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LIE ELEMENTS IN THE GROUP ALGEBRA

YURII M. BURMAN

Abstract. Given a representation V of a group G, there are two natural ways
of defining a representation of the group algebra k[G] in the external power
V ∧m. The set L(V ) of elements of k[G] for which these two ways give the
same result is a Lie algebra and a representation of G. For the case when G

is a symmetric group and V = Cn, a permutation representation, these spaces
L(Cn) are naturally embedded into one another. We describe L(Cn) for small
n and formulate questions and conjectures for future research.

1. Setting and motivation

Let V be a finite-dimensional representation of a group G over a field k. For
every g ∈ G and every m define linear operators Am(g), Bm(g) : V ∧m → V ∧m as
follows:

Am(g)(v1 ∧ · · · ∧ vm) = g(v1) ∧ · · · ∧ g(vm)

Bm(g)(v1 ∧ · · · ∧ vm) =

m
∑

p=1

v1 ∧ · · · ∧ g(vp) ∧ · · · ∧ vm.

(here and below v1, . . . , vm are arbitrary vectors in V ). Then extend the operators
Am, Bm : G → End(V ∧m) to the group algebra k[G] by linearity. Also take by
definition A0(g) = 1 (an operator k → k) and B0(g) = 0 for every g ∈ G.

Definition. An element x ∈ k[G] satisfyingAm(g) = Bm(g) for allm = 0, 1, . . . , dimV
is called a Lie element of k[G] (with respect to the representation V ). The set of
Lie elements is denoted by L(V ).

Besides the associative algebra structure in k[G] and End(V ∧m) consider an
associated Lie algebra structure in them, taking [p, q] = pq − qp.

Proposition 1. Maps Am, Bm : k[G] → End(V ∧m) are Lie algebra homomor-

phisms.

Proof. It is clear that Am : G → End(V ∧m) is an associative algebra homomor-
phism (Am(xy) = Am(x)Am(y) for all x, y ∈ G), hence a Lie algebra homomor-
phism. For Bm take x =

∑

g∈G agg, y =
∑

h∈G bhh, to obtain

Bm(x)Bm(y)v1 ∧ · · · ∧ vm =
∑

h∈G,1≤p≤m

bhBm(x)v1 ∧ · · · ∧ h(vp) ∧ · · · ∧ vm

=
∑

g,h∈G,1≤p≤m

agbhv1 ∧ · · · ∧ g(h(vp)) ∧ · · · ∧ vm

+
∑

g,h∈G,1≤p,q≤m,p6=q

agbhv1 ∧ · · · ∧ h(vp) ∧ · · · ∧ g(vq) ∧ · · · ∧ vm,

whence Bm([x, y]) = [Bm(x), Bm(y)]. �
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Corollary. The set of Lie elements L(V ) ⊂ k[G] is a Lie subalgebra.

Proposition 2. For any x, y ∈ k[G] and any m one has yAm(x)y−1 = m(yxy−1)
and yBm(x)y−1 = Bm(yxy−1).

The proof is evident.

Corollary. The set L(V ) ⊂ k[G] is a representation of G where elements of the

group act by conjugation.

This note takes its origin from the paper [1]. The paper contains a formula
for the so called Hurwitz generating function which lists factorizations of a cyclic
permutation (12 . . . n) to a product of transpositions. The key ingredient of the
proof of the formula is the fact that 1− (ij) ∈ L(Cn) where Cn is the permutation
representation of the symmetric group (see Proposition 3 below). Any other element
x ∈ L(Cn) corresponds to a generalization of this result producing a formula listing
factorizations of the cycle to a product of various permutations with various weights;
the weights depend on x. Equivalently, the same formula lists graphs embedded
into oriented surfaces so that their complement is homeomorphic to a disk; any
x ∈ L(Cn) generates a formula listing similar embeddings of multi-graphs (again,
with the weights depending on x).

This note is a description of research in progress; see the list of questions and
conjectures at the end.

2. The symmetric group case

Here we takeG = Sn, n = 2, 3, . . . . Let k = C and V be an n-dimensional permu-
tation representation of Sn (the group acts on elements of the basis x1, . . . , xn ∈ C

n

permuting their indices). We’ll be writing Ln for short, instead of L(Cn).

Proposition 3 (cf. [1]). 1− (ij) ∈ Ln for all 1 ≤ i < j ≤ n.

Proof. Take any v1, . . . , vm ∈ V ; then Am(1)v1 ∧ · · · ∧ vm = v1 ∧ · · · ∧ vm and
Bm(1)v1 ∧ · · · ∧ vm = mv1 ∧ · · · ∧ vm.

It follows from Proposition 2 that without loss of generality one may assume
i = 1, j = 2. Apparently, this is enough to take for vs basic vectors: vs = xis for
all s = 1, . . . ,m, where 1 ≤ i1 < · · · < im ≤ n are any indices. Consider now three
cases:

1. i1, . . . , im 6= 1, 2. Then

Am((12))(xi1 ∧ · · · ∧ xim) = xi1 ∧ · · · ∧ xim ,

Bm((12))(xi1 ∧ · · · ∧ xim) = mxi1 ∧ · · · ∧ xim ,

so that

Am(1− (12))(xi1 ∧ · · · ∧ xim) = 0 = Bm(1− (12))(xi1 ∧ · · · ∧ xim).

2. i1 = 1, i2, . . . , im 6= 1, 2. Then

Am((12))(x1 ∧ xi2 ∧ · · · ∧ xim) = x2 ∧ xi2 ∧ · · · ∧ xim ,

Bm((12))(x2 + (m− 1)x1) ∧ xi2 ∧ · · · ∧ xim ) = x2 ∧ xi2 ∧ · · · ∧ xim ,

so that

Am(1− (12))(x1 ∧ xi2 ∧ · · · ∧ xim) = (x1 − x2) ∧ xi2 ∧ · · · ∧ xim

= Bm(1− (12))(x1 ∧ xi2 ∧ · · · ∧ xim)
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3. i1 = 1, i2 = 2. Then

Am((12))(x1 ∧ x2 ∧ xi3 ∧ · · · ∧ xim) = −x1 ∧ x2 ∧ xi3 ∧ · · · ∧ xim ,

Bm((12))(x1 ∧ x2 ∧ xi3 ∧ · · · ∧ xim) = (m− 2)x1 ∧ x2 ∧ xi3 ∧ · · · ∧ xim ,

so that

Am(1− (12))(x1 ∧ x2 ∧ xi3 ∧ · · · ∧ xim) = 2x1 ∧ x2 ∧ xi3 ∧ · · · ∧ xim

= Bm(1− (12))(x1 ∧ x2 ∧ xi3 ∧ · · · ∧ xim).

�

Denote by ιn : Sn → Sn+1 a standard embedding: for any permutation σ ∈ Sn

take ιn(σ)(k) = σ(k) for any 1 ≤ k ≤ n and ιn(σ)(n + 1) = n+ 1. The embedding
can be extended by linearity to an algebra homomorphism ιn : C[Sn] → C[Sn+1].

Proposition 4. ιn(Ln) ⊂ Ln+1.

Proof. Let u =
∑

σ∈Sn
aσσ ∈ Ln. Like in Proposition 3 above, it is enough to

consider the action of ιn(u) on x
def
= xi1 ∧· · ·∧xim where 1 ≤ i1 < · · · < im ≤ n+1.

Consider two cases.

1. im ≤ n. Then Am(ιn(u))(x) = Am(u)(x) = Bm(u)(x) = Bm(ιn(u))(x), so that
ιn(u) ∈ Ln+1.

2. im = n + 1. Then Am(ιn(u))(x) = Am−1(u)(xi1 ∧ · · · ∧ xim−1
) ∧ xn+1. On the

other hand,

Bm(ιn(u))(x) =

(

∑

σ∈Sn

aσ

n
∑

p=1

xi1 ∧ · · · ∧ xσ(ip) ∧ · · · ∧ xim−1

)

∧ xn+1 +
∑

σ∈Sn

aσ · x.

One has A0(u) =
∑

σ∈Sn

aσ and B0(u) = 0. Once u ∈ Ln, the last term in the
equation above is zero, so

Bm(ιn(u))(x) = Bm−1(u)(xi1 ∧ · · · ∧ xim−1
) ∧ xn+1,

whence Am(ιn(u))(x) = Bm(ιn(u))(x), and again ιn(u) ∈ Ln+1. �

3. Ln for small n

One has dimL2 = 1. The space is spanned by 1 − (12) ∈ C[S2], is a trivial Lie
algebra and a trivial representation of S2 = Z/2Z.

The space L3 contains elements 1−(12), 1−(23) and 1−(13) by Proposition 3. By
the corollary of Proposition 1 it also contains [1− (12), 1− (23)] = (123)− (132) (by
(i1 . . . ik) ∈ Sn we mean a cyclic permutation sending every is to is+1 mod k). Easy
calculations show that these elements form a basis in L3, so that dimL3 = 4. The
space L3 splits, as a representation of S3, to the trivial representation V0 (spanned
by 1− (12)/3− (13)/3− (23)/3), sign representation V1 (spanned by (123)− (132))
and a two-dimensional representation V2 (spanned by (12)− (13), (13)− (23) and
(23)− (12); the elements sum up to zero, and any two of them form a basis). As a
Lie algebra L3 is a direct sum of the center V0 and a three-dimensional subalgebra
spanned by V1 ∪ V2. (This statement is partly true for any n: Ln contains a trivial
representation, which lies in its center as a Lie algebra.)

The space L4 contains, by Proposition 3, the 6 elements 1− (ij), 1 ≤ i < j ≤ 4.
By Propositions 1 and 2 it also contains all the elements (ijk)−(ikj) = [1−(ij), (1−
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(jk)], 1 ≤ i < j < k ≤ 4 (totally 4), and the elements γ1 = [1−(14), (123)−(132)] =
(1234) + (1432) − (1243) − (1342) and γ2 = [1 − (24), (123) − (132)] = (1243) +
(1342)− (1324)− (1423). Easy computer-assisted computations show that these 12
elements form a basis in L4.

As a representation of S4, L4 contains a 6-dimensional representation spanned
by 1 − (ij), 1 ≤ i < j ≤ 4; it splits into a trivial representation spanned by
1 − 1

6

∑

1≤i<j≤4(ij), a 3-dimensional representation of the type (3, 1) and a 2-

dimensional representation of the type (2, 2). Another 4-dimensional subrepresen-
tation of L4 is spanned by (ijk) − (ikj), 1 ≤ i < j < k ≤ 4; it splits into a sign
representation (spanned by

∑

1≤i<j<k≤4(ijk) − (ikj)) and a 3-dimensional repre-

sentation of the type (2, 1, 1). The elements γ1 and γ2 span a 2-dimensional sub-
representation. Totally, L4 contains a trivial representation, a sign representation,
two copies of a 2-dimensional representation and two nonisomorphic 3-dimensional
representations.

4. Questions and conjectures

4.1. Dimension and representations. For an arbitrary n, what is the dimen-
sion of Ln? A refinement of the question: find the Frobenius character Rn =
∑

|λ|=n aλχλ of the representation Ln; here the sum runs over all partitions of n,

aλ is the multiplicity in Ln of the irreducible representation of Sn of the type λ,
and χλ is the Schur polynomial corresponding to λ.

4.2. Generators.

Conjecture . The Lie algebra Ln is generated by the elements νij = 1 − (ij),
1 ≤ i < j ≤ n.

Computations confirm the conjecture for n ≤ 5.

4.3. Action on the original representation. The elements of L(V ) ⊂ k[G] act
in the original representation V of the group G. This action may have a kernel.
These kernels and quotients of L(V ) by them sometimes exhibit interesting prop-
erties:

Conjecture. Let Kn be a kernel of the action of Ln in the permutation represen-

tation Cn. Then dimLn/Kn = (n− 1)!. The repeated commutators

[. . . [ν1i1 , ν2i2 ], ν3i3 ], . . . ], νn−1,in−1
]

for all i1, . . . , in−1 such that s+ 1 ≤ is ≤ n for all s = 1, . . . , n− 1 form a basis in

dimLn/Kn.
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