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Abstract The resultant variety in the space of systems of homogeneous polynomi-
als of some given degrees consists of such systems having non-trivial solutions. We
calculate the integer cohomology groups of all spaces of non-resultant systems of poly-
nomials R2 → R, and also the rational cohomology rings of spaces of non-resultant
systems and non-m-discriminant polynomials in C2.
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1 Introduction

Given n natural numbers d1 ≥ d2 ≥ · · · ≥ dn , consider the space of all real homoge-
neous polynomial systems

⎧
⎪⎨

⎪⎩

a1,0xd1 + a1,1xd1−1y + · · · + a1,d1 yd1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an,0xdn + an,1xdn−1y + · · · + an,dn ydn

(1)

in two real variables x, y.
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234 V. A. Vassiliev

We will refer to this space asRD , D = ∑n
1(di +1). The resultant variety � ⊂ R

D

is the space of all systems having non-zero solutions. � is a semialgebraic subvariety
of codimension n − 1 in RD .

Below we calculate the cohomology group of its complement, H∗(RD\�). Also,
we calculate the rational cohomology rings of the complex analogs CD\�C of all
spaces RD\�.

For the “affine” version of the “real” problem (concerning the space of non-resultant
systems of polynomials R1 → R

1 with leading terms xdi ), see, e.g., Vassiliev (1994,
1997) and Kozlowski and Yamaguchi (2000); for the “complex” problem with n = 2
see also Cohen et al. (1991). A similar calculation for spaces of real homogeneous
polynomials in R2 without zeros of multiplicity ≥ m was done in Vassiliev (1998).

The entire study of homology groups of spaces of non-singular (in appropriate
sense) objects goes back to the Arnold’s works (1970, 1989), as well as the idea of
using the Alexander duality in this problem.

2 Main Results

2.1 Notation

For any natural p, denote by N (p) the sum of all numbers di + 1, i = 1, . . . , n,

which are less than or equal to p, plus p times the number of those di which are equal
to or greater than p. [In other words, N (p) is the area of the part of Young diagram
(d1 + 1, . . . , dn + 1) strictly to the left from the (p + 1)-th column.] Let the index
ϒ(p) be equal to the number of even numbers di ≥ p if p is even, and to the number
of odd numbers di ≥ p if p is odd. By H̃∗(X) we denote the cohomology group
reduced modulo a point. H∗(X) denotes the Borel–Moore homology group, i.e. the
homology group of the complex of locally finite singular chains of X .

Theorem 1 If the space R
D\� is non-empty (i.e. either n > 1 or d1 is even), then

the group H̃∗(RD\�,Z) is equal to the direct sum of following groups:
A) For any p = 1, . . . , d3,
if ϒ(p) is even, thenZ in dimension N (p)−2p andZ in dimension N (p)−2p+1,
if ϒ(p) is odd, then only one group Z2 in dimension N (p) − 2p + 1;
B) If d1−d2 is odd, then an additional summand Z in dimension D −d1−d2−2. If

d1 − d2 is even, then an additional summand Z
d2−d3+1 in dimension D − d1 − d2 − 1

and (if d2 �= d3) a summand Z
d2−d3 in dimension D − d1 − d2 − 2.

Example 1 Let n = 2 [so that part (A) in the statement of Theorem 1 is void]. If d1
and d2 are of the same parity, then R

D\� consists of d2 + 1 connected components,
each of which is homotopy equivalent to a circle. For an invariant, which separates
systems belonging to different components, we can take the index of the induced map
of the unit circle S1 ⊂ R

2 into R2\0. This index can take all values of the same parity
as d1 and d2 from the segment [−d2, d2]. The 1-dimensional cohomology class inside
any component is just the rotation number of the image of a fixed point [say, (1, 0)]
around the origin. Moreover, the images of this point under our non-resultant systems
define a map R

D\� → R
2\0; it is easy to see that any fiber of this map consists of

d2 + 1 contractible components.
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Homology of Spaces of Non-Resultant Homogeneous… 235

If d1 and d2 are of different parities, then the space R
D\� has the homology

of a two-point set. The invariant separating its two connected components can be
calculated as the parity of the number of zeros of the odd-degree polynomial of our
non-resultant system, which lie in the (well-defined) domain in RP

1 where the even-
degree polynomial is positive.

Now, let CD be the space of all polynomial systems (1) with complex coefficients
ai, j , and �C ⊂ C

D the set of systems having solutions in C2\0.
Theorem 2 For any n > 1, the ring H∗(CD\�C,Q) is an exterior algebra over Q
with two generators of dimensions 2n−3 and 2n−1. Namely, these generators are the
linking number with the Borel–Moore fundamental class of entire resultant variety and
the pull-back of the basic cohomology class under the map C

D\�C → C
n\0 defined

by restrictions of non-resultant systems ( f1, . . . , fn) to the point (1, 0). The weight
filtrations of these two generators and their product in the mixed Hodge structure of
C

D\�C are equal to 2n − 2, 2n and 4n − 2 respectively.

Consider also the space Cd+1 of all complex homogeneous polynomials

a0xd + a1xd−1y + · · · + ad yd ,

andm-discriminant �m in it consisting of all polynomials vanishing on some line with
multiplicity ≥ m.

Theorem 3 For any m > 1 and d ≥ 2m−1, the ring H∗(Cd+1\�m,Q) is isomorphic
to an exterior algebra over Q with two generators of dimensions 2m − 3 and 2m − 1.
The weight filtrations of these two generators and of their product are equal to 2m −2,
2m and 4m − 2 respectively. For any m > 1 and d ∈ [m + 1, 2m − 2], this ring is
isomorphic to Q in dimensions 0, 2m − 3, 2m − 1 and 2d − 2, and is trivial in all
other dimensions; the multiplication is obviously trivial. For d = m > 1 this ring is
isomorphic to Q in dimensions 0 and 2m − 3, and is trivial in all other dimensions.

3 Some Preliminary Facts

Denote by B(M, p) the configuration space of subsets of cardinality p of a topological
space M .

Lemma 1 For any natural p, there is a locally trivial fiber bundle B(S1, p) → S1

whose fiber is homeomorphic to R
p−1. This fiber bundle is non-orientable if p is even,

and is orientable (and hence trivial) if p is odd.

Indeed, the projection of this fiber bundle can be realised as the product of p points
of the unit circle in C

1. The fiber of this bundle can be identified in terms of the
universal covering R

p → T p with any connected component of some hyperplane
{x1 + · · ·+ x p = const}, from which all affine planes given by xi = x j + 2πk, i �= j ,
k ∈ Z, are removed. Such a component is convex and hence diffeomorphic to R

p−1.
The assertion on orientability can be checked immediately. �	
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236 V. A. Vassiliev

Let us embed amanifold M generically into the spaceRT of a very large dimension,
and denote by M∗r the union of all (r−1)-dimensional simplices inRT , whose vertices
lie in this embedded manifold (and the “genericity” of the embedding means that if
two such simplices have a common point in R

T , then their minimal faces containing
this point coincide).

Proposition 1 (C. Caratheodory theorem: see also Vassiliev 1997; Kallel and Karoui
2011) For any r ≥ 1, the space (S1)∗r is homeomorphic to S2r−1.

Remark 1 This homeomorphism can be realized as follows. Consider the spaceR2r+1

of all real homogeneous polynomials R2 → R
1 of degree 2r , the convex cone in this

space consisting of everywhere non-negative polynomials, and (also convex) dual cone
in the dual space R̂2r+1 consisting of linear forms taking only positive values inside the
previous cone. The intersection of the boundary of this dual cone with the unit sphere
in R̂2r+1 is naturally homeomorphic to (S1)∗r ; on the other hand it is homeomorphic
to the boundary of a convex 2r -dimensional domain.

Lemma 2 (see Vassiliev 1999, Lemma 3) For any r > 1, the group H∗((S2)∗r ,Q) is
trivial in all positive dimensions. �	

Consider the “sign local system”±Q over B(CP1, p), i.e. the local systemof groups
with fiberQ such that the elements ofπ1(B(CP1, p)) defining odd (respectively, even)
permutations of p points in CP1 act in the fiber as multiplication by −1 (respectively,
by 1).

Lemma 3 (see Vassiliev 1999, Lemma 2) All Borel–Moore homology groups
Hi (B(CP1, p);±Q) with p ≥ 1 are trivial except

H0(B(CP1, 1),±Q)∼= H2(B(CP1, 1),±Q)∼= H2(B(CP1, 2),±Q)∼=Q.

�	

4 Proof of Theorem 1

Following Arnold (1970), we use the Alexander duality

H̃ i (RD\�) � H D−i−1(�). (2)

4.1 Simplicial Resolution of �

To calculate the right-hand group in (2), we construct a resolution of the space �. Let
χ : RP1 → R

T be a generic embedding, T � d1. For any system� = ( f1, . . . , fn) ∈
� not equal identically to zero, consider the simplex �(�) in R

T spanned by the
images χ(xi ) of all points xi ∈ RP

1 corresponding to all lines, on which the system
f has a common root. (The maximal possible number of such lines is obviously equal
to d1.)

Furthermore, consider a subset in the direct product RD × R
T , namely, the union

of all simplices of the form � × �(�), � ∈ �\0. This union is not closed: the set of
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Homology of Spaces of Non-Resultant Homogeneous… 237

its limit points not belonging to it is the product of the point 0 ∈ R
D (corresponding

to the zero system) and the union of all simplices in RT spanned by the images of no
more than d1 different points of the line RP1. By the Caratheodory theorem, the latter
union is homeomorphic to the sphere S2d1−1. We can assume that our embedding
χ : RP1 → R

T is algebraic, and hence this sphere is semialgebraic. Take a generic
2d1-dimensional semialgebraic disc in R

T bounded by this sphere (e.g., the union of
segments connecting the points of this sphere with a generic point in R

T ), and add
the product of the point 0 ∈ R

D and this disc to the previous union of simplices
� × �(�) ⊂ R

D × R
T . The resulting closed subset in RD × R

T will be denoted by
σ and called a simplicial resolution of �.

Lemma 4 The obvious projection σ → � (induced by the projection ofRD ×R
T onto

the first factor) is proper, and the induced map between one-point compactifications
of these spaces is a homotopy equivalence.

This follows easily from the fact that this projection is a stratified map of semialge-
braic spaces, and the preimage of any point of � is contractible: see Vassiliev (1994,
1997). �	

So, we can (and will) calculate the group H∗(σ ) instead of H∗(�).

Remark 2 There is a different construction of a simplicial resolution of � in terms
of “Hilbert schemes”. Namely, let Ip be the space of all ideals of codimension p in
the space of smooth functions RP1 → R

1 equipped with the natural “Grassmannian”
topology. It is easy to see that Ip is homeomorphic to the p-th symmetric power
S p(RP1) = (RP1)p/S(p); in particular, it contains the configuration space B(RP1, p)

as an open dense subset. Consider the disjoint union of these d1 spaces I1, . . . , Id1
augmented with the one-point set I∞ symbolizing the zero ideal. The incidence of
ideals makes this union a partially ordered set. Consider the continuous order com-
plex 	d1 of this poset, i.e. the subset in the join I1 ∗ · · · ∗ Id1 ∗ I∞ consisting of
simplices, whose all vertices are incident to one another. For any polynomial system
� = ( f1, . . . , fn) ∈ R

D , denote by	(�) the subcomplex in	d1 consisting of all sim-
plices, whose all vertices correspond to ideals containing all polynomials f1, . . . , fn .
The simplicial resolution σ̃ ⊂ � ×	d1 is defined as the union of simplices�×	(�)

over all � ∈ �.
This construction is homotopy equivalent to the previous one. In particular, the

Caratheodory theorem has the following version (see Kallel and Karoui (2011)): the
continuous order complex of the poset of all ideals of codimension ≤ r in the space
of functions S1 → R

1 is homotopy equivalent to S2r−1.
However, this construction is less convenient for our practical calculations than the

one described above and used previously in Vassiliev (1994, 1999) [and extended to
some more complicated situations in Gorinov (2005)].

The space σ has a natural increasing filtration F1 ⊂ · · · ⊂ Fd1+1 = σ : its term Fp,

p ≤ d1, is the closure of the union of all simplices of the form � × �(�) over all
polynomial systems � having no more than p lines of common zeros. Alternatively,
it can be described as the union of all no more than (p − 1)-dimensional faces of all
simplices�×�(�) over all systems� ∈ �\0, completed with all no more than (p−
1)-dimensional simplices spanning some ≤ p points of the manifold {0} × χ(RP1).
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238 V. A. Vassiliev

Lemma 5 For any p = 1, . . . , d1, the term Fp\Fp−1 of our filtration is the space
of a locally trivial fiber bundle over the configuration space B(RP1, p), with fibers
equal to the direct product of a (p − 1)-dimensional open simplex and a (D − N (p))-
dimensional real space. The corresponding bundle of open simplices is orientable if
and only if p is odd (i.e. exactly when the base configuration space is orientable), and
the bundle of (D − N (p))-dimensional spaces is orientable if and only if the index
ϒ(p) is even.

The last term Fd1+1\Fd1 of this filtration is homeomorphic to an open 2d1-
dimensional disc.

Indeed, to any configuration (x1, . . . , x p) ∈ B(RP1, p), p ≤ d1, there corresponds
the direct product of the interior part of the simplex inRT spanned by the images χ(xi )

of points of this configuration, and the subspace of RD consisting of polynomial sys-
tems that have solutions on corresponding p lines inR2. The codimension of the latter
subspace is equal exactly to N (p). The assertion concerning the orientations can be
checked in a straightforward way. The description of Fd1+1\Fd1 follows immediately
from the construction and the Caratheodory theorem. �	

Consider the spectral sequence Er
p,q , calculating the group H∗(�) and generated by

this filtration. Its term E1
p,q is canonically isomorphic to the group H p+q(Fp\Fp−1).

By Lemma 5, its column E1
p,∗, p ≤ d1, is as follows. If ϒ(p) is even, then this

column contains exactly two non-trivial terms E1
p,q , both isomorphic to Z, for q equal

to D − N (p)+ p−1 and D − N (p)+ p−2. Ifϒ(p) is odd, then this column contains
only one non-trivial term E1

p,q isomorphic to Z2, for q = D − N (p)+ p − 2. Finally,
the column E1

d1+1,∗ contains only one non-trivial element E1
d1+1,d1−1

∼=Z.
Before calculating the differentials and further terms Er , r > 1, let us consider

several basic examples.

4.2 The Case n = 1

If our system consists of only one polynomial of degree d1, then the term E1 of our
spectral sequence looks as in Fig. 1; in particular, all non-trivial groups E1

p,q lie in
two rows q = d1 and q = d1 − 1.

Lemma 6 If n = 1, then in both cases of even or odd d1, all possible horizontal
differentials ∂1 : E1

p,d1−1 → E1
p−1,d1−1 of the form Z → Z2, p = d1 + 1, d1 −

Fig. 1 E1 for n = 1, d1 even (left) and n = 1, d1 odd (right)
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Homology of Spaces of Non-Resultant Homogeneous… 239

1, d1 − 3, . . . are epimorphisms, and all differentials ∂2 : E2
p,d1−1 → E2

p−2,d1
of the

form Z → Z, p = d1 + 1, d1 − 1, d1 − 3, . . . are isomorphisms. In particular, the
unique surviving term E3

p,q for the “even” spectral sequence is E3
1,d1−1

∼=Z, and for

the “odd” one it is E3
2,d1−1

∼=Z.

Indeed, in both cases we know the answer. In the “odd” case, the discriminant
coincides with entireRD = R

d1+1. In the “even” case, its complement consists of two
contractible components, so that H∗(�) = Z in dimension d1 and is trivial in all other
dimensions. Therefore, all terms E p,q with p + q not equal to d1 + 1 (respectively, to
d1) in the odd- (respectively, even-) dimensional case should die at some stage; this is
possible only if all assertions of our lemma hold. �	

4.3 The Case n = 2

There are two very different situations depending on the parity of d1 − d2. In Fig. 2,
we demonstrate these situations in two particular cases: (d1, d2) = (6, 3) and (7, 3).
However, the general situation is essentially the same; namely, the following is true.

If n = 2 and d1 − d2 is odd, then all indices ϒ(p), p = 1, . . . , d2 + 1, are odd,
and hence all non-trivial groups E1

p,q with such p lie on the line {p + q = d1 + d2}
only and are equal to Z2.

If n = 2 and d1 − d2 is even, then all indices ϒ(p), p = 1, . . . , d2 + 1, are even,
and hence all non-trivial groups E1

p,q with such p lie on two lines {p + q = d1 + d2},
{p + q = d1 + d2 + 1}, and are all equal to Z.

In both cases, all groups E1
p,q with p > d2 are the same as in the case n = 1 with

the same d1. Moreover, the differentials ∂1 and ∂2 between these groups are also the
same as for n = 1; therefore, all of these groups die at E3 except for E3

d2+1,d1−1
∼=Z

for even d1 − d2, and E3
d2+2,d1−1

∼=Z for odd d1 − d2.
In the case of even d1−d2, all other differentials between the groups Er

p,q are trivial,

because otherwise the group H̃0(RD\�) would be smaller than Zd2 , in contradiction
to d2 + 1 different components of this space indicated in Example 1.

Fig. 2 E1 for n = 2, d1 − d2 odd (left) and n = 2, d1 − d2 even (right)
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240 V. A. Vassiliev

On the contrary, if d1 − d2 is odd, then all the differentials dr : Er
d2+2,d1−1 →

Er
d2+2−r,d1−2+r , r = 1, . . . , d1 − d2 + 1, are epimorphic just because the integer

cohomology group of the topological space R
D\� cannot have non-trivial torsion

subgroup in dimension 1. Therefore, the unique nontrivial group E∞
p,q in this case is

E∞
d2+2,d1−1

∼=Z.
This proves Theorem 1 for n = 2.

4.4 The General Case

Now suppose that our systems (1) consist of n ≥ 3 polynomials. Let again σ be the
simplicial resolution of the corresponding resultant variety constructed in Sect. 4.1,
and σ ′ be the simplicial resolution of the resultant variety for n = 2 and the same
d1 and d2. The parts σ\Fd3(σ ) and σ ′\Fd3(σ

′) of these resolutions are canonically
homeomorphic to one another as filtered spaces. In particular, E1

p,q(σ ) = E1
p,q(σ ′)

if p > d3, and Er
p,q(σ ) = Er

p,q if p ≥ d3 + r . All non-trivial terms Er
p,q(σ ) with

p ≤ d3 are placed in such a way that no non-trivial differentials ∂r can act between
these terms, as well as no differentials can act to these terms from the cells Er

p,q with
p > d3, which have survived the differentials between these cells described in the
previous subsection.

Therefore, the final term E∞
p,q(σ ) coincides with E1

p,q(σ ) in the domain {p ≤ d3},
and coincides with the term E∞

p,q(σ ′) of the truncated spectral sequence calculating
the Borel–Moore homology of σ ′\Fd3(σ

′) in the domain {p > d3}. This completes
the proof of Theorem 1. �	

5 Proof of Theorem 2

The simplicial resolution σC of �C appears in the same way as its real analog σ in
the previous section. It also has a natural filtration F1 ⊂ · · · ⊂ Fd1+1 = σC. For
p ∈ [1, d1], its term Fp\Fp−1 is fibered over the configuration space B(CP1, p); its
fiber over a configuration (x1, . . . x p) is equal to the product of the space C

D−N (p)

(consisting of all complex systems (1) vanishing at all lines corresponding to the points
of this configuration) and the (p −1)-dimensional simplex whose vertices correspond
to the points of the configuration. In particular, our spectral sequence calculating ratio-
nal Borel-Moore homology of σC has E1

p,q
∼= Hq−2(D−N (p))+1(B(CP1, p);±Q) for

such p. ByLemma3, only the following such groups are non-trivial: E1
1,2(D−n)−1

∼=Q,

E1
1,2(D−n)+1

∼=Q, and (if d1 > 1) E1
2,2(D−2n)+1

∼=Q.
The last term Fd1+1\Fd1 is homeomorphic to the cone over the d1-th self-join

(CP1)∗d1 with the base of this cone removed (as it belongs to Fd1 ). Therefore, by
Lemma 2, the column E1

d1+1,∗ is trivial if d1 > 1, and contains a unique non-trivial

group E1
2,1

∼=Q if d1 = 1.
So, in any case, the first sheet E1 of our spectral sequence has only three non-trivial

terms E1
1,2(D−n)−1, E1

1,2(D−n)+1, and E1
2,2(D−2n)+1, all of which are isomorphic to

Q. The differentials in it are obviously trivial; therefore, the group H∗(σ ) has three

123



Homology of Spaces of Non-Resultant Homogeneous… 241

non-trivial terms in dimensions 2(D − n), 2(D − n) + 2, and 2(D − 2n) + 3. By
Alexander duality in the spaceCD , this gives us three groups H̃2n−3 ∼=Q, H̃2n−1 ∼=Q,
and H̃4n−4 ∼=Q, and zero in all other dimensions.

All assertions of Theorem 2 concerning the ring structure, realization of cohomol-
ogy classes, and the weight filtration are well-known or obvious in the case d1 = 1
(when D = 2n and C

2n\�C is the space of pairs of linearly independent vectors in
C

n , and is homotopy equivalent to the Stiefel manifold V2(C
n)). The general case

can be deduced from this one by the map P : C
2n\�C → C

D\�C sending any
collection of linear functions ( f1, . . . , fn) to ( f d1

1 , . . . , f dn
n ). Indeed, the realization

of (2n − 1)-dimensional classes follows from the commutative diagram

C
2n\�C

P−→ C
D\�C

↓ ↓
C

n\0 −→ C
n\0

,

where the lower horizontal arrow is defined by

(z1, . . . , zn) �→ (zd1
1 , . . . , zdn

n )

and induces an isomorphism of (2n − 1)-dimensional rational homology groups. The
assertion on the realization of (2n −3)-dimensional classes is obvious. The statements
on the multiplication and the weight filtration follow from the naturality of these
structures. �

6 Proof of Theorem 3

The additive part of this theorem can be proved in almost the same way as that of
Theorem 1: see Vassiliev (1998). In particular, we construct a simplicial resolution
σm of the m-discriminant variety �m . It has a natural filtration �1 ⊂ · · · ⊂ �[d/m] ⊂
�[d/m]+1 = σm . The term �p\�p−1, p ≤ [d/m], of this filtration is the space
of a fiber bundle with the base B(CP1, p). Its fiber over the collection of points
(z1, . . . , z p) ⊂ CP

1 is the product of an open (p − 1)-dimensional simplex whose
vertices are related with these p points, and the subspace of codimension mp in Cd+1

consisting of all polynomials having m-fold zeros on the corresponding p lines. The
term�[d/m]+1\�[d/m] appears from the zero polynomial and is the cone over the space
(CP1)∗[d/m] with the base of this cone removed. The term E1 of the corresponding
spectral sequence can be calculated immediately with the help of Lemmas 2 and 3.
Its shape implies that all further differentials of the spectral sequence are trivial, with
unique exception in the case d = m, when all non-zero (isomorphic to Q) groups
of E1 are E1

1,3, E1
1,1, and E1

2,1. In this case, the differential ∂1 : E1
2,1 → E1

1,1 is an

isomorphism, because the zero section of the tautological bundle over CP1 defines a
non-zero element of the 2-dimensional Borel–Moore homology group of the space of
this bundle. Therefore, the only surviving term is E2

1,3
∼=Q; by Alexander duality, it

gives us a (2m − 3)-dimensional cohomology class.
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242 V. A. Vassiliev

The remaining statements of Theorem 3 are based on the following comparison
lemma. Consider the map J : C

d+1 → C
D , D = m(d + 2 − m), sending any

homogeneous polynomial C2 → C
1 of degree d to the collection of all its partial

derivatives of order m − 1.

Lemma 7 For any d ≥ m > 1, �m = J−1(�C). For any d ≥ 2m − 1, the induced
map of cohomology groups, J ∗ : H∗(CD\�C,Q) → H∗(Cd+1\�m,Q), is an iso-
morphism.

This is a standard comparison theorem of our spectral sequences: see especially
Section IV.7 in Vassiliev (1994, 1997). �	

Now the assertions of Theorem 3 on the multiplication and weight filtrations follow
from the similar assertions of Theorem 2 by the naturality of these structures. �	
Acknowledgments I thankO.A.Malinovskaya for a useful discussion, and also the referee for suggesting
to include the assertions on Hodge structure in Theorems 2 and 3.
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