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Abstract—The notion is introduced of an expanding operator for the independent set problem. This
notion is a useful tool for the constructive formation of new cases with the efficient solvability of
this problem in the family of hereditary classes of graphs and is applied to hereditary parts of the set
Free({P5, C5}). It is proved that if for a connected graph G the problem is polynomial-time solvable
in the class Free({P5, C5, G}) then it remains so in the class Free({P5, C5, G ◦ K2, G ⊕ K1,p})
for every p. We also find two new hereditary subsets of Free({P5, C5}) with polynomially solvable
independent set problem that are not a corollary of applying the revealed operators.
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INTRODUCTION

The present article is a continuation of [5], where the constructive approach was considered for
exhibiting new cases of the polynomial solvability of the independent set problem in a representative
family of hereditary graph classes. Recall that an independent set of a simple graph is an arbitrary set of
its nonadjacent vertices. It is called maximum if it contains the greatest possible number of vertices. The
number of vertices in a maximum independent set of a graph G is called the independence number of G
and denoted by α(G). The independent set problem (Problem IS) for a given graph consists in finding its
maximal independent set. It is known that, for any class of graphs, Problem IS is polynomially equivalent
to the problem of computing the independence number.

A graph class X is called hereditary if X is closed under isomorphism and vertex removals. Every
hereditary (and not only hereditary) graph class X can be defined by the set of its forbidden induced
subgraphs S. In this case, the notation X = Free(S) is used. The family of hereditary graph classes
is a sufficiently representative continuous family and includes such familiar subfamilies as those closed
under vertex and edge removals (also called strongly hereditary, or monotone) and minor-closed
graph classes closed under the vertex and edge removals and the edge contractions.

In many articles, new cases are revealed of the efficient (polynomial) solvability of Problem IS, some
of them also belong to the family of hereditary graph classes. Following the terminology in [7], we call
a hereditary graph class with polynomially solvable problem IS as IS-simple. All results of works on
finding new IS-simple classes known to the author are generalizations of previously known cases.
Nevertheless (as was observed in [5]), it would be desirable to have some “universal” generalizations
of this kind. Namely, in [5], we proposed to consider the transformations f : S → S ′ (the functions of one
or several (unknown) arguments that are graphs in a part of S) such that Free(S) ⊂ Free(S ′) and the
IS-simplicity of the class Free(S) implies the IS-simplicity of Free(S ′). We call such transformations
the expanding operators for Problem IS.

The usefulness of an expanding operator consists in the fact that the certain operators of this kind
make it possible to constructively generate new IS-simple cases (in a “regular”manner). For example,
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EXPANDING OPERATORS 413

if Free(S) is a specific IS-simple class and f is an expanding operator for which S is contained in its
domain then Free(f(S)), Free(f(f(S))), Free(f(f(f(S)))) is a monotone increasing infinite chain
(with respect to inclusion) of IS-simple classes. Note that such transformations can be especially useful
when several expanding operators are known simultaneously (since the actions of their superpositions
can be considered). Observe also that the notion of an expanding operator can be applied to any problem
on graphs and not only to Problem IS.

In [5], we proved that the mapping {G} → {G ⊕ K1} is an expanding operator (by the sum G1 ⊕ G2

we mean the union of graphs G1 and G2 with disjoint sets of vertices) and showed that the operator
{P5, C5, G} → {P5, C5, G ◦ K1} is expanding (by the product G1 ◦ G2 of graphs G1 and G2 we mean
the graph V (G1) ∪ V (G2), E(G1) ∪ E(G2) ∪ V (G1) × V (G2).) The interest to hereditary subclasses
in Free({P5, C5}) evinced in [5] is explained by a number of reasons. Thus, among all connected
graphs G with five vertices, the case of a simple path is the only case for which the computational status
of Problem IS in the class Free({G}) remains an open question [21]. At the same time, there are dozens
of articles in which, to the graph P5, one or several other forbidden subgraphs are added and it is proved
that this class is IS-simple (for example, see [8–10, 17, 18, 20–22]). It is also proved that, for every
graph G with at most five vertices that differ from P5 and C5, Problem IS is polynomially solvable in the
class Free({P5, G}) [21]. The question for Free({P5, C5}) is still open. These circumstances motivate
the author to consider the expanding operators for arguments S containing P5 and C5.

The present article consists of the three sections: In Section 1, we establish some auxiliary results.
In Section 2, we prove that some two hereditary subsets Free({P5, C5}) (not contained in the results
about IS-simple classes known to the author) are IS-simple. In Section 3, we prove that

{P5, C5, G} → {P5, C5, G ⊕ K1,p, G ◦ K2}
for each natural p is an expansion operator under the assumption that G is connected.

We adopt the following notation:
Nk(x) is the set of vertices exactly at distance k from x, N1(x) = N(x);
ring1, ring2, ring3 are the graphs obtained by adding a vertex x to a simple cycle (y1, y2, y3, . . . , y7)

and edges (x, y1), (x, y3) (for ring1), (x, y1), (x, y2), and (x, y3) (for ring2), and (x, y1), (x, y2), (x, y3),
and (x, y4) (for ring3).

All main notions and denotations of graph theory that we do not explain can be found, for example,
in [2, 3, 6, 11, 13].

1. AUXILIARY RESULTS

In [5], we prove that every connected graph of class Free({P5}) has radius at most 2 (Lemma 2). The
main idea of the proof is that a vertex x with the greatest value of |{x} ∪N(x)∪N2(x)| is considered and
it is showed that the distance from x to every other vertex is at most 2. The proof is based on the following
observation: If, for some vertex y1, the set N3(y1) is nonempty then there exists a vertex y2 ∈ N2(y1) such
that

{y1} ∪ N(y1) ∪ N2(y1) ⊂ {y2} ∪ N(y2) ∪ N2(y2).

This fact enables us to prove rather simply the following assertion that strengthens Lemma 2 in [5]:

Lemma 1. For every connected graph G ∈ Free({P5}) \ Free({K1,p}), there exists a vertex x
such that, for every y ∈ V (G), the distance from x to y is at most 2 and N(y) contains at least p
independent vertices.

One of the auxiliary procedures in solving Problem IS consists in the simplification, “contraction”
of the current graph. Here, instead of the initial graph, its induced subgraph is considered such that their
independence numbers coincide. Sometimes ideas of such kind lead to the creation of an algorithm for
solving Problem IS. For example, for nonempty chordal graphs (i.e., graphs without generated cycles
of length 4 and more), it is always possible to remove a so-called adjacently absorbing vertex [1].

A vertex a is said to adjacently absorb b if a and b are adjacent and N(b) \ {a} ⊆ N(a) \ {b}. The
meaning of this notion is that, after the removal of every adjacently absorbing vertex from the graph, the

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 7 No. 3 2013



414 MALYSHEV

independence number remains unchanged [1]. The possibility of applying the idea of vertex removal with
the preservation of the independence number is proved below.

Lemma 2. Suppose that, in a connected graph G = (V,E) in Free({P5}), the vertex x is central
and there exist y1, y2 ∈ N(x) such that

(i) N(z) \ (N(x)∪{x}) ⊆ N(y1) \ (N(x)∪{x}) for every vertex z ∈ N(x) \ (N(y1)∪{y1}); more-
over, for z = y2, the inclusion is strict;

(ii) no vertex in N2(y1) \ (N(y1) ∪ N(x)) is adjacent to any vertex in N(y1) \ (N(x) ∪ {x});
(iii) each vertex in N(y2) \ (N(x) ∪ {x}) is adjacent to all vertices in N(y1) \ (N(x) ∪ {x}).

Then α(G) = α(G[V \ {x}]).

Proof. Consider an arbitrary maximum independent set in G which we denote by IS. If none of the
vertices in the set N(y2) \ (N(x) ∪ {x}) (which generates a complete subgraph in G) belongs IS then
conditions (i), (ii) implies that IS \ {x} ∪ {y2} is a maximum independent set in G. If at least one vertex
z ∈ IS belongs to N(y2) \ (N(x) ∪ {x}) then

(IS ∩ N(y1)) \ (N(x) ∪ {x}) = {z}
by condition (iii). By condition (i), there is a vertex z′ ∈ N(y1) \ (N(y2) ∪ N(x)) such that (z′, z) ∈ E.
Conditions (i) and (ii) imply that IS \ {y2, z

′} ∪ {x, z} is a maximum independent set in G. In both
possible cases, α(G) = α(G[V \ {x}]). Lemma 2 is proved.

Lemmas 1 and 2 are auxiliary results necessary for proving one of the main assertions of the
present article, which is in turn a useful tool for constructing new cases of the polynomial solvability
of Problem IS. Other tools of this kind can be given by some joins of already known IS-simple classes.
One of such transformations is considered below. Namely, we introduce the notion of the composition
of hereditary graph classes and prove that the efficient solvability of Problem IS is preserved under
composition.

Let X1 and X2 be two hereditary classes. We refer as the composition of X1 and X2 (which we denote
by X1 � X2) to the set of those graphs G for which there are graphs G1 ∈ X1 and G2 ∈ X2 together with
subsets V1 ⊆ V (G1) and V2 ⊆ V (G2) such that

V (G) = V (G1) ∪ V (G2), E(G) = E(G1) ∪ E(G2) ∪ V1 × V2.

Lemma 3. If X1 and X2 are IS-simple classes then their composition X1 � X2 is an IS-simple
class too.

Proof. Clearly, the composition X1 and X2 is a hereditary class. Prove that this class is computed
in polynomial time in |V (G)|. Suppose that a graph G = (V,E) belongs to the class X1 � X2 and
G1 = (V ′

1 , E′
1), G2 = (V ′

2 , E′
2), V1, and V2 are the graphs and sets that are involved in the definition of

composition for G. Obviously, if V1 × V2 = ∅ (i.e., if V1 = ∅ or V2 = ∅) then α(G) = α(G1) + α(G2),
and hence the independence number of G is calculated for a time polynomial in |V (G)|. If V1 × V2 
= ∅

then every independent set in G contains vertices of at most one of the sets V1 and V2. Thus,

α(G) = α(G[V ′
1 \ N(x)]) + α(G[V \ V2])

(
α(G) = α(G[V ′

2 \ N(y)]) + α(G[V \ V1])
)

if some maximum independent set in G contains at least one vertex of x ∈ V1 (y ∈ V2). If none of the
vertices in V1 ∪ V2 belongs to one maximum set in G then

α(G) = α(G[V \ V1]) + α(G[V \ V2]).

Hence, for nonempty V1 × V2, we have

α(G) = max(max
x∈V1

α(G[V ′
1 \ N(x)]) + α(G[V \ V2]),

max
y∈V2

α(G[V ′
2 \ N(y)]) + α(G[V \ V1]), α(G[V \ V1]) + α(G[V \ V2])).

Thus, the independence number of G is computed for a polynomial time regardless of the emptiness of
V1 × V2.

Lemma 3 is proved.
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2. POLYNOMIAL SOLVABILITY OF PROBLEM IS IN GRAPH CLASSES
Free({P5, C5, ring1, ring3, P2 ⊕ P4}) AND Free({P5, C5, ring2, ring3, 2P3})

In this section, we prove that the independent set problem is efficiently solvable for graphs without
collections of generated subgraphs P5, C5, ring1, ring3, P2 ⊕ P4 and P5, C5, ring2, ring3, 2P3. This new
result is one of the main assertions in this article and has no overlap with the other IS-simple subsets in
the class Free({P5}) known to the author (for example, see [8–10, 14, 17–22]).

Theorem 1. The graph classes

Free({P5, C5, ring1, ring3, P2 ⊕ P4}), Free({P5, C5, ring2, ring3, 2P3})
are IS-simple.

Proof. Recall that a graph is called perfect if it hereditarily possesses the property of the equality of
the chromatic and clique numbers (which is equivalent to the equality of the independence number and
the clique cover number [16]). It is known [12] that the set of perfect graphs coincides with the set of
graphs in Free({C5, C5, C7, C7, . . .}) and that some classical extremal problems on graphs (including
the independent set problem [15]) are efficiently solvable for the perfect graphs. At the same time,
we observe that all graphs in the classes

Free
(
{P5, C5, ring1, ring3, P2 ⊕ P4}) ∩ Free

(
{C7}

)
,

Free
(
{P5, C5, ring2, ring3, 2P3}

)
∩ Free({C7})

are perfect. Therefore, for proving the theorem, it suffices to consider only those graphs in these classes
containing the generated subgraph C7.

Suppose that G1 is an arbitrary graph in the class

Free
(
{P5, C5, ring1, ring3, P2 ⊕ P4}

)
,

G2 is an arbitrary graph in

Free({P5, C5, ring2, ring3, 2P3})

each of which includes a generated subgraph C7. Clearly, the graph

H1 = G1 ∈ Free({P5, C5 = C5, ring1, ring3, P2 ⊕ P4})
includes C7 as a generated subgraph. The same is true for the graph

H2 = G2 ∈ Free({P5, C5, ring2, ring3, 2P3}).
Show that every vertex in V (H1) \ V (C7) and every vertex in V (H2) \ V (C7) is either adjacent to each
of the vertices of the corresponding cycle C7 or is adjacent to neither of its vertices. Let us prove this
assertion only for H1 since for H2 it is proved similarly.

Assume that there exists some x ∈ V (H1) without this property. Consider the set N(x) ∩ V (C7)
cyclically ordered by the order of its elements in the cycle. The distance (in the sense of the usual
distance in graphs) between two consecutive vertices (in the sense of the just-introduced ordering) in
N(x) ∩ V (C7) cannot equal 3 (otherwise H1 would include a generated subgraph C5). Since H1 does
not contain a generated subgraph P5, the graph N(x) ∩ V (C7) does not contain consecutive values y1,
y2, and y3 such that the distance between y1 and y2 (between y2 and y3) is equal to 2 and the distance
between y2 and y3 (between y1 and y2) is equal to 1. Since H1 ∈ Free({ring3}), the vertex x is adjacent
to at most three vertices of the cycle C7. Moreover, if |N(x) ∩ V (C7)| = 3 then this set is composed of
three consecutive vertices y1, y2, and y3 of C7; and if |N(x) ∩ V (C7)| = 2 then it is composed of two
vertices the distance between which in the cycle equals 2. Both cases are impossible because, in the first
case, H1 contains the subgraph P2 ⊕ P4 generated by the set of vertices {x, y2} ∪ V (C7) \ {y1, y2, y3}
and, in the second case, H1 contains the subgraph ring1 generated by the set of vertices {x} ∪ V (C7).
We are left with the only case in which x is adjacent to exactly one vertex in C7. In this case, H1 contains
a generated subgraph P2 ⊕ P4; a contradiction to the assumption.
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Clearly, C7 is not a generated subgraph in H1 and H2. Therefore, if H1 contains two cycles of length 7
with disjoint sets of vertices as subgraphs then there are two adjacent vertices x and y belonging to
different cycles of such kind. Consequently, x is adjacent to all vertices of one cycle, and y is adjacent to
all vertices of the other. This and the assertion proved in the previous paragraph imply that, in H1, each
vertex in every cycle C7 is adjacent to any other cycle C7. The same holds for H2.

Let X1 be the set of graphs whose each connected component is a subgraph in C7, and let X2 be the
set of all perfect graphs. Both classes are IS-simple. By the above-proved,

Free({P5, C5, ring1, ring3, P2 ⊕ P4}) ∪ Free({P5, C5, ring2, ring3, 2P3}) ⊆ X1 � X2.

Hence, by Lemma 3, the classes

Free({P5, C5, ring1, ring3, P2 ⊕ P4}), Free({P5, C5, ring2, ring3, 2P3})
are IS-simple, which completes the proof of Theorem 1.

3. A NEW EXPANDING OPERATOR FOR THE INDEPENDENT SET PROBLEM

One of the possible approaches to solving Problem IS consists in the use of branching at a vertex
chosen in some way. The essence of this method is that, in a graph G = (V,E), some vertex x is
chosen, and Problem IS for G is reduced to the same problem for the graphs G1 = G[V \ {x}] and
G2 = G[V \ N(x)]. This recursive rule is based on the validity of the obvious inequality

α(G) = max(α(G1), α(G2)).

Unfortunately, in general, this process is not polynomial in time but sometimes applying the idea of
branching (at an appropriately chosen vertex) really leads to efficient algorithms. In [4], it is shown
that, for every graph G ∈ Free({P5, C5}), there exists a vertex x such that the clique number of G2

is less than that of G. This immediately leads to the possibility of solving Problem IS in polynomial
time for graphs in Free({P5, C5,Kp}) for every fixed p. Another (more general) example of a successful
application of branching consists in choosing a vertex x such that at least one of the graphs G1 and G2

belongs to an appropriately chosen case of polynomial solvability of Problem IS. By analogy with the
proof of Theorem 3 in [4], it is easy to prove that, in this case, the time complexity is also polynomial.
A successful choice of a vertex for branching enables us to prove one of the main assertions of the present
article. It states that, for each p, the transformation

{P5, C5,H} → {P5, C5,H ◦ K2,H ⊕ K1,p}
is an expanding operator under the extra condition of the connectedness of H .

Let G be a connected graph of the class Free({P5, C5,H ◦ K2,H ⊕ K1,p}). We may assume that
G does not contain adjacently absorbing vertices. Since, for each s, the class Free({P5,K1,s}) is IS-
simple [18], we may also assume that G contains K1,p+1 as a generated subgraph. By Lemma 1, there
exists a central vertex x in G (of radius at most 2) for which N(x) contains p + 1 independent vertices
y1, y2, . . . , yp+1. For each vertex y ∈ N(x), denote by N ′(y) the set N(y) \ (N(x) ∪ {x}). Since G does
not contain adjacently absorbing vertices, for each such y, the set N ′(y) is nonempty. On the set of
vertices N(x), introduce a quasiorder relation R as follows:

uRv ⇔ N ′(u) ⊆ N ′(v).

In [4, Lemma 2], we proved that if a graph of class Free({P5, C5}) contains a subgraph P3 generated
by vertices a, b, and c (in the indicated order) then, in this graph,

either N(a) \ N(b) ⊆ N(c) or N(c) \ N(b) ⊆ N(a).

This means that the quasiorder R on A = {y1, y2, . . . , yp+1} is linear. Therefore, there exists a vertex
y∗ ∈ A such that N ′(y′) ⊆ N ′(y∗) for every y′ ∈ A. Consider the quasiorder R on

{y ∈ N(x) | N ′(y∗) ⊆ N ′(y)}.
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On this set, R is not necessarily linear but must have a maximal element y1. Clearly, for each vertex
y ∈ N(x) nonadjacent to y1, we have the inclusion N ′(y) ⊆ N ′(y1), which is strict if

G[N ′(y1)] ∈ Free({H})
(the set B = N(x) \ (N(y1) ∪ {y1}) is nonempty since otherwise y1 would be an adjacently absorbing
vertex).

Let C be the set of the vertices in G lying at distance 2 from y1 and not belonging to N(x) ∪ N(y1).

Lemma 4. The graph G[C] belongs to the class Free({H}).

Proof. If C = ∅ then the assertion is obvious. If C 
= ∅ then no vertex in C is adjacent to a vertex in
A∪B (since N ′(y) ⊆ N ′(y1) for each vertex y ∈ A∪B). Therefore, G[C] ∈ Free({H}) since otherwise
some vertices in C, every p vertices in A, and x would generate a subgraph H ⊕ K1,p in G, which
completes the proof.

Lemma 5. If there exist adjacent vertices z1 ∈ C and z2 ∈ N ′(y1) then G[B] ∈ Free({H}).

Proof. Each vertex in B is adjacent to z2 since the existence of a vertex y ∈ B nonadjacent to z2 means
that the vertices y, x, y1, z2, and z1 generate P5 (recall that (y, z1) 
∈ E(G)). Hence, G[B] ∈ Free({H})
since otherwise some vertices in B and x and z2 would generate a subgraph H ◦ K2 in G. Lemma 5 is
proved.

Consider the vertex y2—a maximal element of B with respect to R. Clearly, G[N ′(y2)] ∈ Free({H})
and if G[N ′(y1)] 
∈ Free({H}) then N ′(y2) ⊂ N ′(y1). It is also clear that, for every y ∈ B \ (A∪N(y2)),
we have N ′(y) ⊆ N ′(y2).

Let D denote the set N ′(y1) \ N ′(y2). In Lemma 6, we assume that D is nonempty.

Lemma 6. If

G[B \ A] 
∈ Free({H}), E(G[N ′(y2)]) × E(G[D]) � E(G)

or E(G[N ′(y2)]) × E(G[D]) ⊆ E(G) and G[N ′(y2)] is not complete then

G[N ′(y1)] ∈ Free({H}) � Free({H}).

Proof. We first prove that each vertex in N ′(y2) is either adjacent to each vertex in D or is adjacent to
no such vertex. Suppose that there is z1 ∈ N ′(y2) adjacent to some z2 ∈ D and not adjacent to z3 ∈ D.
Note that each vertex y ∈ B \ A nonadjacent to y2 is adjacent to z1 since otherwise G would contain
the subgraph P5 generated by y, x, y2, z1, and z2. At the same time, each vertex y′ in N(y2) ∩ (B \ A)
must be adjacent to z1 since otherwise G would contain the subgraph P5 generated by y′, y2, z1, y1,
and z3 (if (y′, z3) 
∈ E(G)) or a subgraph C5 (if (y′, z3) ∈ E(G)). Hence, each of the vertices of B \ A

is simultaneously adjacent both to x and z1. But since G contains no generated subgraph H ◦ K2, the
graph G[B \ A] contains no generated subgraph H ; a contradiction to the hypothesis. Therefore, the
assumption about the existence of vertices z1, z2, and z3 fails.

Assume that there exists a vertex a ∈ N ′(y2) adjacent to no vertex in D. The above arguments imply
that a is adjacent to all vertices in N(y2) ∩ (B \A) simultaneously. Since the graph G[N(y2) ∩ (B \A)]
does not belong to the class Free({H}) and G[B \ A] does belong to it, the connectedness of H
implies the existence of two adjacent vertices b ∈ N(y2)∩ (B \A) and c ∈ B \A such that (a, b) ∈ E(G)
and (a, c) 
∈ E(G). Then the vertex b must be adjacent to all vertices in D simultaneously; otherwise
G would contain the subgraph P5 generated by the vertices c, b, a, y1, and some vertex in D. Therefore,
G[D] ∈ Free({H}) because all vertices in D are simultaneously adjacent to the nonadjacent vertices b
and y1. Hence,

G[N ′(y1)] ∈ Free({H}) � Free({H}).

Suppose that E(G[N ′(y2)]) × E(G[D]) ⊆ E(G) and the graph G[N ′(y2)] is incomplete. Then there
exist two nonadjacent vertices u and v that are adjacent to all vertices in D simultaneously. Thus,
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G[D] does not contain H as a generated subgraph. This and what has been said above imply that
G[N ′(y1)] belongs to the composition of the classes Free({H}) and Free({H}).

Lemma 6 is proved.

One of the main results of the article is the following

Theorem 2. If the class Free({P5, C5,H}) for some connected graph H is IS-simple then the
class

Free({P5, C5,H ◦ K2,H ⊕ K1,p})
is IS-simple for every p.

Proof. We use the idea of branching at a vertex v of the current graph so that either its subgraph
without v or its subgraph without N(v) belongs to some IS-simple extension of Free({P5, C5,H}).
This guarantees the possibility of solving Problem IS in the class Free({P5, C5,H ◦ K2,H ⊕ K1,p}) for
polynomial time. We may assume that the current graph G = (V,E) belongs to this class and satisfies all
conditions at the beginning of Section 3: connectedness, the absence of adjacently absorbing vertices,
and the absence of membership in Free({K1,p+1}). Describe the rule for choosing the vertex v.

1. If G[B \A] ∈ Free({P5, C5,H}), which is checked in polynomial time in |V (G)|, then put v = y1.
In this case,

G[V \ N(y1)] = G[C] ⊕ G[(B \ A) ∪ (A \ N(y1))]

and G[C] ∈ Free({P5, C5, H}) by Lemma 4.
At the same time, in the graph G[(B \ A) ∪ (A \ N(y1))], consider all independent subsets of the set

A \ N(y1) (obviously, there are at most 2p+1 of them). For each of these subsets, consider the subgraph
in G[B \ A] generated by all vertices not adjacent to the vertices of the chosen subset. This subgraph
belongs to the class Free({P5, C5,H}). Hence, Problem IS for G[V \ N(y1)] is solved in polynomial
time in the number of its vertices.

2. If G[B \ A] 
∈ Free({P5, C5,H}), E(G[N ′(y2)]) × E(G[D]) � E(G) or if

G[B \ A] 
∈ Free({P5, C5,H}), E(G[N ′(y2)]) × E(G[D]) ⊆ E(G)

and the graph G[N ′(y2)] is incomplete then put v = x. Lemma 5 implies

G[V \ (N(x) ∪ {x})] = G[C] ⊕ G[N ′(y1)],

and G[C] ∈ Free({P5, C5,H}) by Lemma 4.
If D is empty then G[N ′(y1)] belongs to Free({P5, C5,H}), while if D is nonempty then G[N ′(y1)]

belongs to Free({P5, C5,H}) � Free({P5, C5,H}) (by Lemma 6). Therefore, from Lemma 3 it follows
that Problem IS for the graph G[V \ N(x)] is solved in polynomial time in the number of its vertices.

3. If G[B \A] 
∈ Free({P5, C5,H}), E(G[N ′(y2)])×E(G[D]) ⊆ E(G), and G[N ′(y2)] is a complete
graph then α(G) = α(G \ {x}) by Lemma 2.

Thus, the third case is reduced to the first two by removing the redundant vertex.
Theorem 2 is proved.
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