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Abstract

We prove the existence of Carathéodory-type selectors (that is, measurable in the first variable
and having certain regularity properties like Lipschitz continuity, absolute continuity or bounded
variation in the second variable) for multifunctions mapping the product of a measurable space
and an interval into compact subsets of a metric space or metric semigroup.
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1. Introduction

The purpose of this paper is to obtain the existence of Carathéodory-type selectors
(i.e., measurable in the first variable and having certain regularity in the second variable)
for multifunctions of two variables with compact values.
By the axiom of choice, any multifunction with nonempty images admits a selector.

Usually one is interested in selectors satisfying some regularity properties such as, e.g.,
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continuity, measurability, etc. The fundamental result on the existence of continuous
selectors for convex-valued multifunctions was given by Michael[24]. The existence
of measurable selectors for multifunctions on a measurable space with closed val-
ues from a complete separable metric space was proved by Kuratowski and Ryll-
Nardzewski [22]. The study of Carathéodory selectors for multifunctions of two vari-
ables was initiated by Castaing [3,4] and Cellina [6], which was motivated by ap-
plications to differential inclusions. This adopts methods and results developed in
the theories of continuous and measurable selections (see Kucia [20] and references
therein). In those works the attention was paid to convex-valued multifunctions (re-
call that a continuous multifunction with nonconvex values might admit no continuous
selector [16,24]).
The existence of regular selectors (i.e., preserving the properties of multifunctions) for

nonconvex-valued multifunctions of one real variable which are Lipschitzian,
absolutely continuous or of bounded variation were treated by Belov and Chistyakov [1],
Chistyakov [7–12], Hermes [17], Mordukhovich [25], Qiji [26] and́Slȩzak [28]. The
last author [28, Theorem 5] proved the existence of selectors for nonconvex valued
multifunctions of two variables which are continuous in the first variable and Lipschitz
continuous in the second variable.
Let F be a multifunction defined on the product of a measurable space and an

interval. In this paper, we are interested in finding those selectors ofF which preserve
measurability in the first variablet and regularity properties like Lipschitz continuity,
absolute continuity or bounded variation in the second variablex. In order to do this, we
introduce a new multifunction with nonempty values (according to the results described
in the last paragraph) which maps the measurable variablet into the set of regular
selectors of the one-variable multifunctionx �→ F(t, x), and then apply the graph-
conditioned measurable selection theorems due to Brown and Purves [2] and Leese [23]
(see also the survey by Wagner [29]). This approach to Carathéodory-type selectors was
proposed by Castaing in [4].
The paper is organized as follows. Section 2 contains preliminaries and the formula-

tion of the problem. In Section 3, we prove the existence of selectors for Carathéodory-
type multifunctions which are Lipschitz continuous or continuous and of bounded
variation in the second variable (Theorem 1). In Section 4, we endow the spaces of map-
pings of bounded variation and absolutely continuous mappings with the structure of a
metric semigroup (Theorem 2), which permits us to obtain, in Section 5, the existence
of selectors for Carathéodory-type multifunctions which are absolutely continuous or
of bounded variation in the second variable (Theorems 3 and 4). Some open problems
are enlisted at the end of the paper.

2. Preliminaries and statement of the problem

We begin with reviewing certain definitions and known facts needed for our results.
Let X be an interval (open, closed, half-closed, bounded or not) on the real lineR

and (Y, d) be a metric space with metricd.
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Given a mappingf :X → Y , the quantity (finite or not)

V (f ) ≡ Vd(f,X) = sup

{
m∑
i=1

d (f (xi), f (xi−1)) :P = {xi}mi=0
}

with the supremum taken over all partitionsP = {xi}mi=0 of X (i.e. m ∈ N, {x0, x1, . . . ,
xm} ⊂ X and xi−1 < xi , i = 1, . . . , m) is called thetotal (Jordan) variation of f
on X. If V (f ) < ∞, we say that the mappingf is of bounded variationand write
f ∈ BV(X, Y ).
Recall that a mappingf :X → Y is said to beLipschitzianif the following quantity,

called the (minimal) Lipschitz constant of f, is finite:

L(f ) ≡ Ld(f,X) = sup
{
d(f (x), f (x′))

/ |x − x′| : x, x′ ∈ X, x �= x′} ;
in this case we writef ∈ Lip(X, Y ).
A mapping f :X → Y is said to be absolutely continuous(in symbols,

f ∈ AC(X, Y )) if f ∈ BV(X, Y ) (this condition is redundant ifX is compact)
and for eachε > 0 there exists a number�(ε) > 0 (depending onf, in general)
such that ifn ∈ N, {ai, bi}ni=1 ⊂ X, a1 < b1�a2 < b2� · · · �an < bn and

∑m
i=1

(bi − ai)��(ε), then
∑m

i=1 d(f (bi), f (ai))�ε. We will also call the mappingf (more
precisely)�(·)-absolutely continuous. Note that Lip(X, Y ) ⊂ BV(X, Y ) if X is bounded,
and AC(X, Y ) ⊂ BV(X, Y ).
Below C(X, Y ) stands for the family of all continuous mappingsf :X → Y , endowed

with the compact-open topology (i.e. the uniform convergence on compact subsets of
X). It is known that ifY is a Polish space (i.e. complete and separable), then C(X, Y )

is metrizable by a complete metric and separable.
If A,B ⊂ Y are nonempty subsets, theHausdorff distanceD = Dd between A and

B is defined by (e.g.[5, Chapter II])

D(A,B) = max{e(A,B), e(B,A)} ,
where e(A,B)= sup{dist(y, B) : y ∈ A} and dist(y, B)= inf {d(y, y′) : y′ ∈ B}. It is
well known that the mappingD(·, ·) is a metric, called theHausdorff metric induced
(or generated) by d, on the set of all nonempty closed bounded subsets ofY and, in
particular, on the setK(Y ) of all nonempty compact subsets ofY. Note also that ifY
is Polish, thenK(Y ) is also Polish (see[5, Theorem II-9]).
Let E and Z be two nonempty sets. Amultifunction� from E into Z (in symbols,

� : E⇒Z) is a mapping associating to each pointt ∈ E a nonempty subset�(t) ⊂ Z,
the image of t under�. By thegraph of� we mean the set Gr� = {(t, z) ∈ E×Z : z ∈
�(t)}. A mapping� :E → Z is called aselector of� if Gr � ⊂ Gr� or, equivalently,
if �(t) ∈ �(t) for all t ∈ E.
If X ⊂ R is an interval and(Y, d) is a metric space, a multifunctionF :X⇒Y with

compact images is said to beof bounded variation on X(respectively,Lipschitzian
on X or �(·)-absolutely continuous on X) if it is of bounded variation (respectively,
Lipschitzian or�(·)-absolutely continuous) as a mappingF :X → (K(Y ),D) in the
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above sense, whereD is the Hausdorff metric induced byd. For such a multifunc-
tion we will use the notationF ∈ BV(X,K(Y )) (respectively,F ∈ Lip(X,K(Y )) or
F ∈ AC(X,K(Y ))).
The following theorem gives sufficient conditions for the existence of regular selectors

for a compact-valued multifunction defined on an interval.

Theorem A. Suppose thatX ⊂ R is an interval, (Y, d) is a metric space, D is
the Hausdorff metric onK(Y ) induced by d, x0 ∈ X and y0 ∈ Y are fixed, and
F :X → K(Y ) is a given multifunction. We have:

(i) if F is of bounded variation, then it admits a selectorf :X → Y of bounded
variation such that

d(y0, f (x0)) = dist(y0, F (x0)) and Vd(f,X)�VD(F,X); (1)

(ii) if F is of bounded variation and continuous, then it admits a continuous selector
f of bounded variation satisfying(1);

(iii) if F is Lipschitzian, then it admits a Lipschitzian selector f satisfying(1) and such
that Ld(f,X)�LD(F,X);

(iv) if F is �(·)-absolutely continuous, then it has a�(·)-absolutely continuous selector
satisfying(1).

Theorem A(i) is due to Chistyakov ([7, Theorem 9.1]; [8, Theorem 6.1(b)];
[9, Theorem 4] ifY is a Banach space, dimY �∞ and GrF is compact) and Belov
and Chistyakov ([1, Theorem 2] in the general case). Continuous selectors in Theo-
rem A(ii) and Lipschitzian selectors in Theorem A(iii) were established by Hermes
([17, Theorem 2] if dimY < ∞), Kikuchi and Tomita ([19, Theorem 1] if dimY < ∞
and F is convex-valued), Mordukhovich ([25, Theorem D1.8] ifY is a Banach space,
dimY �∞ and GrF is compact) and́Slȩzak ([28, Theorem 1] in the general case).
In addition, the existence of selectors of bounded variation in Theorem A(ii), (iii) and
property (1) was proved by Chistyakov [7, Theorem 9.2]; [8, Theorem 6.1(a), (c)];
[10, Theorem 13] and Belov and Chistyakov [1, Theorem 3(a), (b)]. Theorem A(iv) is
due to Kikuchi and Tomita ([19, Theorem 2] with continuous selectors, dimY < ∞
and F convex-valued), Qiji ([26] if dimY < ∞), Chistyakov ([8, Theorem 6.1(d)];
[11, Theorem 5.1] if dimY �∞ and GrF is compact) and Belov and Chistyakov ([1,
Theorem 3(c)] in the general case).
It is well known that a continuous compact-valued multifunction defined on an

interval need not have a continuous selector (see the sin 1/x example of Michael [24]
or Hermes [16, Example 1]). Even a Hölder continuous of any exponent 0< � < 1
compact-valued multifunction on an interval may have no continuous selector (see
[13, Proposition 8.2]).
In order to formulate our main results, we introduce further terminology.
Let (T ,M) be a measurable space with the�-field M andZ be a topological space.

We denote byB(Z) the Borel�-field on Z.
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Recall that a mapping� : T → Z is said to bemeasurableif for each open
U ⊂ Z the inverse image�−1(U) = {t ∈ T : �(t) ∈ U} belongs toM. We say
that a multifunction� : T ⇒Z is measurableif for each openU ⊂ Z the preimage
�−(U) = {t ∈ T : �(t)∩U �= �} belongs toM. If Z is metrizable and separable, and
� is measurable and closed-valued, then Gr� ∈ M ⊗ B(Z) (see e.g. Himmelberg[18,
Theorem 3.5]), whereM ⊗ B(Z) is the product�-field of �-fieldsM andB(Z).
Denote byN andN", respectively, the sets of infinite and finite sequences of positive

integers. LetF be a family of sets. We sayF is a Suslin familyif for each function
A : N" → F the set defined as

⋃
�∈N

∞⋂
n=1

A(�1, . . . ,�n)

is also in F (Christensen[14] says thatF is closed with respect to the Suslin
operation).
Recall that a�-field M is a Suslin family provided one of the following three

conditions is satisfied [21, p. 95]; [14, pp. 23–24]: (i)M is complete with respect to
a �-finite measure; (ii)T is a topological space andM is the family of all sets with
the Baire property; (iii)T is a locally compact topological space andM is the family
of all subsets ofT measurable with respect to a Radon measure onT.
In order to prove the existence of regular selectors for Carathéodory-type multi-

functions corresponding to Theorem A we shall use the following graph-conditioned
measurable selection theorem:

Theorem B. (i) Let (T ,M) be a measurable space, Z be a Polish space, and� : T ⇒Z

be a multifunction. IfM is a Suslin family andGr� ∈ M ⊗ B(Z), then � has a
measurable selector.
(ii) Suppose that T and Z are Polish spaces, M = B(T ), and � : T ⇒Z is a

�-compact-valued multifunction with Borel graph. Then� admits a Borel-measurable
selector.

Theorem B(i) was given by Leese [23, Corollary to Theorem 7]; it is a generalization
of results of Yankov and von Neumann (see [29]). Theorem B(ii) is due to Brown and
Purves [2].
We shall also use the following projection theorem (see, e.g., [14, Theorem 1.3]):

Theorem C. Let (T ,M) be a measurable space and Z be a Polish space. IfM is a
Suslin family, then for eachA ∈ M ⊗ B(Z) its projectionProjT A belongs toM.

Let X ⊂ R be an interval,(Y, d) be a metric space andf be a mapping from the
productT × X into Y. If x ∈ X is fixed, we define the mappingf (·, x) : T → Y by
f (·, x)(t) = f (t, x) for all t ∈ T , and similarly, ift ∈ T is fixed, we define the mapping
f (t, ·) : X → Y by f (t, ·)(x) = f (t, x) for all x ∈ X. We say thatf : T × X → Y

is Carathéodory(Carathéodory–Lipschitz) if f (·, x) is measurable for allx ∈ X and
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f (t, ·) ∈ C(X, Y ) (respectively,f (t, ·) ∈ Lip(X, Y )) for all t ∈ T ; in other words,
this is expressed as:f is measurable in the first variablet ∈ T and is continuous
(respectively, Lipschitzian) in the second variablex ∈ X. A similar definition applies
to a multifunctionF : T × X⇒Y with compact images.
We shall deal with the following problem (cf. Theorem A). Given a multifunction

F : T × X → K(Y ), x0 ∈ X and � : T → Y a measurable mapping, does there exist a
selectorf of F satisfying the condition

d
(
�(t), f (t, x0)

) = dist
(
�(t), F (t, x0)

)
for all t ∈ T (2)

and the same regularity properties as the multifunctionF (e.g., measurability in the first
variable t and Lipschitz continuity in the second variablex)? Note that if� is a (mea-
surable) selector ofF(·, x0), then condition (2) can be rewritten in the formf (t, x0) =
�(t). The answers to the above question are contained in the three main theorems of
this paper, namely, Theorem 1 in Section 3 (corresponding to Theorem A(iii), (ii)) and
Theorems 3 and 4 in Section 5 (which are parametrized versions of Theorem A(iv), (i)),
and the selectors obtained forF are called regular. Section 4 is preparatory for
Theorems 3 and 4.
A few final remarks are in order. A functionf : R × R → R which is measurable

in the first and is of bounded variation in the second variable need not be Lebesgue
measurable: for instance, the characteristic function of the Sierpinski set (see Gelbaum
and Olmsted [15, Example 10.21]) is upper semicontinuous and of bounded variation
in each variable separately, but it is not Lebesgue measurable. On the other hand,
a mapping measurable in the first variable and continuous in the second variable is
product-measurable. More precisely, let(T ,M) be a measurable space,X andY be
two metric spaces withX separable, andf : T ×X → Y be measurable in the first and
continuous in the second variable. Thenf is M ⊗ B(X)-measurable. Let us note that
assumptions onX andY can be weakened (see [20, Corollary 1, p. 315]).

3. Carathéodory-type selectors: part 1

The first main result of this paper is a theorem on the existence of Carathéodory–
Lipschitz selectors and Carathéodory selectors of bounded variation in the second vari-
able corresponding to Theorem A(iii) and (ii):

Theorem 1. Let (T ,M) be a measurable space, X ⊂ R an interval, (Y, d) a Polish
space, D the Hausdorff metric onK(Y ) induced by d, x0 ∈ X fixed, � : T → Y

a measurable mapping, and F : T × X → K(Y ) be a Carathéodory multifunction.
We have:

(a) if eitherM is a Suslin family or T is Polish andM = B(T ), and F is Carathéodory
–Lipschitz, then F admits a Carathéodory–Lipschitz selectorf : T × X → Y
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satisfying the inequality

Vd (f (t, ·),X) �VD (F(t, ·),X) for all t ∈ T , (3)

condition (2) and such thatLd (f (t, ·),X) �LD (F(t, ·),X) for all t ∈ T ;
(b) if M is a Suslin family andF(t, ·) ∈ BV(X,K(Y )) for all t ∈ T , then F admits

a Carathéodory selector f of bounded variation in the second variable satisfying
conditions(2) and (3).

Proof. (a) Define a new multifunction� from T into C(X, Y ) by

�(t) = {u ∈ C(X, Y ) : u is a Lipschitzian selector ofF(t, ·) such that
d(�(t), u(x0)) = dist(�(t), F (t, x0)),

Ld(u,X)�LD(F(t, ·),X) and
Vd(u,X)�VD(F(t, ·),X)} , t ∈ T .

Because of Theorem A(iii),�(t) �= � for all t ∈ T (if, for somet ∈ T , VD(F(t, ·),X)
is not finite, the last inequality in the definition of�(t) is redundant). Note that if� :
T → C(X, Y ) is a measurable selector of�, then the functionf : T × X → Y given
by f (t, x) = �(t)(x) is a required Carathéodory–Lipschitz selector ofF. In fact, it
suffices to verify that the mappingf (·, x) is measurable for eachx ∈ X. Given x ∈ X

andUY ⊂ Y open, we setU = {u ∈ C(X, Y ) : u(x) ∈ UY }, so that

(f (·, x))−1 (UY ) = {t ∈ T :�(t)(x) ∈ UY } = {t ∈ T :�(t) ∈ U} = �−1(U).

SinceU is open in C(X, Y ) and� is measurable,�−1(U) ∈ M.
Hence, we shall look for measurable selectors of�. In order to apply the graph-

conditioned measurable selection Theorems B(i) and (ii), we will show that Gr� ∈
M ⊗ B(C(X, Y )) and� is compact-valued.
Note that � : T → R defined by�(t) = LD(F(t, ·),X), t ∈ T , is a measurable

function. Indeed,�(t) = sup{�(t, x, x′) : x, x′ ∈ X, x �= x′}, where� is a real-valued
function defined on the product ofT andX × X without the diagonal by the formula
�(t, x, x′) = D(F(t, x), F (t, x′))/|x − x′|, and so,� is measurable int and continuous
in (x, x′). Consequently,

�(t) = sup
{
�(t, x, x′) : x, x′ ∈ X are rational andx �= x′} ,

which proves that� is measurable.
Let �, �, �, 	 : T × C(X, Y ) → R ∪ {∞} and 
 : C(X, Y ) → R ∪ {∞} be auxiliary

functions defined fort ∈ T and u ∈ C(X, Y ) by

�(t, u) = sup{dist(u(x), F (t, x)) : x ∈ X},
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(u) = sup{d(u(x), u(x′))/|x − x′| : x, x′ ∈ X, x �= x′},
�(t, u) = |d(�(t), u(x0)) − dist(�(t), F (t, x0))|,
	(t, u) = Vd(u,X) − VD(F(t, ·),X) if VD(F(t, ·),X) is finite, and
	(t, u) = 0 otherwise,

�(t, u) = sup{�(t, u), �(t, u),
(u) − �(t), 	(t, u)}.

We have Gr� = {(t, u) ∈ T × C(X, Y ) : �(t, u)�0}. Now we show that� is
M ⊗ B(C(X, Y ))-measurable and lower semicontinuous inu.
The function(t, u, x) �→ dist(u(x), F (t, x)) is measurable int and continuous inu

andx. Thus, for each fixedx ∈ X it is M⊗B(C(X, Y ))-measurable. We have�(t, u) =
sup{d(u(x), F (t, x)) : x ∈ X is rational} by virtue of the continuity inx. Consequently,
� is product-measurable. Note that for each fixedt ∈ T , �(t, ·) is lower semicontinuous,
being the supremum of continuous functionsu �→ dist(u(x), F (t, x)), x ∈ X.
Similarly, for eachx, x′ ∈ X, x �= x′, the functionu �→ d(u(x), u(x′))/|x − x′| is

continuous. Thus,
 is lower semicontinuous.
The real-valued function� is measurable int and continuous inu, and hence, product-

measurable.
The functionu �→ Vd(u,X) is lower semicontinuous (see[8, Proposition 2.1(V7)]).

Since F is Carathéodory, the functiont �→ VD(F(t, ·),X) is measurable. In fact,
for each partitionP = {xi}mi=0 of X the sum

∑m
i=1D(F(t, xi), F (t, xi−1)) depends

measurably ont. Since the total variationVD(F(t, ·),X) is the supremum of these
sums over all rational partitionsP of X, it is measurable. We conclude that the function
	 is M ⊗ B(C(X, Y ))-measurable and lower semicontinuous inu.
In this way we have proved that� is product-measurable and lower semicontinuous

in u. Hence, Gr� ∈ M ⊗ B(C(X, Y )).
If M is a Suslin family, then Theorem B(i) yields the existence of a measurable

selector� of �.
Now assume thatT is a Polish space andM = B(T ). We have already established

that Gr� ∈ B(T ) ⊗ B(C(X, Y )). Note that this product�-field coincides withB(T ×
C(X, Y )), and so, the graph of� is Borel. Since� is lower semicontinuous inu, �(t) is
closed in C(X, Y ) for eacht ∈ T . Givenu ∈ �(t) andx ∈ X, we have:Ld(u,X)��(t),
and u(x) belongs to the compact setF(t, x). By the Arzelà–Ascoli theorem,�(t) is
a compact subset of C(X, Y ). An application of Theorem B(ii) completes the proof of
item (a).
(b) Let a multifunction� : T ⇒C(X, Y ) be defined by

�(t) = {u ∈ C(X, Y ) : u is a selector ofF(t, ·) such that
d(�(t), u(x0)) = dist(�(t), F (t, x0)) and

Vd(u,X)�VD(F(t, ·),X)} , t ∈ T .
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By Theorem A(ii), the image�(t) is nonempty for everyt ∈ T . Since, as is already
shown, the functions�, � and 	 from step (a) areM ⊗ B(C(X, Y ))-measurable, the
function � : T × C(X, Y ) → [0,∞] defined by

�(t, u) = sup{�(t, u), �(t, u), 	(t, u)}, t ∈ T , u ∈ C(X, Y ),

is also product-measurable. Consequently, the graph Gr� = {(t, u) ∈ T × C(X, Y ) : �
(t, u)�0} of � is measurable. By Theorem B(i),� admits a measurable selector� : T ×
X → Y . Now, settingf (t, x) = �(t)(x), (t, x) ∈ T × X, we obtain a Carathéodory
selectorf of F with desired properties.�

We note that for multifunctionsF : T × X → K(Y ) with T a topological space,
continuous selectors, which are Lipschitzian in the second variable, were established
by Ślȩzak [28, Theorem 5].
Before we turn to parametrized counterparts of Theorem A(i), (iv), we are going to

study metric semigroups of mappings of bounded variation.

4. Macses of mappings of bounded variation

Recall (cf. [12]) that a triple(Y, d,+) is called ametric additive commutative semi-
group (macs, for short) if (Y, d) is a metric space,(Y,+) is an additive commutative
semigroup andd is translation invariant, i.e.d(y + y′′, y′ + y′′) = d(y, y′) for all
y, y′, y′′ ∈ Y . A macs (Y, d,+) is calledcomplete(respectively,Polish) if (Y, d) is a
complete (respectively, Polish) metric space.
Simple examples of macses are any normed linear space(Y, ‖ · ‖) with metric

d(y, y′) = ‖y− y′‖, y, y′ ∈ Y , and a nonempty convex coneK ⊂ Y (i.e.,K +K ⊂ K

and �K ⊂ K, ��0). The following example is more interesting. LetKc(Y ) be the
family of all nonempty compact convex subsets of a real normed linear space(Y, ‖ · ‖)
equipped with the Hausdorff metricD generated by the norm‖·‖. SinceD is translation
invariant onKc(Y ) (cf. [27, Lemma 3]), the triple(Kc(Y ),D,+) is a macs, where the
addition operation (the Minkowski sum) is defined byA+B = {a + b : a ∈ A, b ∈ B}
for A, B ∈ Kc(Y ). Recall also that ifY is a Banach (separable Banach) space, then
this macs is a complete (Polish) macs (see [5, Theorems II-9 and II-14]).
If (Y, d,+) is a macs, then, due to the translation invariance ofd and the triangle

inequality for d, for all u, v, p, q ∈ Y we have

d(u, v) � d(p, q) + d(u + p, v + q), (4)

d(u + p, v + q) � d(u, v) + d(p, q). (5)

Inequality (5) implies that the addition operation(u, v) �→ u + v is a continuous
mapping fromY ×Y into Y; more generally, ifun → u, vn → v, pn → p andqn → q

in Y as n → ∞, then limn→∞ d(un + vn, pn + qn) = d(u + v, p + q).
Let X ⊂ R be an interval,x0 ∈ X be fixed and(Y, d,+) be a macs.



256 V.V. Chistyakov, A. Nowak / Journal of Functional Analysis 225 (2005) 247–262

We endow the sets BV(X, Y ) and AC(X, Y ) with the pointwise addition operation+
and a metricdV as follows:

dV (f, g) ≡ dV (f, g,X) = d(f (x0), g(x0)) + �(f, g), (6)

where

�(f, g) ≡ �(f, g,X) = sup
m∑
i=1

d (f (xi) + g(xi−1), g(xi) + f (xi−1)) (7)

and the supremum is taken over all partitions{xi}mi=0 ⊂ X (m ∈ N) of X. We note
that a metric of form (6)–(7) on the space BV(X, Y ) (with (S, ‖ · ‖) a Banach space,
X = [a, b], Y = Kc(S), d = D‖·‖ and + the Minkowski sum) was used by Za-
wadzka [30] for the characterization of set-valued Lipschitzian (Nemytskii) operators
of substitution mapping BV(X, S) into BV(X,Kc(S)).
The mapping �(·, ·) is a translation invariant semimetric on BV(X, Y ) (see

Theorem 2(a); the triangle inequality for�(·, ·) is a consequence of (4) and the trans-
lation invariance ofd). Its main properties are gathered in the following:

Theorem 2. For any two mappings f, g ∈ BV(X, Y ) we have:

(a) |d(f (x), g(x)) − d(f (x′), g(x′))|�d(f (x) + g(x′), g(x) + f (x′))��(f, g) for all
x, x′ ∈ X;

(b) supx∈X d(f (x), g(x))�dV (f, g);
(c) if {fn}∞n=1, {gn}∞n=1 ⊂ BV(X, Y ) and fn → f , gn → g in metric d pointwise on X

as n → ∞, then�(f, g)� lim inf n→∞ �(fn, gn);
(d) |V (f ) − V (g)|��(f, g)�V (f ) + V (g);
(e) �(f, g,X) = �(f, g,X ∩ (−∞, x]) + �(f, g,X ∩ [x,∞)).

Consequently, if (Y, d,+) is a (complete) macs, then (BV(X, Y ), dV ,+) is also a
(complete) macs. A similar assertion holds for the spaceAC(X, Y ).

Proof. 1. (a), (b) The first inequality follows from (4), and the second one is a conse-
quence of the definition of�(·, ·). Item (b) readily follows from the definition ofdV
and item (a).
(c) Suppose that� = lim inf n→∞ �(fn, gn) is finite. Then there exists a subsequence

{nk}∞k=1 of {n}∞n=1 such that� = limk→∞ �(fnk , gnk ). The pointwise convergence of
fnk to f andgnk to g ask → ∞ and the continuity of the addition operation inY yield,
for all x, x′ ∈ X,

lim
k→∞ d

(
fnk (x) + gnk (x

′), gnk (x) + fnk (x
′)
) = d

(
f (x) + g(x′), g(x) + f (x′)

)
.

From the definition of�(fnk , gnk ) for any partition{xi}mi=0 of X we have
m∑
i=1

d
(
fnk (xi) + gnk (xi−1), gnk (xi) + fnk (xi−1)

)
��(fnk , gnk ), k ∈ N.



V.V. Chistyakov, A. Nowak / Journal of Functional Analysis 225 (2005) 247–262 257

Passing to the limit ask → ∞ in this inequality and then taking the supremum over
all partitions ofX we arrive at the desired inequality.
(d) Applying (4) for all x, x′ ∈ X we have

d
(
f (x), f (x′)

)
�d

(
g(x), g(x′)

) + d
(
f (x) + g(x′), g(x) + f (x′)

)
and so,V (f )�V (g)+�(f, g), which implies the first inequality. To obtain the second
inequality, it suffices to note from (5) that, for allx, x′ ∈ X,

d
(
f (x) + g(x′), g(x) + f (x′)

)
�d

(
f (x), f (x′)

) + d
(
g(x), g(x′)

)
.

(e) Let us fixx ∈ X and denote by�[f, g, P ] the finite sum under the supremum
sign in (7) corresponding to the partitionP = {xi}mi=0 of X. If P1 andP2 are arbitrary
partitions ofX∩(−∞, x] andX∩[x,∞), respectively, we set̃Pj = Pj ∪{x}, j = 1,2,
so thatP̃1 ∪ P̃2 is a partition ofX. Consequently,

�[f, g, P1] + �[f, g, P2] � �[f, g, P̃1] + �[f, g, P̃2]
= �[f, g, P̃1 ∪ P̃2]��(f, g,X),

which implies that the right-hand side in (e) does not exceed the left-hand side. In
order to prove the reverse inequality, letP = {xi}mi=0 be a partition ofX. Clearly,
�[f, g, P ] is less then or equal to the right-hand side in (e) ifx ∈ P or x < x0 or
xm < x. So, suppose thatxk−1 < x < xk for somek ∈ {1, . . . , m}. By virtue of (4)
and the translation invariance ofd, we get

d (f (xk) + g(xk−1), g(xk) + f (xk−1)) �d (f (x) + g(xk−1), g(x) + f (xk−1))

+d (f (xk) + g(xk−1) + g(x) + f (xk−1), g(xk) + f (xk−1) + f (x) + g(xk−1))

= d (f (x) + g(xk−1), g(x) + f (xk−1)) + d (f (xk) + g(x), g(xk) + f (x)) .

It follows that

�[f, g, P ] � �[f, g, {xi}k−1i=0 ∪ {x}] + �[f, g, {x} ∪ {xi}mi=k]
� �(f, g,X ∩ (−∞, x]) + �(f, g,X ∩ [x,∞)).

2. That BV(X, Y ) is a macs follows from the above definition, item (b), and triangle
inequalities for and the translation invariance ofd(·, ·) and�(·, ·).
Suppose thatY is complete. Let us prove that BV(X, Y ) is also complete. Let

{fn}∞n=1 ⊂ BV(X, Y ) be a Cauchy sequence:

dV (fn, fm) = d(fn(x
0), fm(x

0)) + �(fn, fm) → 0 as n, m → ∞. (8)
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By item (b), the sequence{fn(x)}∞n=1 is Cauchy inY for all x ∈ X, and so, sinceY is
complete, there is a mappingf :X → Y such thatd(fn(x), f (x)) → 0 asn → ∞ for
all x ∈ X. By item (d) and (8), the sequence{V (fn)}∞n=1 is Cauchy inR, and so, it
is bounded and convergent. Taking into account the lower semicontinuity ofV (·) (e.g.
[8, Proposition 2.1(V7)]) we find thatV (f )� lim inf n→∞ V (fn) < ∞, that is, f is of
bounded variation onX. Item (c) implies

�(fn, f )� lim inf
m→∞ �(fn, fm)� lim

m→∞ dV (fn, fm) ∈ [0,∞), n ∈ N.

Again, because{fn}∞n=1 is Cauchy in BV(X, Y ), we have

lim sup
n→∞

�(fn, f )� lim
n→∞ lim

m→∞ dV (fn, fm) = 0,

whence we conclude thatdV (fn, f ) → 0 asn → ∞.
3. The same arguments as in step 2 apply for the space AC(X, Y ). The only thing

we need to verify is that the limitf is in AC(X, Y ) provided {fn}∞n=1 ⊂ AC(X, Y ) is
Cauchy. Givenx ∈ X and n ∈ N, we setXx = X ∩ (−∞, x], 	n(x) = V (fn,Xx) and
	(x) = V (f,Xx). By item (d),

|	n(x0) − 	(x0)| and |V (	n − 	, X)|��(fn, f,X) → 0 as n → ∞ (9)

(the second inequality in (9) will be proved later in this proof), and so, the sequence of
real absolutely continuous functions	n (cf. [8, Lemma 3.3]) tends to	 in the norm of
AC(X,R) which is given by‖	‖AC = |	(x0)| + V (	, X). Since AC(X,R) is a Banach
space,	 ∈ AC(X,R), which, in turn (cf. [8, Lemma 3.2]), givesf ∈ AC(X, Y ).
To prove the second inequality in (9), let{xi}mi=0 ⊂ X be a partition ofX of the

form x0 < x1 < · · · < xm−1 < xm. Applying items (e) and (d), we have

m∑
i=1

|(	n−	)(xi)−(	n−	)(xi−1)| =
m∑
i=1

|V (fn, [xi−1, xi])−V (f, [xi−1, xi])|

�
m∑
i=1

�(fn, f, [xi−1, xi]) = �(fn, f, [x0, xm])

� �(fn, f,X).

It remains to take into account the arbitrariness of the partition{xi}mi=0. �

5. Carathéodory-type selectors: part 2

Our next result deals with Carathéodory selectors which are absolutely continuous
in the second variable.
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Theorem 3. Let (T ,M) be a measurable space withM a Suslin family, X ⊂ R an
interval, (Y, d,+) a Polish macs, D the Hausdorff metric onK(Y ) generated by d,
x0 ∈ X fixed, � : T → Y a measurable mapping, andF : T ×X → K(Y ) be a multifunc-
tion measurable in t and absolutely continuous in x. Suppose that(AC(X, Y ), dV ) is
separable. Then F has a selectorf : T ×X → Y measurable in t, absolutely continuous
in x and satisfying conditions(2) and (3).

Proof. We argue in the same way as in the proof of Theorem 1. Let a new multifunction
� : T ⇒AC(X, Y ) be defined by

�(t) = {u ∈ AC(X, Y ) : u is a selector ofF(t, ·) such that
d(�(t), u(x0)) = dist(�(t), F (t, x0)) and

Vd(u,X)�VD(F(t, ·),X)} , t ∈ T .

We know from Theorem A(iv) that� has nonempty values. In order to apply
Theorem B(i), we have to prove that Gr� ∈ M ⊗ B(AC(X, Y )).
Let �, �, 	 and � be the restrictions toT × AC(X, Y ) of corresponding auxiliary

functions from the proof of Theorem 1(b). The graph of� is given by Gr� = {(t, u) ∈
T × AC(X, Y ) : �(t, u)�0}. Since the topology of AC(X, Y ) generated by the metric
dV is stronger than the topology induced from C(X, Y ), the trace�-field AC(X, Y ) ∩
B(C(X, Y )) is contained inB(AC(X, Y )). Consequently, the functions�, �, 	 and �
areM ⊗ B(AC(X, Y ))-measurable. Hence, the graph of� is product-measurable.�

Remark 1. If X is a compact interval then the space AC(X,Rn) is separable. In this
case thedV metric is generated by the norm

‖f ‖AC = ‖f (x0)‖ +
∫
X

‖f ′(x)‖dx,

where‖ · ‖ is the norm onRn.

Finally, we give a parametrized version of Theorem A(i). Let(Y, d,+) be a macs
andF : T ×X → K(Y ) a multifunction. Suppose thatv : T → [0,∞] is a measurable
majorant of the total variation ofF(t, ·), i.e., VD(F(t, ·),X)�v(t) for all t ∈ T .
Similarly as in the previous proofs we define a new multifunction� : T ⇒BV(X, Y )
by

�(t) = {u ∈ BV(X, Y ) : u is a selector ofF(t, ·) such that
d(�(t), u(x0)) = dist(�(t), F (t, x0)) and

Vd(u,X)�v(t)} , t ∈ T ,
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and show that� has a measurable selector. The space BV(X, Y ) is considered with
the metricdV .

Theorem 4. Let (T ,M) be a measurable space withM a Suslin family, X ⊂ R

an interval, (Y, d,+) a Polish macs, D the Hausdorff metric onK(Y ) generated by
d, x0 ∈ X fixed, � : T → Y a measurable mapping, and F : T × X → K(Y ) be a
M ⊗ B(X)-measurable multifunction such thatF(t, ·) ∈ BV(X,K(Y )) for each t ∈ T .
Suppose that�(T ) = ⋃{�(t) : t ∈ T } is a separable subspace ofBV(X, Y ). Then F
admits aM⊗B(X)-measurable selector f, which is of bounded variation in the second
variable x, and satisfies conditions(2) and Vd(f (t, ·),X)�v(t) for every t ∈ T .

Proof. Let Z be the closure of�(T ) in BV(X, Y ). SuchZ is a Polish space. We are
going to prove that Gr� ∈ M ⊗ B(Z). Let �, � : T × Z → [0,∞] be defined as in
the proof of Theorem 1(a). Define� : T × Z → [0,∞] by

�(t, u) = sup{�(t, u), �(t, u), Vd(u,X) − v(t)}.

Again Gr� = {(t, u) ∈ T × Z : �(t, u)�0}.
Let 
 : T ×X×Z → [0,∞] be given by
(t, x, u) = dist(u(x), F (t, x)). Fix u ∈ Z.

Being a function of bounded variation,u has at most a countable set of discontinuity
points (cf. [8, Theorem 4.3]). Hence, it is Borel-measurable. Consequently,
(·, u) is
measurable in(t, x). For each real numberr we have

{t ∈ T : �(t, u) > r} = {t ∈ T : 
(t, x, u) > r for somex ∈ X}
= ProjT {(t, x) ∈ T × X : 
(t, x, u) > r}.

By the Projection Theorem C, the last set belongs toM, and hence,� is measurable
in t. Let us show that it is continuous inu. Given t ∈ T and u1, u2 ∈ Z, we have

|�(t, u1) − �(t, u2)| � sup{|
(t, x, u1) − 
(t, x, u2)| : x ∈ X}
� sup{d(u1(x), u2(x)) : x ∈ X}�dV (u1, u2).

Thus, � is M ⊗ B(Z)-measurable. It is immediate that� is also product-measurable.
Finally, the function(t, u) �→ Vd(u,X) − v(t) is M ⊗ B(Z)-measurable. This is a
consequence of the measurability ofv and the lower semicontinuity ofu �→ V (u,X).
It follows that � is product-measurable, and Gr� ∈ M ⊗ B(Z).
By Theorem B(i),� has a measurable selector� : T → Z. In order to complete

the proof, we show thatf : T × X → Y , given by f (t, x) = �(t)(x), is M ⊗ B(X)-
measurable. LetW : Z×X → Y be the valuation function, i.e.,W(u, x) = u(x). Note
that f (t, x) = W(�(t), x). The valuationW is continuous inu and Borel-measurable
in x. Consequently, it isB(Z)⊗B(X)-measurable. Thusf is product-measurable, as the
superposition ofW and measurable function(t, x) �→ (�(t), x). �
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Remark 2. The assumption of the separability of�(T ) is rather restrictive. Therefore
Theorem4 may be considered as the first step in the study of selectors of bounded
variation depending measurably on a parameter.

Some open problems
(1) It would be interesting to know whether Theorems 1, 3 and 4 hold for an arbitrary

measurable space(T ,M).
(2) In Theorem 3 we have assumed the separability of AC(X, Y ). Is this property

implied automatically by the separability ofY?
(3) Is it possible to obtain a parametrized version of Theorem A(i) under less re-

strictive assumptions than in Theorem 4?
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Note added in proof

(1) More general assertions than Theorem A above are presented in a recent paper
by V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (1) (2004)
1–82.

(2) A deeper insight into functions of two variables which are measurable in the first
variable and of bounded variation in the second variable (cf. the last paragraph
in Section 2) can be gained from a recent paper by M. Balcerzak, A. Kucia,
A. Nowak, Regular dependence of total variation on parameters, Real Anal. Ex-
change 29 (2) (2003/2004) 921–930.

(3) Concerning the remark following the proof of Theorem1, we should note also
that for multifunctionsF : T × X → K(Y ) regular (and continuous) selections,
which are continuous in the first variable and are of bounded generalized Riesz
variation in the second varialbe, were obtained by V.V. Chistyakov, On multi-valued
mappings of finite generalized, variation, Mat. Zametki 71 (4) (2002) 611–632 (in
Russian) (English transl.: Math. Notes 71 (3–4) (2002) 556–575), cf. Theorem 15.
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