234)+(1432)-(1243)-(1342)$ and $\gamma_{2}=[1-(24),(123)-(132)]=(1243)+$ (1342) - (1324) - (1423). Easy computer-assisted computations show that these 12 elements form a basis in \mathcal{L}_{4}.

As a representation of S_{4}, \mathcal{L}_{4} contains a 6-dimensional representation spanned by $1-(i j), 1 \leq i<j \leq 4$; it splits into a trivial representation spanned by $1-\frac{1}{6} \sum_{1 \leq i<j \leq 4}(i j)$, a 3 -dimensional representation of the type $(3,1)$ and a 2 dimensional representation of the type $(2,2)$. Another 4 -dimensional subrepresentation of \mathcal{L}_{4} is spanned by $(i j k)-(i k j), 1 \leq i<j<k \leq 4$; it splits into a sign representation (spanned by $\left.\sum_{1 \leq i<j<k \leq 4}(i j k)-(i k j)\right)$ and a 3 -dimensional representation of the type $(2,1,1)$. The elements γ_{1} and γ_{2} span a 2 -dimensional subrepresentation. Totally, \mathcal{L}_{4} contains a trivial representation, a sign representation, two copies of a 2-dimensional representation and two nonisomorphic 3-dimensional representations.

4. Questions and conjectures

4.1. Dimension and representations. For an arbitrary n, what is the dimension of \mathcal{L}_{n} ? A refinement of the question: find the Frobenius character $R_{n}=$ $\sum_{|\lambda|=n} a_{\lambda} \chi_{\lambda}$ of the representation \mathcal{L}_{n}; here the sum runs over all partitions of n, a_{λ} is the multiplicity in \mathcal{L}_{n} of the irreducible representation of S_{n} of the type λ, and χ_{λ} is the Schur polynomial corresponding to λ.

4.2. Generators.

Conjecture. The Lie algebra \mathcal{L}_{n} is generated by the elements $\nu_{i j}=1-(i j)$, $1 \leq i<j \leq n$.

Computations confirm the conjecture for $n \leq 5$.
4.3. Action on the original representation. The elements of $\mathcal{L}(V) \subset k[G]$ act in the original representation V of the group G. This action may have a kernel. These kernels and quotients of $\mathcal{L}(V)$ by them sometimes exhibit interesting properties:

Conjecture. Let K_{n} be a kernel of the action of \mathcal{L}_{n} in the permutation representation \mathbb{C}^{n}. Then $\operatorname{dim} \mathcal{L}_{n} / K_{n}=(n-1)$!. The repeated commutators

$$
\left.\left.\left[\ldots\left[\nu_{1 i_{1}}, \nu_{2 i_{2}}\right], \nu_{3 i_{3}}\right], \ldots\right], \nu_{n-1, i_{n-1}}\right]
$$

for all i_{1}, \ldots, i_{n-1} such that $s+1 \leq i_{s} \leq n$ for all $s=1, \ldots, n-1$ form a basis in $\operatorname{dim} \mathcal{L}_{n} / K_{n}$.

Grants and acknowledgements

The final stage of the work was supported by the RFBR grant NSh-5138.2014.1 "Singularities theory and its applications", by the Higher School of Economics (HSE) Scientific foundation grant 12-01-0015 "Differential geometry on graphs and discrete path integration", by the by Dobrushin professorship grant 2013 (the Independent University of Moscow) and by the Simons foundation grant (autumn 2013).

References

[1] Yu.Burman, D.Zvonkine, Cycle factorizations and 1-faced graph embeddings, European Journal of Combinatorics, 31, no. 1 (2010), pp. 129-144.

Independent University of Moscow (119002, 11, B.Vlassievsky per., Moscow, Russia) and Higher School of Economics (National Research University; 101000, 20, Myasnitskaya str., Moscow, Russia)

E-mail address: burman@mccme.ru

