CrossMark

RESEARCH CONTRIBUTION

Homology of Spaces of Non-Resultant Homogeneous Polynomial Systems in \mathbb{R}^2 and \mathbb{C}^2

V. A. Vassiliev¹

Received: 7 November 2014 / Accepted: 3 June 2015 / Published online: 11 August 2015 © Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2015

Abstract The *resultant* variety in the space of systems of homogeneous polynomials of some given degrees consists of such systems having non-trivial solutions. We calculate the integer cohomology groups of all spaces of non-resultant systems of polynomials $\mathbb{R}^2 \to \mathbb{R}$, and also the rational cohomology rings of spaces of non-resultant systems and non-*m*-discriminant polynomials in \mathbb{C}^2 .

Keywords Resultant variety · Simplicial resolution · Spectral sequence · Configuration space · Caratheodory theorem

1 Introduction

Given *n* natural numbers $d_1 \ge d_2 \ge \cdots \ge d_n$, consider the space of all real homogeneous polynomial systems

$$\begin{cases} a_{1,0}x^{d_1} + a_{1,1}x^{d_1-1}y + \dots + a_{1,d_1}y^{d_1} \\ \dots \\ a_{n,0}x^{d_n} + a_{n,1}x^{d_n-1}y + \dots + a_{n,d_n}y^{d_n} \end{cases}$$
(1)

in two real variables x, y.

Supported by Program "Leading scientific schools", Grant No. NSh-5138.2014.1 and RFBR Grant 13-01-00383.

Steklov Mathematical Institute of Russian Academy of Sciences, National Research University Higher School of Economics, Moscow, Russia

[∨] V. A. Vassiliev vva@mi.ras.ru

We will refer to this space as \mathbb{R}^D , $D = \sum_{1}^{n} (d_i + 1)$. The *resultant variety* $\Sigma \subset \mathbb{R}^D$ is the space of all systems having non-zero solutions. Σ is a semialgebraic subvariety of codimension n-1 in \mathbb{R}^D .

Below we calculate the cohomology group of its complement, $H^*(\mathbb{R}^D \setminus \Sigma)$. Also, we calculate the rational cohomology rings of the complex analogs $\mathbb{C}^D \setminus \Sigma_{\mathbb{C}}$ of all spaces $\mathbb{R}^D \setminus \Sigma$.

For the "affine" version of the "real" problem (concerning the space of non-resultant systems of polynomials $\mathbb{R}^1 \to \mathbb{R}^1$ with leading terms x^{d_i}), see, e.g., Vassiliev (1994, 1997) and Kozlowski and Yamaguchi (2000); for the "complex" problem with n=2 see also Cohen et al. (1991). A similar calculation for spaces of real homogeneous polynomials in \mathbb{R}^2 without zeros of multiplicity $\geq m$ was done in Vassiliev (1998).

The entire study of homology groups of spaces of non-singular (in appropriate sense) objects goes back to the Arnold's works (1970, 1989), as well as the idea of using the Alexander duality in this problem.

2 Main Results

2.1 Notation

For any natural p, denote by N(p) the sum of all numbers d_i+1 , $i=1,\ldots,n$, which are less than or equal to p, plus p times the number of those d_i which are equal to or greater than p. [In other words, N(p) is the area of the part of Young diagram (d_1+1,\ldots,d_n+1) strictly to the left from the (p+1)-th column.] Let the index $\Upsilon(p)$ be equal to the number of even numbers $d_i \geq p$ if p is even, and to the number of odd numbers $d_i \geq p$ if p is odd. By $\tilde{H}^*(X)$ we denote the cohomology group reduced modulo a point. $\overline{H}_*(X)$ denotes the Borel–Moore homology group, i.e. the homology group of the complex of locally finite singular chains of X.

Theorem 1 If the space $\mathbb{R}^D \setminus \Sigma$ is non-empty (i.e. either n > 1 or d_1 is even), then the group $\tilde{H}^*(\mathbb{R}^D \setminus \Sigma, \mathbb{Z})$ is equal to the direct sum of following groups:

- A) For any $p = 1, ..., d_3$,
- if $\Upsilon(p)$ is even, then \mathbb{Z} in dimension N(p)-2p and \mathbb{Z} in dimension N(p)-2p+1, if $\Upsilon(p)$ is odd, then only one group \mathbb{Z}_2 in dimension N(p)-2p+1;
- B) If d_1-d_2 is odd, then an additional summand \mathbb{Z} in dimension $D-d_1-d_2-2$. If d_1-d_2 is even, then an additional summand $\mathbb{Z}^{d_2-d_3+1}$ in dimension $D-d_1-d_2-1$ and (if $d_2 \neq d_3$) a summand $\mathbb{Z}^{d_2-d_3}$ in dimension $D-d_1-d_2-2$.

Example 1 Let n=2 [so that part (A) in the statement of Theorem 1 is void]. If d_1 and d_2 are of the same parity, then $\mathbb{R}^D \setminus \Sigma$ consists of d_2+1 connected components, each of which is homotopy equivalent to a circle. For an invariant, which separates systems belonging to different components, we can take the index of the induced map of the unit circle $S^1 \subset \mathbb{R}^2$ into $\mathbb{R}^2 \setminus 0$. This index can take all values of the same parity as d_1 and d_2 from the segment $[-d_2, d_2]$. The 1-dimensional cohomology class inside any component is just the rotation number of the image of a fixed point [say, (1,0)] around the origin. Moreover, the images of this point under our non-resultant systems define a map $\mathbb{R}^D \setminus \Sigma \to \mathbb{R}^2 \setminus 0$; it is easy to see that any fiber of this map consists of $d_2 + 1$ contractible components.

If d_1 and d_2 are of different parities, then the space $\mathbb{R}^D \setminus \Sigma$ has the homology of a two-point set. The invariant separating its two connected components can be calculated as the parity of the number of zeros of the odd-degree polynomial of our non-resultant system, which lie in the (well-defined) domain in \mathbb{RP}^1 where the even-degree polynomial is positive.

Now, let \mathbb{C}^D be the space of all polynomial systems (1) with *complex* coefficients $a_{i,j}$, and $\Sigma_{\mathbb{C}} \subset \mathbb{C}^D$ the set of systems having solutions in $\mathbb{C}^2 \setminus 0$.

Theorem 2 For any n > 1, the ring $H^*(\mathbb{C}^D \setminus \Sigma_{\mathbb{C}}, \mathbb{Q})$ is an exterior algebra over \mathbb{Q} with two generators of dimensions 2n-3 and 2n-1. Namely, these generators are the linking number with the Borel-Moore fundamental class of entire resultant variety and the pull-back of the basic cohomology class under the map $\mathbb{C}^D \setminus \Sigma_{\mathbb{C}} \to \mathbb{C}^n \setminus 0$ defined by restrictions of non-resultant systems (f_1, \ldots, f_n) to the point (1, 0). The weight filtrations of these two generators and their product in the mixed Hodge structure of $\mathbb{C}^D \setminus \Sigma_{\mathbb{C}}$ are equal to 2n-2, 2n and 4n-2 respectively.

Consider also the space \mathbb{C}^{d+1} of all complex homogeneous polynomials

$$a_0 x^d + a_1 x^{d-1} y + \dots + a_d y^d$$
,

and m-discriminant Σ_m in it consisting of all polynomials vanishing on some line with multiplicity $\geq m$.

Theorem 3 For any m > 1 and $d \ge 2m-1$, the ring $H^*(\mathbb{C}^{d+1} \setminus \Sigma_m, \mathbb{Q})$ is isomorphic to an exterior algebra over \mathbb{Q} with two generators of dimensions 2m-3 and 2m-1. The weight filtrations of these two generators and of their product are equal to 2m-2, 2m and 4m-2 respectively. For any m>1 and $d \in [m+1, 2m-2]$, this ring is isomorphic to \mathbb{Q} in dimensions 0, 2m-3, 2m-1 and 2d-2, and is trivial in all other dimensions; the multiplication is obviously trivial. For d=m>1 this ring is isomorphic to \mathbb{Q} in dimensions 0 and 2m-3, and is trivial in all other dimensions.

3 Some Preliminary Facts

Denote by B(M, p) the *configuration space* of subsets of cardinality p of a topological space M.

Lemma 1 For any natural p, there is a locally trivial fiber bundle $B(S^1, p) \to S^1$ whose fiber is homeomorphic to \mathbb{R}^{p-1} . This fiber bundle is non-orientable if p is even, and is orientable (and hence trivial) if p is odd.

Indeed, the projection of this fiber bundle can be realised as the product of p points of the unit circle in \mathbb{C}^1 . The fiber of this bundle can be identified in terms of the universal covering $\mathbb{R}^p \to T^p$ with any connected component of some hyperplane $\{x_1 + \dots + x_p = \text{const}\}$, from which all affine planes given by $x_i = x_j + 2\pi k$, $i \neq j$, $k \in \mathbb{Z}$, are removed. Such a component is convex and hence diffeomorphic to \mathbb{R}^{p-1} . The assertion on orientability can be checked immediately.

Let us embed a manifold M generically into the space \mathbb{R}^T of a very large dimension, and denote by M^{*r} the union of all (r-1)-dimensional simplices in \mathbb{R}^T , whose vertices lie in this embedded manifold (and the "genericity" of the embedding means that if two such simplices have a common point in \mathbb{R}^T , then their minimal faces containing this point coincide).

Proposition 1 (C. Caratheodory theorem: see also Vassiliev 1997; Kallel and Karoui 2011) For any $r \ge 1$, the space $(S^1)^{*r}$ is homeomorphic to S^{2r-1} .

Remark 1 This homeomorphism can be realized as follows. Consider the space \mathbb{R}^{2r+1} of all real homogeneous polynomials $\mathbb{R}^2 \to \mathbb{R}^1$ of degree 2r, the convex cone in this space consisting of everywhere non-negative polynomials, and (also convex) dual cone in the dual space $\widehat{\mathbb{R}}^{2r+1}$ consisting of linear forms taking only positive values inside the previous cone. The intersection of the boundary of this dual cone with the unit sphere in $\widehat{\mathbb{R}}^{2r+1}$ is naturally homeomorphic to $(S^1)^{*r}$; on the other hand it is homeomorphic to the boundary of a convex 2r-dimensional domain.

Lemma 2 (see Vassiliev 1999, Lemma 3) For any r > 1, the group $H_*((S^2)^{*r}, \mathbb{Q})$ is trivial in all positive dimensions.

Consider the "sign local system" $\pm \mathbb{Q}$ over $B(\mathbb{CP}^1, p)$, i.e. the local system of groups with fiber \mathbb{Q} such that the elements of $\pi_1(B(\mathbb{CP}^1, p))$ defining odd (respectively, even) permutations of p points in \mathbb{CP}^1 act in the fiber as multiplication by -1 (respectively, by 1).

Lemma 3 (see Vassiliev 1999, Lemma 2) All Borel–Moore homology groups $\overline{H}_i(B(\mathbb{CP}^1, p); \pm \mathbb{Q})$ with $p \geq 1$ are trivial except

$$\overline{H}_0(B(\mathbb{CP}^1,1),\pm\mathbb{Q})\cong\overline{H}_2(B(\mathbb{CP}^1,1),\pm\mathbb{Q})\cong\overline{H}_2(B(\mathbb{CP}^1,2),\pm\mathbb{Q})\cong\mathbb{Q}.$$

4 Proof of Theorem 1

Following Arnold (1970), we use the Alexander duality

$$\tilde{H}^i(\mathbb{R}^D \setminus \Sigma) \simeq \overline{H}_{D-i-1}(\Sigma).$$
 (2)

4.1 Simplicial Resolution of Σ

To calculate the right-hand group in (2), we construct a *resolution* of the space Σ . Let $\chi: \mathbb{RP}^1 \to \mathbb{R}^T$ be a generic embedding, $T \gg d_1$. For any system $\Phi = (f_1, \ldots, f_n) \in \Sigma$ not equal identically to zero, consider the simplex $\Delta(\Phi)$ in \mathbb{R}^T spanned by the images $\chi(x_i)$ of all points $x_i \in \mathbb{RP}^1$ corresponding to all lines, on which the system f has a common root. (The maximal possible number of such lines is obviously equal to d_1 .)

Furthermore, consider a subset in the direct product $\mathbb{R}^D \times \mathbb{R}^T$, namely, the union of all simplices of the form $\Phi \times \Delta(\Phi)$, $\Phi \in \Sigma \setminus 0$. This union is not closed: the set of

its limit points not belonging to it is the product of the point $0 \in \mathbb{R}^D$ (corresponding to the zero system) and the union of all simplices in \mathbb{R}^T spanned by the images of no more than d_1 different points of the line \mathbb{RP}^1 . By the Caratheodory theorem, the latter union is homeomorphic to the sphere S^{2d_1-1} . We can assume that our embedding $\chi: \mathbb{RP}^1 \to \mathbb{R}^T$ is algebraic, and hence this sphere is semialgebraic. Take a generic $2d_1$ -dimensional semialgebraic disc in \mathbb{R}^T bounded by this sphere (e.g., the union of segments connecting the points of this sphere with a generic point in \mathbb{R}^T), and add the product of the point $0 \in \mathbb{R}^D$ and this disc to the previous union of simplices $\Phi \times \Delta(\Phi) \subset \mathbb{R}^D \times \mathbb{R}^T$. The resulting closed subset in $\mathbb{R}^D \times \mathbb{R}^T$ will be denoted by σ and called a *simplicial resolution* of Σ .

Lemma 4 The obvious projection $\sigma \to \Sigma$ (induced by the projection of $\mathbb{R}^D \times \mathbb{R}^T$ onto the first factor) is proper, and the induced map between one-point compactifications of these spaces is a homotopy equivalence.

This follows easily from the fact that this projection is a stratified map of semialgebraic spaces, and the preimage of any point of Σ is contractible: see Vassiliev (1994, 1997).

So, we can (and will) calculate the group $\overline{H}_*(\sigma)$ instead of $\overline{H}_*(\Sigma)$.

Remark 2 There is a different construction of a simplicial resolution of Σ in terms of "Hilbert schemes". Namely, let I_p be the space of all ideals of codimension p in the space of smooth functions $\mathbb{RP}^1 \to \mathbb{R}^1$ equipped with the natural "Grassmannian" topology. It is easy to see that I_p is homeomorphic to the p-th symmetric power $S^p(\mathbb{RP}^1) = (\mathbb{RP}^1)^p/S(p)$; in particular, it contains the configuration space $B(\mathbb{RP}^1, p)$ as an open dense subset. Consider the disjoint union of these d_1 spaces I_1, \ldots, I_{d_1} augmented with the one-point set I_∞ symbolizing the zero ideal. The incidence of ideals makes this union a partially ordered set. Consider the continuous order complex Ξ_{d_1} of this poset, i.e. the subset in the join $I_1 * \cdots * I_{d_1} * I_\infty$ consisting of simplices, whose all vertices are incident to one another. For any polynomial system $\Phi = (f_1, \ldots, f_n) \in \mathbb{R}^D$, denote by $\Xi(\Phi)$ the subcomplex in Ξ_{d_1} consisting of all simplices, whose all vertices correspond to ideals containing all polynomials f_1, \ldots, f_n . The simplicial resolution $\tilde{\sigma} \subset \Sigma \times \Xi_{d_1}$ is defined as the union of simplices $\Phi \times \Xi(\Phi)$ over all $\Phi \in \Sigma$.

This construction is homotopy equivalent to the previous one. In particular, the Caratheodory theorem has the following version (see Kallel and Karoui (2011)): the continuous order complex of the poset of all ideals of codimension $\leq r$ in the space of functions $S^1 \to \mathbb{R}^1$ is homotopy equivalent to S^{2r-1} .

However, this construction is less convenient for our practical calculations than the one described above and used previously in Vassiliev (1994, 1999) [and extended to some more complicated situations in Gorinov (2005)].

The space σ has a natural increasing filtration $F_1 \subset \cdots \subset F_{d_1+1} = \sigma$: its term F_p , $p \leq d_1$, is the closure of the union of all simplices of the form $\Phi \times \Delta(\Phi)$ over all polynomial systems Φ having no more than p lines of common zeros. Alternatively, it can be described as the union of all no more than (p-1)-dimensional faces of all simplices $\Phi \times \Delta(\Phi)$ over all systems $\Phi \in \Sigma \setminus 0$, completed with all no more than (p-1)-dimensional simplices spanning some $\leq p$ points of the manifold $\{0\} \times \chi(\mathbb{RP}^1)$.

Lemma 5 For any $p = 1, ..., d_1$, the term $F_p \backslash F_{p-1}$ of our filtration is the space of a locally trivial fiber bundle over the configuration space $B(\mathbb{RP}^1, p)$, with fibers equal to the direct product of a (p-1)-dimensional open simplex and a (D-N(p))dimensional real space. The corresponding bundle of open simplices is orientable if and only if p is odd (i.e. exactly when the base configuration space is orientable), and the bundle of (D - N(p))-dimensional spaces is orientable if and only if the index $\Upsilon(p)$ is even.

The last term $F_{d_1+1}\backslash F_{d_1}$ of this filtration is homeomorphic to an open $2d_1$ dimensional disc.

Indeed, to any configuration $(x_1, \ldots, x_p) \in B(\mathbb{RP}^1, p), p \leq d_1$, there corresponds the direct product of the interior part of the simplex in \mathbb{R}^T spanned by the images $\chi(x_i)$ of points of this configuration, and the subspace of \mathbb{R}^D consisting of polynomial systems that have solutions on corresponding p lines in \mathbb{R}^2 . The codimension of the latter subspace is equal exactly to N(p). The assertion concerning the orientations can be checked in a straightforward way. The description of $F_{d_1+1} \setminus F_{d_1}$ follows immediately from the construction and the Caratheodory theorem.

Consider the spectral sequence $E^r_{p,q}$, calculating the group $\overline{H}_*(\Sigma)$ and generated by this filtration. Its term $E_{p,q}^1$ is canonically isomorphic to the group $\overline{H}_{p+q}(F_p \backslash F_{p-1})$. By Lemma 5, its column $E_{p,*}^1$, $p \leq d_1$, is as follows. If $\Upsilon(p)$ is even, then this column contains exactly two non-trivial terms $E_{p,q}^1$, both isomorphic to \mathbb{Z} , for q equal to D-N(p)+p-1 and D-N(p)+p-2. If $\Upsilon(p)$ is odd, then this column contains only one non-trivial term $E_{p,q}^1$ isomorphic to \mathbb{Z}_2 , for q=D-N(p)+p-2. Finally, the column $E^1_{d_1+1,*}$ contains only one non-trivial element $E^1_{d_1+1,d_1-1} \cong \mathbb{Z}$. Before calculating the differentials and further terms E^r , r>1, let us consider

several basic examples.

4.2 The Case n=1

If our system consists of only one polynomial of degree d_1 , then the term E^1 of our spectral sequence looks as in Fig. 1; in particular, all non-trivial groups $E_{p,q}^1$ lie in two rows $q = d_1$ and $q = d_1 - 1$.

Lemma 6 If n = 1, then in both cases of even or odd d_1 , all possible horizontal differentials $\partial_1: E^1_{p,d_1-1} \to E^1_{p-1,d_1-1}$ of the form $\mathbb{Z} \to \mathbb{Z}_2$, $p=d_1+1,d_1-1$

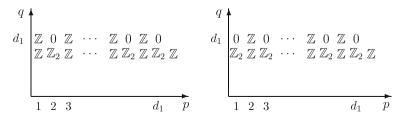


Fig. 1 E^1 for n = 1, d_1 even (*left*) and n = 1, d_1 odd (*right*)

 $1, d_1 - 3, \ldots$ are epimorphisms, and all differentials $\partial_2 : E^2_{p,d_1-1} \to E^2_{p-2,d_1}$ of the form $\mathbb{Z} \to \mathbb{Z}$, $p = d_1 + 1, d_1 - 1, d_1 - 3, \ldots$ are isomorphisms. In particular, the unique surviving term $E^3_{p,q}$ for the "even" spectral sequence is $E^3_{1,d_1-1} \cong \mathbb{Z}$, and for the "odd" one it is $E^3_{2,d_1-1} \cong \mathbb{Z}$.

Indeed, in both cases we know the answer. In the "odd" case, the discriminant coincides with entire $\mathbb{R}^D = \mathbb{R}^{d_1+1}$. In the "even" case, its complement consists of two contractible components, so that $\overline{H}_*(\Sigma) = \mathbb{Z}$ in dimension d_1 and is trivial in all other dimensions. Therefore, all terms $E_{p,q}$ with p+q not equal to d_1+1 (respectively, to d_1) in the odd- (respectively, even-) dimensional case should die at some stage; this is possible only if all assertions of our lemma hold.

4.3 The Case n=2

There are two very different situations depending on the parity of $d_1 - d_2$. In Fig. 2, we demonstrate these situations in two particular cases: $(d_1, d_2) = (6, 3)$ and (7, 3). However, the general situation is essentially the same; namely, the following is true.

If n=2 and d_1-d_2 is odd, then all indices $\Upsilon(p)$, $p=1,\ldots,d_2+1$, are odd, and hence all non-trivial groups $E_{p,q}^1$ with such p lie on the line $\{p+q=d_1+d_2\}$ only and are equal to \mathbb{Z}_2 .

If n=2 and d_1-d_2 is even, then all indices $\Upsilon(p)$, $p=1,\ldots,d_2+1$, are even, and hence all non-trivial groups $E_{p,q}^1$ with such p lie on two lines $\{p+q=d_1+d_2\}$, $\{p+q=d_1+d_2+1\}$, and are all equal to \mathbb{Z} .

In both cases, all groups $E_{p,q}^1$ with $p>d_2$ are the same as in the case n=1 with the same d_1 . Moreover, the differentials ∂_1 and ∂_2 between these groups are also the same as for n=1; therefore, all of these groups die at E^3 except for $E_{d_2+1,d_1-1}^3\cong\mathbb{Z}$ for even d_1-d_2 , and $E_{d_2+2,d_1-1}^3\cong\mathbb{Z}$ for odd d_1-d_2 .

for even d_1-d_2 , and $E^3_{d_2+2,d_1-1}\cong \mathbb{Z}$ for odd d_1-d_2 . In the case of even d_1-d_2 , all other differentials between the groups $E^r_{p,q}$ are trivial, because otherwise the group $\tilde{H}^0(\mathbb{R}^D\backslash\Sigma)$ would be smaller than \mathbb{Z}^{d_2} , in contradiction to d_2+1 different components of this space indicated in Example 1.

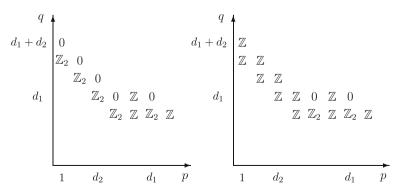


Fig. 2 E^1 for n = 2, $d_1 - d_2$ odd (*left*) and n = 2, $d_1 - d_2$ even (*right*)

On the contrary, if d_1-d_2 is odd, then all the differentials $d_r: E^r_{d_2+2,d_1-1} \to E^r_{d_2+2-r,d_1-2+r}, r=1,\ldots,d_1-d_2+1$, are epimorphic just because the integer cohomology group of the topological space $\mathbb{R}^D \setminus \Sigma$ cannot have non-trivial torsion subgroup in dimension 1. Therefore, the unique nontrivial group $E^\infty_{p,q}$ in this case is $E^\infty_{d_2+2,d_1-1} \cong \mathbb{Z}$.

This proves Theorem 1 for n = 2.

4.4 The General Case

Now suppose that our systems (1) consist of $n \geq 3$ polynomials. Let again σ be the simplicial resolution of the corresponding resultant variety constructed in Sect. 4.1, and σ' be the simplicial resolution of the resultant variety for n=2 and the same d_1 and d_2 . The parts $\sigma \setminus F_{d_3}(\sigma)$ and $\sigma' \setminus F_{d_3}(\sigma')$ of these resolutions are canonically homeomorphic to one another as filtered spaces. In particular, $E_{p,q}^1(\sigma) = E_{p,q}^1(\sigma')$ if $p > d_3$, and $E_{p,q}^r(\sigma) = E_{p,q}^r$ if $p \geq d_3 + r$. All non-trivial terms $E_{p,q}^r(\sigma)$ with $p \leq d_3$ are placed in such a way that no non-trivial differentials ∂_r can act between these terms, as well as no differentials can act to these terms from the cells $E_{p,q}^r$ with $p > d_3$, which have survived the differentials between these cells described in the previous subsection.

Therefore, the final term $E_{p,q}^{\infty}(\sigma)$ coincides with $E_{p,q}^{1}(\sigma)$ in the domain $\{p \leq d_3\}$, and coincides with the term $E_{p,q}^{\infty}(\sigma')$ of the truncated spectral sequence calculating the Borel–Moore homology of $\sigma' \setminus F_{d_3}(\sigma')$ in the domain $\{p > d_3\}$. This completes the proof of Theorem 1.

5 Proof of Theorem 2

The simplicial resolution $\sigma_{\mathbb{C}}$ of $\Sigma_{\mathbb{C}}$ appears in the same way as its real analog σ in the previous section. It also has a natural filtration $F_1 \subset \cdots \subset F_{d_1+1} = \sigma_{\mathbb{C}}$. For $p \in [1, d_1]$, its term $F_p \backslash F_{p-1}$ is fibered over the configuration space $B(\mathbb{CP}^1, p)$; its fiber over a configuration $(x_1, \ldots x_p)$ is equal to the product of the space $\mathbb{C}^{D-N(p)}$ (consisting of all complex systems (1) vanishing at all lines corresponding to the points of this configuration) and the (p-1)-dimensional simplex whose vertices correspond to the points of the configuration. In particular, our spectral sequence calculating rational Borel-Moore homology of $\sigma_{\mathbb{C}}$ has $E_{p,q}^1 \cong \overline{H}_{q-2(D-N(p))+1}(B(\mathbb{CP}^1,p);\pm\mathbb{Q})$ for such p. By Lemma 3, only the following such groups are non-trivial: $E_{1,2(D-n)-1}^1 \cong \mathbb{Q}$, $E_{1,2(D-n)+1}^1 \cong \mathbb{Q}$, and (if $d_1 > 1$) $E_{2,2(D-2n)+1}^1 \cong \mathbb{Q}$.

 $E_{1,2(D-n)+1}^1 \cong \mathbb{Q}$, and (if $d_1 > 1$) $E_{2,2(D-2n)+1}^1 \cong \mathbb{Q}$. The last term $F_{d_1+1} \setminus F_{d_1}$ is homeomorphic to the cone over the d_1 -th self-join $(\mathbb{CP}^1)^{*d_1}$ with the base of this cone removed (as it belongs to F_{d_1}). Therefore, by Lemma 2, the column $E_{d_1+1,*}^1$ is trivial if $d_1 > 1$, and contains a unique non-trivial group $E_{2,1}^1 \cong \mathbb{Q}$ if $d_1 = 1$.

So, in any case, the first sheet E^1 of our spectral sequence has only three non-trivial terms $E^1_{1,2(D-n)-1}$, $E^1_{1,2(D-n)+1}$, and $E^1_{2,2(D-2n)+1}$, all of which are isomorphic to \mathbb{Q} . The differentials in it are obviously trivial; therefore, the group $\overline{H}_*(\sigma)$ has three

non-trivial terms in dimensions 2(D-n), 2(D-n)+2, and 2(D-2n)+3. By Alexander duality in the space \mathbb{C}^D , this gives us three groups $\tilde{H}^{2n-3} \cong \mathbb{Q}$, $\tilde{H}^{2n-1} \cong \mathbb{Q}$, and $\tilde{H}^{4n-4} \cong \mathbb{Q}$, and zero in all other dimensions.

All assertions of Theorem 2 concerning the ring structure, realization of cohomology classes, and the weight filtration are well-known or obvious in the case $d_1=1$ (when D=2n and $\mathbb{C}^{2n}\backslash \Sigma_{\mathbb{C}}$ is the space of pairs of linearly independent vectors in \mathbb{C}^n , and is homotopy equivalent to the Stiefel manifold $V_2(\mathbb{C}^n)$). The general case can be deduced from this one by the map $P:\mathbb{C}^{2n}\backslash \Sigma_{\mathbb{C}}\to \mathbb{C}^D\backslash \Sigma_{\mathbb{C}}$ sending any collection of linear functions (f_1,\ldots,f_n) to $(f_1^{d_1},\ldots,f_n^{d_n})$. Indeed, the realization of (2n-1)-dimensional classes follows from the commutative diagram

$$\begin{array}{ccc}
\mathbb{C}^{2n} \backslash \Sigma_{\mathbb{C}} & \xrightarrow{P} \mathbb{C}^{D} \backslash \Sigma_{\mathbb{C}} \\
\downarrow & & \downarrow \\
\mathbb{C}^{n} \backslash 0 & \longrightarrow \mathbb{C}^{n} \backslash 0
\end{array}$$

where the lower horizontal arrow is defined by

$$(z_1,\ldots,z_n)\mapsto(z_1^{d_1},\ldots,z_n^{d_n})$$

and induces an isomorphism of (2n-1)-dimensional rational homology groups. The assertion on the realization of (2n-3)-dimensional classes is obvious. The statements on the multiplication and the weight filtration follow from the naturality of these structures.

6 Proof of Theorem 3

The additive part of this theorem can be proved in almost the same way as that of Theorem 1: see Vassiliev (1998). In particular, we construct a simplicial resolution σ_m of the *m*-discriminant variety Σ_m . It has a natural filtration $\Phi_1 \subset \cdots \subset \Phi_{\lceil d/m \rceil} \subset$ $\Phi_{[d/m]+1} = \sigma_m$. The term $\Phi_p \setminus \Phi_{p-1}$, $p \leq [d/m]$, of this filtration is the space of a fiber bundle with the base $B(\mathbb{CP}^1, p)$. Its fiber over the collection of points $(z_1,\ldots,z_p)\subset\mathbb{CP}^1$ is the product of an open (p-1)-dimensional simplex whose vertices are related with these p points, and the subspace of codimension mp in \mathbb{C}^{d+1} consisting of all polynomials having m-fold zeros on the corresponding p lines. The term $\Phi_{[d/m]+1} \setminus \Phi_{[d/m]}$ appears from the zero polynomial and is the cone over the space $(\mathbb{CP}^1)^{*[d/m]}$ with the base of this cone removed. The term E^1 of the corresponding spectral sequence can be calculated immediately with the help of Lemmas 2 and 3. Its shape implies that all further differentials of the spectral sequence are trivial, with unique exception in the case d=m, when all non-zero (isomorphic to \mathbb{Q}) groups of E^1 are $E^1_{1,3}$, $E^1_{1,1}$, and $E^1_{2,1}$. In this case, the differential $\partial_1: E^1_{2,1} \to E^1_{1,1}$ is an isomorphism, because the zero section of the tautological bundle over \mathbb{CP}^1 defines a non-zero element of the 2-dimensional Borel-Moore homology group of the space of this bundle. Therefore, the only surviving term is $E_{1,3}^2 \cong \mathbb{Q}$; by Alexander duality, it gives us a (2m-3)-dimensional cohomology class.

The remaining statements of Theorem 3 are based on the following comparison lemma. Consider the map $J: \mathbb{C}^{d+1} \to \mathbb{C}^D$, D=m(d+2-m), sending any homogeneous polynomial $\mathbb{C}^2 \to \mathbb{C}^1$ of degree d to the collection of all its partial derivatives of order m-1.

Lemma 7 For any $d \ge m > 1$, $\Sigma_m = J^{-1}(\Sigma_{\mathbb{C}})$. For any $d \ge 2m - 1$, the induced map of cohomology groups, $J^*: H^*(\mathbb{C}^D \setminus \Sigma_{\mathbb{C}}, \mathbb{Q}) \to H^*(\mathbb{C}^{d+1} \setminus \Sigma_m, \mathbb{Q})$, is an isomorphism.

This is a standard comparison theorem of our spectral sequences: see especially Section IV.7 in Vassiliev (1994, 1997).

Now the assertions of Theorem 3 on the multiplication and weight filtrations follow from the similar assertions of Theorem 2 by the naturality of these structures. \Box

Acknowledgments I thank O. A. Malinovskaya for a useful discussion, and also the referee for suggesting to include the assertions on Hodge structure in Theorems 2 and 3.

References

Arnold, V.I.: On some topological invariants of algebraic functions. Trans. Moscow Math. Soc. 21, 30–52 (1970)

Arnold, V.I.: Spaces of functions with moderate singularities. Funct. Anal. Appl. 23(3), 1–10 (1989)

Cohen, F.R., Cohen, R.L., Mann, B.M., Milgram, R.J.: The topology of the space of rational functions and divisors of surfaces. Acta Math. **166**, 163–221 (1991)

Gorinov, A.: Real cohomology groups of the space of nonsingular curves of degree 5 in \mathbb{CP}^2 . Ann. Fac. Toulouse Math. (6) **14**(3), 395–434 (2005). arXiv:math.AT/0105108

Kallel, S., Karoui, R.: Symmetric joins and weighted barycenters. Adv. Nonlinear Stud. 11, 117–143 (2011). arXiv:math/0602283v3

Kozlowski, A., Yamaguchi, R.: Topology of complements of discriminants and resultants. J. Math. Soc. Jpn. 52(4), 949–959 (2000)

Vassiliev, V.A.: Complements of Discriminants of Smooth Maps: Topology and Applications. Revised edition, Translation in Mathematical Monographs, vol. 98, AMS, Providence (1994)

Vassiliev, V.A.: Topology of Complements of Discriminants. Moscow, Phasis, p. 552 (1997) (in Russian) Vassiliev, V.A.: Homology of spaces of homogeneous polynomials in ℝ² without multiple zeros. Proc. Steklov Math. Inst. 221, 143–148 (1998). arXiv:1407.7230

Vassiliev, V.A.: How to calculte the homology of spaces of nonsingular algebraic projective hypersurfaces. Proc. Steklov Math. Inst. **225**, 121–140 (1999). arXiv:1407.7229

