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Abstract. We construct counterexamples to the rationality conjecture
regarding the new version of the Makar-Limanov invariant introduced
in [Li2].

Let k be an algebraically closed field. Below variety means algebraic va-
riety over k in the sense of Serre (so algebraic group means algebraic group
over k). We use standard notation and conventions of [Bo] and [Sp]. In par-
ticular, given a variety X, we denote by k[X] and k(X) respectively the
algebra of regular functions and the field of rational functions on X. Action
of algebraic group on variety means algebraic action.

Recall that the Makar-Limanov invariant of a variety X is the subalgebra

ML(X) :=
⋂

H k[X]H (1)

of k[X], whereH in (1) runs over the images of all algebraic homomorphisms
Ga → Aut(X), see [Fr, Chap. 9]. The usefulness of the ML invariant in ap-
plications to geometric problems has been amply demonstrated over the
last two decades. The highlight is its role in proving that the Koras–Russell
threefold is not isomorphic to C3 that, in turn, is crucial in proving the
Linearization Problem for C∗-actions on C3. The ML invariant serves for
distinguishing some affine varieties from the affine space An whose ML in-
variant is trivial, i.e., ML(An) = k. However, there are nonrational affine
varieties with trivial ML invariant: such singular varieties are constructed
in [Li1, Sect. 4.2] and smooth in [Po, Example 1.22]. By [Li2, Thm. 4.2], if
char k = 0 and X is an irreducible affine variety of dimension > 2, then

ML(X) = k (2)

implies that X is birationally isomorphic to Y × A2 for some variety Y
and, conversely, for any irreducible variety Y there is an affine variety X
birationally isomorphic to Y ×A2 such that (2) holds. So the ML invariant
does not serve for distinguishing birational types of varieties.

With a view of eliminating this “pathology”, in [Li2, Sect. 5] a generaliza-
tion of the ML invariant for irreducible varieties, called the FML invariant,
was proposed. By definition, if X is an irreducible vatiety, then

FML(X) :=
⋂

H Frac (k[X]H ) (3)
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where H in (3) runs over the images of all algebraic homomorphisms Ga →

Aut(X) and Frac (k[X]H) denotes the subfield of k(X) generated by k[X]H .
In fact, since H is unipotent,

Frac (k[X]H ) = (Frac (k[X]))H ,

see [PV, Thm. 3.3]. This and (3) imply that if k(X) = Frac (k[X]), then

FML(X) =
⋂

H k(X)H ; (4)

in particular, (4) holds for affine X.
In [Li2, 5.3] is put forward the following

Conjecture 1. Let char k = 0 and let X be an affine variety. If FML(X)=
k, then X is rational.

According to [Li2, Thm. 5.6, Lemma 5.4], the statement of Conjecture 1
holds in either of the cases:

(i) dim X 6 3;
(ii) X is birationally isomorphic to C×An where C is an algebraic curve.

The aim of the present note is to show that, in general, Conjecture 1
is false. Our counterexamples, valid for k of any characteristic, are based
on the ideas sketched in [Po, Example 1.22] for constructing nonrational
affine varieties X with ML(X) = k. These counterexamples are described
in Theorem 2 below. To prove it we first need to prove some statements
about stable rationality of homogeneous spaces and fields of invariants of
linear actions.

Recall from [Se, Subsect. 4.1] that an algebraic group G is called special if
for any field extension K/k, the Galois cohomology set H1(K,G) is reduced
to one point. By [Se, Sect. 4], such a group is automatically connected and
affine, any extension of a special group by a special group is special, and
any connected solvable group is special. A semisimple group G is special if
and only if it is isomorphic to a direct product

SLn1
× · · · × SLnr

× Sp2m1
× · · · × Sp2ms

(5)

for some integers r, s, n1, . . . , nr,m1, . . . ,ms. That groups (5) are special is
proved in [Se, Subsect. 4.4], that only these semisimple groups are is proved
in [Gr, Thm. 3].

An action of an algebraic group G on a variety X is called locally free if
there is a dense open subset U of X such that the G-stabilizer of every point
of U is trivial. For every affine algebraic group G, there exists a locally free
linear action of G on a finite dimensional vector space V over k. Indeed, we
may assume that G is a closed subgroup of some GLn (see [Bo, Sect. I.1.10])
and then take as V the space Matn of n×n matrices over k with the action
of G by left multiplication.

Let π : E → X be an algebraic vector bundle over X. Assume that E and
X are endowed with the actions of an affine algebraic group G such that π
is G-equivariant and, for every elements g ∈ G, x ∈ X, the map π−1(x) →
π−1(g ·x) determined by g is k-linear. The proof of the following useful result
in arbitrary characteristic, together with a brief historical account and the
relevant references can be found in [RV, Sect. 2] (see also [CS, Sect. 3.2]).
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Lemma 1 (No-name Lemma). In the above notation, let d = dimE−dimX.

Consider the action of G on X×Ad via the first factor and let π1 : X×A
d →

X be the natural projection. If the action of G on X is locally free, then there

exists a G-equivariant birational isomorphism ϕ : E 99K X ×Ad such that

π = π1 ◦ ϕ.

Corollary 1. Let V1 and V2 be finite dimensional linear spaces over k en-

dowed with locally free linear actions of an affine algebraic group G. Then

(i) V1 and V2 are birationally stably G-isomorphic;
(ii) the invariant fields k(V1)

G and k(V2)
G are stably k-isomorphic.

Proof. Lemma 1 applied to the projections V1 ← V1 × V2 → V2 yields that
both V1×AdimV2 and V2 ×AdimV1 endowed with the natural G-actions via
the first factors are birationally G-isomorphic to V1 × V2. This proves (i)
and hence (ii). �

For the proof of Theorem 1 below we need, apart from Lemma 1, also the
following fact:

Lemma 2. The underlying variety of any connected affine algebraic group

G is rational.

As we do not know a reference containing a proof in arbitrary character-
istic (in characteristic zero it is [Ch, Cor. 2]), here is a short proof.

Proof of Lemma 2. Let B be a Borel subgroup of G. Since B is connected
solvable, the underlying variety of B is rational by [Gr, Cor. of Prop. 2] and
that of G is birationally isomorphic to B×(G/B) by [Bo, Cor. 15.8]. Since B
is parabolic, G/B is rational by [Bo, Thm. 21.20(ii)]; whence the claim. �

Theorem 1. The following properties of an affine algebraic group G are

equivalent:

(i) there is a finite dimensional vector space V over k endowed with a lo-

cally free linear action of G such that k(V )G is stably rational over k;
(ii) there are an integer n > 0 and a closed embedding G →֒ GLn such

that the variety GLn/G is stably rational;
(iii) there are a special algebraic group H and a closed embedding G →֒ H

such that the variety H/G is stably rational.

If these properties hold, then

(a) for every finite dimensional vector space U over k endowed with a lo-

cally free linear action of G, the field k(U)G is stably rational over k;
(b) for every closed embeddings G →֒ S →֒ H where H is a connected

affine algebraic group and S is a special algebraic group, the variety

H/G is stably rational.

Proof. First, (i)⇒ (a) by Corollary 1.
Further, assume that (i) holds. Since the action of G on V is faithful,

G may be identified with a closed subgroup of GL(V ). In turn, fixing a
basis in V , we may identify GL(V ) with GLn, n = dimV . Consider then
the linear action of G on Matn by left multiplication. Since it is locally free,
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(a) implies that k(Matn)
G is stably rational over k. But GLn is a G-stable

open subset of Matn, hence k(Matn)
G is k-isomorphic to k(GLn)

G. Since
the latter is k-isomorphic to k(GLn/G) (see [Bo, Sect. II.6]), we conclude
that GLn/G is stably rational. This proves (i)⇒ (ii).

Assume that (ii) holds. Then we may consider the action of G on Matn by
left multiplication. It is locally free and linear. The same argument as above
shows that k(Matn)

G is k-isomorphic to k(GLn/G) and hence is stably
rational over k. This proves (ii)⇒ (i).

Since GLn is special, we have (ii)⇒ (iii).
Assume that (iii) holds. Then H is connected and affine. The latter im-

plies that we may assume thatH is a closed subgroup of someGLn. Consider
the action of H on GLn by left multiplication. Since H is special, by [Se,
Thm. 2] there is an H-equivariant birational isomorphisms between the va-
rieties GLn and H × (GLn/H) where H acts on the latter via left multipli-
cation of the first factor. Since by Lemma 2 the varieties GLn and H are
rational, this shows that GLn/H is stably rational. On the other hand, this
also shows that GLn/G is birationally isomorphic to (H/G) × (GLn/H).
Since both H/G and GLn/H are stably rational, we then conclude that
GLn/G is stably rational as well. This proves (iii)⇒ (ii).

Assume now that (i)–(iii) and hence (a) hold for G. Let G →֒ S →֒ H
be closed embeddings such that H is a connected affine algebraic group
and S is a special algebraic group. We may consider S as a closed sub-
group of some GLm. Arguing as in the proof of (iii) ⇒ (ii), we then infer
that GLm/S is stably rational and GLm/G is birationally isomorphic to
(S/G)× (GLm/S). This implies that stable rationality of S/G is equivalent
to that of GLm/G. To prove the latter, consider the action of G on Matm
by left multiplication. It is locally free, so by (a) the field k(Matm)G is sta-
bly rational over k. As is explained above, this implies stable rationality of
GLm/G. Thus, S/G is stably rational. On the other hand, applying again
the same argument as in the proof of (iii) ⇒ (ii), we infer that H/S is sta-
bly rational and H/G is birationally isomorphic to H/S × S/G. Since both
factors are stably rational, we then conclude that H/G is stably rational as
well. This proves (b). �

Corollary 2. If G is a special algebraic group, then

(i) for every finite dimensional vector space U over k endowed with a

locally free linear action of G, the field k(U)G is stably rational over k;
(ii) for every connected affine algebraic group H and every closed embed-

ding G →֒ H, the variety H/G is stably rational.

Theorem 2. Let d := p9 where p is a prime integer, p 6= char k. Let G be

a group of type (5) such that either ni > d for some i or mj > d for some

j. Then G contains a finite subgroup F of order d such that the variety

X := G/F has the following properties:

(i) X is affine and smooth;
(ii) X is not stably rational;
(iii) FML(X) = k.
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Proof. Let V be a d-dimensional vector space over k. By [Sa, Thm. 3.6], there
is a finite subgroup F of GL(V ) such that for the natural action of F on V
the field k(V )F is not stably rational. Since F is finite, this action is locally
free. Fixing a basis in V , we may identify GL(V ) with GLd. Since there are
embeddings of GLd in SLn for any n > d and in Sp2m for any m > d, the
assumptions on ni’s and mj’s in the formulation of Theorem 2 imply that
there is an embedding of F in G. As G is special, we then deduce from
Theorem 1 that (ii) holds.

Consider the natural action of G on X. By (4), if H is a one-dimensional
unipotent subgroup of G, then FML(X) ⊆ k(X)H . But semisimplicity of
G implies that it is generated by one-dimensional unipotent subgroups, see
[Sp, Thm. 8.1.5(i)] and [Po, Lemma 1.1]. From this we infer that FML(X) ⊆
k(X)G. On the other hand, since G acts on X transitively, k(X)G = k. This
proves (iii).

As F is reductive, X is affine by Matsushima’s criterion [Ri, Thm.A].
Since G acts on X transitively, X is smooth. This proves (i). �

Remark. Further development of the approach of [Sa] has led, at least in
zero characteristic, to finding finite linear groups K of order < p9 whose
fields of invariants are not stably rational over k, see [Sh, Sect. 4◦], [CS,
Sect. 7] and references therein. The proof of Theorem 2 is applicable to them
without any change and gives an embedding of K in a group H of type (5)
such that the variety X := H/K has properties (i), (ii), and (iii).
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