A tolerance-based heuristic approach for
the weighted independent set problem

B. I. Goldengorin, D. S. Malysheyv,
P. M. Pardalos & V. A. Zamaraev

Journal of Combinatorial

. . . Volume 29, No.2, February 2015 ISSN 1382-6905
Optimization

ISSN 1382-6905 J ournal of

Volume o o
- Combinatorial
J Comb Optim (2015) 29:433-450 Optimization

DOI 10.1007/510878-013-9606-z

@ Springer

@ Springer

Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

J Comb Optim (2015) 29:433-450
DOI 10.1007/s10878-013-9606-z

A tolerance-based heuristic approach for the weighted
independent set problem

B. I. Goldengorin - D. S. Malyshev -
P. M. Pardalos - V. A. Zamaraev

Published online: 26 March 2013
© Springer Science+Business Media New York 2013

Abstract The notion of a tolerance is a helpful tool for designing approximation and
exact algorithms for solving combinatorial optimization problems. In this paper we
suggest a tolerance-based polynomial heuristic algorithm for the weighted independent
set problem. Several computational experiments show that our heuristics works very
well on graphs of a small density.

Keywords Combinatorial optimization - Independent set problem - Heuristics -
Notion of a tolerance

B. I. Goldengorin - D. S. Malyshev - P. M. Pardalos - V. A. Zamaraev
Laboratory of Algorithms and Technologies for Network Analysis, National Research University
Higher School of Economics, 136 Rodionova str., Nizhny Novgorod 603093 , Russia

B. I. Goldengorin
Department of Mathematics, Subdepartment of Higher Mathematics, National Research University
Higher School of Economics, 26 Shabolovka str., Moscow 119049, Russia

D. S. Malyshev - V. A. Zamaraev
Department of Applied Mathematics and Informatics, National Research University Higher School of
Economics, 25/12 Bolshaya Pecherskaya str., Nizhny Novgorod 603155, Russia

D. S. Malyshev (<) - V. A. Zamaraev

Department of Mathematical Logic and Higher Algebra, Lobachevsky State University of Nizhny
Novgorod, 23 Gagarina av., Nizhny Novgorod 603950, Russia

e-mail: dsmalyshev@rambler.ru

P. M. Pardalos

Department of Industrial and System Engineering, Faculty of Engineering,
Center for Applied Optimization, University of Florida, 401 Weil Hall,
P.O. Box 116595, Gainesville, FL 32611-6595, USA

@ Springer

434 J Comb Optim (2015) 29:433-450

1 Introduction

After obtaining an optimal solution of a combinatorial optimization problem (COP)
the next natural step may be the sensitivity analysis of the solution (Gal and Greenberg
1997). The purpose of the sensitivity analysis of a given optimal solution is to find a
dependence of the solution on initial data (Greenberg 1998). There are several reasons
for an interest in the sensitivity analysis. Firstly, in many cases initial data of a COP are
inaccurate or have a natural uncertainty. In this case, the sensitivity analysis is needed
to determine confidence both to an optimal solution and to conclusions based on it.
Secondly, it may be difficult to model important characteristics of the desired optimal
solution in terms of a COP. In this case, one may be interested in how the solution
satisfies the properties unaccounted in a COP. Variations of exactly one element of an
optimal solution are considered in the simplest sensitivity analysis. The aim of study
of such perturbations is to find tolerances, which are defined as the maximal variations
of a parameter (weight, cost, time, etc.) that preserve the optimality of a given solution
providing the remaining data of a COP are unchanged.

The interest to tolerances is due to the fact that minimal among tolerances of ele-
ments of an optimal solution is a lower bound for the stability radius of the solution
(Sotskov et al. 1995) and it serves as the basis for designing exact and approximation
algorithms to solve different COPs (Goldengorin et al. 2006). Tolerances may be used
for an effective enumeration of k best solutions of a COP (Murty 1968; Van der Poort
et al. 1999).

For the first time, tolerances were implicitly used in the Vogel’s method (Reinfeld
and Vogel 1965) for finding the closest solution to an optimal basic one in the simplex
method. Also, tolerances were used in Balas and Saltzman (1991) under the term
“maximum regret” (max-regret) for constructing an effective heuristics for the three-
index assignment problem. Tolerances are used in the Helsgaun’s improvement of the
Lin-Kernighan’s heuristics (Helsgaun 2000, 2009) for finding suboptimal solutions
of the traveling salesman problem for simple graphs, in exact and approximation
algorithms for the traveling salesman problem for digraphs and its variations (Ernst et
al. 2010; Germs et al. 2012; Ghosh et al. 2007; Jager and Molitor 2008; Turkensteen et
al. 2008). Tolerances have been successfully used to improve algorithms not only for
intractable problems, but also for effectively (polynomially) solvable ones, such as the
problem of covering vertices of a graph by disjoint cycles of minimum (maximum)
total weight, also known as the linear assignment problem (Boyko et al. 2006) as well
as for its many variations and generalizations (Bekker et al. 2005). A special attention
is paid to polynomially solvable classes of COPs, for which an optimal solution and all
tolerances can be computed simultaneously. Among these problems are the minimum
weight spanning tree problem (Tarjan 1982), the shortest path problem (Ramaswamy
et al. 2005; Shier and Witzgall 1980) and the assignment problem (Volgenant 2006).

In the present article we develop polynomial-time heuristic for the weighted inde-
pendent set problem based on the concept of a tolerance and experimentally investigate
its efficiency. The paper is organized as follows. In Sect. 1 we prove some auxiliary
results about tolerances. In Sect. 2 we show that all tolerances for the weighted inde-
pendent set problem for trees can be computed in linear time in the number of ver-
tices. In Sect. 3 we describe the proposed heuristics. Finally, in Sect. 4 we present an

@ Springer

J Comb Optim (2015) 29:433-450 435

experimental study of our heuristics, which shows that for graphs of a low density the
heuristic give solutions that are very close to optimal.

2 Definitions and notation

A combinatorial optimization problem (COP, for short) is defined by a quadruple of
parameters {I, ¢, F, f.}, where ¢ : I’ — R is the cost (weight) function of elements
of the ground set I'; F C 21 is the set of feasible solutions; f. is the objective function,
defined on F'. For a given concrete (individual) quadruple the corresponding COP is
to determine an element S* € F with the extremal (minimum or maximum) value of
the objective function. The set S$* is said to be an optimal solution of the problem. A
COP {I',c, F, f.}is an additive problem, if for any S € F we have f.(S) = >_ c(s).

There are many COPs, for which tolerances appeared useful not only for thessetgbility
radius analysis (Sotskov et al. 1995), but also for development of new (exact and
approximation) algorithms for their solution. For example, the traveling salesman
problem is such a problem, i.e. to find a hamiltonian cycle (a circuit, that visits each
vertex exactly once) of a given graph with positive lengths of edges, which has the
minimal sum of lengths of its involved edges. For this problem I is the set of edges
of an instance graph; F is the family of all sets of edges, constituting a hamiltonian
cycle; ¢ is a positive length function (a passing cost function) of edges; f.(S) is the
length of a hamiltonian cycle S € F, equal to the sum »_ c(e).

e
Another example of a COP is the weighted independer;iet problem (WIS, for short).
This problem is to find a subset of pair-wise nonadjacent vertices of the maximum
total weight in a graph with positive weights of vertices. Let us recall that any such a
subset (i.e., a subset of pair-wise nonadjacent vertices) is referred to as independent.
For this problem I is the set of vertices of a given graph; F is the set of its independent
sets; ¢ is a positive weight function; f.(S) is the weight of an independent set S, equal

to > c(s).

fgt us consider an additive COP of the max —zype (i.e., a maximization problem),
let $* be an optimal solution, x € S*andy &€ S* (i.e.,y € '\ S$*). We call this problem
old. We will create two new problems on the basis of the old one. The first of them is
obtained from the old problem by a reduction of c¢(x) by a nonnegative number. The
second one is obtained from the old by increasing c(y) by some nonnegative number.
Let us return to the old problem. The lower tolerance of x with respect to S* (denoted
by Ig«(x)) is the supremum of those nonnegative numbers w, by which c(x) can be
decreased such that S* is still an optimal solution for the first new problem under
keeping all other data of the old problem unchanged. The upper tolerance of y with
respect to S* (denoted by ug+(y)) is the supremum of those nonnegative numbers w,
by which c(y) can be increased such that S* remains an optimal solution for the second
new problem (by keeping all other data of the old COP unchanged). A significance
of the lower tolerance of x is that it is an estimation of the stability radius for the
optimal solution $* of the old problem within its feasible solutions, containing x. In
other words, there is no feasible solution S’ of the old COP, containing x, such that

@ Springer

436 J Comb Optim (2015) 29:433-450

the inequality f.(S*) > f; (S,) > f(S*) — lg+(x) holds. A significance of an upper

tolerance is analogous to a lower tolerance. Namely, there is no a feasible solution S” of

the old COP, such that y ¢ S* and the inequality f,(S*) > f, (S”) > fo(S*)—ug+(y)is

true. Itimplies that/ = miSn Is+(x)andu = n;lsn u s+(y) are estimations for the stability
xes* YES*

radius of §* among all feasible solutions of the old COP. Indeed, there is no solution
S" € F,suchthat f.(S*) > f.(S") > fo(S*)—land f.(5%) > fo(S") > fo(S*)—u
simultaneously hold.

In the above definitions of tolerances the supremums are attainable, so the word
“supremum’” can be replaced by the word “maximum”. This is due to the finiteness of
F.

3 A formula for tolerances with respect to the WIS

In what follows we will assume that {I', ¢, F, f.} is the WIS. By F_(x) we will
denote the set of all independent sets, which do not contain a vertex x. The set of all
independent sets, containing a vertex y, will be denoted by F. (y). The families of
all independent sets, having the largest weight among elements of F_(x) and F (y),
will be denoted by F*(x) and FJ (), respectively. The set F'* contains all optimal
solutions of the considering COP. For a subset F/ C F we denote by f.(F’) the largest
weight among weights of independent sets, belonging to F”’.

Lemma 1l Let S* € F*,x € S*and y ¢ S*. Then:

(a) lsx(x) = fe(F*) = fe(FZ(x)),
(b) us(y) = fe(F*) = fe(FL(y).

Proof We will prove only (a), since (b) can be proved similarly. If c¢(x) is decreased
and weights of all other vertices remain unchanged, then the weights of all independent
sets, containing the vertex x, are decreased by the same value as the weight of x. The
weights of all independent sets, which are not containing x, do not change. Hence, S*
remains an optimal solution until a subtrahend for the x’s weight will be no more than
the difference between f.(F*) and an optimal value of f, on F_(x) (i.e., fc(F*(x))).
Therefore, Is+ (x) = f.(F*) — fo(F*(x)).

Remark 1 The lower and upper tolerances are invariants of optimal solutions in the
sense that their values are independent of a chosen optimal solution, if there are at
least two such solutions. This is an immediate consequence of Lemma 1.

Remark 2 An optimal independent set S* is the unique optimal solution if and only
if all lower tolerances with respect to S* are positive and all upper tolerances with
respect to S* are also positive. The necessity is a trivial corollary of Lemma 1 and the
sufficiency is easy to prove by contradiction.

Remark 3 Assume a graph has at least two optimal independent sets. The lower tol-
erances of elements in the nonempty intersection of all optimal solutions are strictly
positive and they are equal to zeros for elements outside this intersection, if such exist.
On the other hand, the upper tolerances of vertices in the union of all optimal solutions
are equal to zeros and they are strictly positive for vertices outside this union, if such

@ Springer

J Comb Optim (2015) 29:433-450 437

exists. In order to show this, let S’ = ()| SandS” = |J S.Foranyy; € §” and for
Ser* Ser*

any ys € I'\ S” wehave f.(F*) = fo(F{(y1)and f.(F*) > fo(F(y2)). Hence, by
Lemma 1, for any optimal solution ST, which contains y;, we have u Sf(yl) = 0 and
usr(y2) > 0. Forany x; € S and for any x; € I\ §' we have f.(F*) > f.(F*(x1))
and f.(F*) = f.(F*(x2)). Therefore, by Lemma 1, for any optimal solution S7,
which contains x,, we have 153« (x1) > 0 and ZS; (x2) = 0.

Remark 4 Remark 2 is useful for formulations of rules for branching in branch-
and-bound algorithms. Indeed, branchings on elements with strictly positive lower
tolerances protect from a possibility of branchings on elements outside an opti-
mal solution, and, therefore, reduces a chance of useless walks in finding a global
optimum.

4 Linear-time algorithm for computing tolerances for the WIS on trees

By Lemma 1, for any $* € F*,x € S* and y ¢ S* the relations /g«(x) =
Je(F*) = fe(FZ(x))and ug=(y) = fe(F*)— fe(F{(y)) hold. Therefore, when f.(F*)
is known, then for a computation of the upper and the lower tolerances of x and y
we need only to compute f.(F*(x)) and f.(F}(y)). At the same time, information
accumulated during the computation of f,(F™*), would be desirable to use effectively
for determining f,(F*(x)) and fc(F_t (v)) (and, say, not to recompute optimal inde-
pendent sets for the graphs without/with x /y). For trees such a procedure is really pos-
sible. It is based on the application of breadth-first and reverse-back orders in dynamic
programming.

The WIST (i.e., the WIS for trees) can be solved by considering the problem for sub-
trees (of a given tree) with roots at all vertices and by reducing the problem for a subtree
with root x to the WIST for subtrees with roots at children of x (Chen et al. 1988). Let
{I,c, F, f.}be the weighted independent set problem for a tree 7' with root at a vertex
root. Let x € V(T) and T, be the subtree of T with root at x. In order to describe the
reverse-back part we introduce the following variables: sef (x) is an optimal indepen-
dent set of Ty; set;, (x) and set,,; (x) are independent sets of 7, with the largest weight
among all independent sets of 7, which contain/do not contain x, respectively. The
sets set (x), seti, (x), sety,; (x) have weights weight (x), weighti, (x), weighty, (x),
correspondingly. Note that

weight (x) = max(weighti,(x), weighty,: (x)),
set(x) = setin(x), if weighti,(x) > weighty,;(x), and set(x) = setour(x),

otherwise.

Now we can easily write the recurrence relations for weight;, (x) and weight,,: (x):
if x is a leaf, then

weightiy (x) = c(x), weightyy(x) =0,

@ Springer

438 J Comb Optim (2015) 29:433-450

if x is not a leaf, then

weightou(x) = D weight(y).
yechildren(x)

weightiy(x) = c(x)+ D weightou(y),
yechildren(x)

where children(x) is the set of all immediate descendants of x in the initial tree. By
analogy, we have

setin(x) = U setour (y) U {x},

yechildren(x)

setou@) = | ser(y).

yechildren(x)

Once we know weighti, (x), weighty,; (x), weight (x), seti, (x), setyu: (x), set (x)
for every x € V(T), we can compute all tolerances by means of the breadth-first
part of dynamic programming. To this end we introduce the following variables:
Weightiy(x) = fo(F{(x)), Weightyy (x) = fe(F*(x)). Clearly, if x is the root
of T, then Weight;,(x) = weight;,(root), and Weight,,;(x) = weight,,;:(root).
Note that if parent (x) is the parent of a nonroot vertex x, then

Weight,,:(parent (x)) — weight (x) = Weight;,(x) — weight;,(x),
Weightyy: (x) — weightyy: (x) = max(Weighti,(parent(x))
—weightyy (x), Weighty,: (parent (x))
—weight (x)).

These relations can be easily rewritten in a form of recurrence relations. From Lemma
1 it follows that for any x € S* = set (root) the relation /g (x) = weight (root) —
Weight,, (x) holds and for any y ¢ S* the equality ug«(y) = weight(root) —
Weight;,(y) is true.

An algorithm for solving the WIST and computing all tolerances is presented below.

Note that the computation of weight(root) and of all tolerances (without the
optimal solution set (root)) is carried out by means of the presented algorithm in
O (n) time, where n is the number of vertices in 7. At the same time, if the sets
set(x), setin(x), sety,; (x) are stored in singly or doubly linked lists, then sef;, (x)
and set,,; (x) can be computed in O (|children(x)|) time. Therefore, an optimal inde-
pendent set for 7' is determined in O(>, |children(x)|) = O(n) time and, hence,

xeV(T)

the total time of the algorithm is O (n).

Let us demonstrate Algorithm 1 on the tree in Fig. 1. Names of vertices are inside
the circles, while their weights are specified near the circles.

The breadth-first search defines the order x1, x», x3, ..., xg for vertices. Therefore,
X8, X7, Xg, - - ., X1 18 the reverse-back order. Let us consider the first four iterations of

@ Springer

J Comb Optim (2015) 29:433-450 439

Algorithm 1 WISTAndTolerances(7")

1: for each vertex in the reverse-back order of 7' do
2: if x is a leaf then

3: weightoy (x) = 0; setoyr (x) = 0
4: weighti, (x) = c(x); setj, (x) = {x};
5: weight (x) = c(x); set(x) = {x};
6: else
7: weighti, (x) = > weightoys (y) + ¢(x);
yechildren(x)
8: setip(x) = U setoyr (y) U {x};
yechildren(x)
9: weightoy: (x) = > weight (y);
yechildren(x)
10: setoyr (x) = U set(y);
yechildren(x)
11: weight (x) = max(weight;, (x), weightyys (x));
12: if weight (x) > weightyy: (x) then
13: set(x) = setj, (x);
14: else
15: set(x) = setoyr (x);

16: for each vertex in the breadth-first order of 7 do

17: if x is a leaf then

18: Weightoys (x) = weightyy; (x);

19: Weight;, (x) = weight;, (x);

20: else

21: Weight;, (x) = Weightoys (parent (x)) — weight (x) + weighti, (x);

22: Weightout (x) = weightoy: (x) + max(Weight;, (parent (x)) — weightoys (x),

Weightoy: (parent (x)) — weight (x));
Ok

23: for x € V(T) do
(=)

24: if x € set(root) then
25: lg+(x) = weight (root) — Weightyy (x);

the first loop of the algorithm. Since the vertices xg, x7, x¢ are leaves, after the first
three iterations we have

26: else
27: ugx(x) = weight (root) — Weight;, (x);

Fig. 1 An example of the WIST

setin(x;) = set(x;) = {x;}, setoys(x;) =@ foranyi € 6, 8,

weight;, (xg) = weight (xg) = 4, weight;, (x7) = weight (x7) = 3,

@ Springer

440 J Comb Optim (2015) 29:433-450

Table 1 The process for the computation of an optimal solution

i weighti, (x;) weightoyr (x;) setjn(x;) setout (Xi) weight (x;) set(x;)

8 4 0 {xg} % 4 {xg}

7 3 0 {x7} 7] 3 {x7}

6 1 0 {x6} % 1 {x6}

5 3 4 {xs} {xs} 4 {xs}

4 2 3 {xa} {x7} 3 {x7}

3 1 0 {x3} % 1 {x3}

2 6 5 {x2, xg} {x6. x8} 6 {x2, xg}

1 13 10 {x1, x6, x7, x8} {x2,x3,x7,x8} 13 {x1,x6, x7, x8}

weighti,(x¢) = weight(xg) =1,
weightoyr (x3) = weightoy (x7) = weightoy: (x6) = 0.

At the fourth iteration we have

weightin(xs) = > weightou(y) +c(xs) =0+3 =3,
yechildren(xs)
setin(xs) = U setow () Ulxst =0 U {xs) = {xs},
yechildren(xs)
weighty,; (xs) = Z weight (y) = 4,
yechildren(xs)
setour(xs) = | set(y) = {xs),

yechildren(xs)
weight (x5) = max(4, 3) = 4,

and as weight,,;(xs) is equal to weight (x5), then set (x5) = setyy: (xs5) = {xg}. The
steps of the first loop are presented in Table 1.

After the first loop we have §* = {xi, xg, x7, x3} and f.(S*) = 13. F*(x) and
F(y) are computed in the second loop of the algorithm. After the first two iterations
of this loop we have

Weighti,(x1) = weighti, (x1) = 13, Weighty,: (x1) = weighty,: (x1) = 10,

Weighti,(x2) = Weighty,:(parent(x2)) — weight (x3) + weight;, (x2)
=10—-646 = 10,

Weightyy: (x2) = weightoy: (x2) + max(Weight;, (parent (x2)) — weightyy: (x2),

Weighty, (parent (x3)) — weight (x2)) = 5+ max(13 — 5, 10 — 6) = 13.

The steps of the second loop are presented in Table 2.

@ Springer

J Comb Optim (2015) 29:433-450 441

Table 2 Results of the second

loop i Weight;, (x;) Weightour (xi)
1 13 10
2 10 13
3 10 13
4 9 13
5 12 13
6 13 12
7 13 10
8 13 12

Finally, tolerances are computed in the third loop:

ls+(x1) = weight (root) — Weighty,: (x1) = lg+(x7)
= weight(root) — Weighty,; (x7) = 3,
ls«(x6) = weight (root) — Weightyu: (xe) = ls+(xg)
= weight(root) — Weight,,;(xg) =1,
us+(x2) = weight (root) — Weighti,(x2) = us=(x3)
= weight(root) — Weighti,(x3) = 3,
us«(xq) = weight (root) — Weight;,(x4) = 4,
us+(x5) = weight (root) — Weight;,(xs5) = 1.

5 A heuristic for the weighted independent set problem

Let us recall that an independent set with the largest weight is the unique optimal
solution, if and only if the lower tolerances of all its vertices are positive and the upper
tolerances of all vertices outside the solution are also positive. Let us also recall that
under the condition of non-uniqueness of an optimal solution the lower tolerances
are positive only for the vertices, which are not in the intersection of all optimal
independent sets, and the upper tolerances are positive only for the vertices that do
not belong to the union of such sets. In general, if there exist at least two optimal
solutions of a COP, then information only about values of all tolerances (with respect
to some unknown optimal solution) allows to exclude the elements which are outside
any optimal solution (and to reveal the elements belonging to every optimal solution).
This fact is employed in exact and approximation algorithms for solving some COPs.

Note that tolerances might be used for an acceleration of exact enumeration algo-
rithms (for example, branch-and-bound algorithms) for solving NP-complete problems
and for a fast extraction of information about the structure of optimal and sub-optimal
solutions of polynomial-time solvable problems (see Ernst et al. 2010; Germs et al.
2012; Ghosh et al. 2007; Jager and Molitor 2008; Turkensteen et al. 2008; Boyko et
al. 2006; Bekker et al. 2005). An application of the latter idea appears useful, because

@ Springer

442 J Comb Optim (2015) 29:433-450

an intractable problem is often “replaced” by some polynomial-time relaxation and
a choice of such a relaxation is determined by a “similarity” (with respect to some
qualitative or quantitative measures) of optimal solutions of both problems. Similar
arguments can be used for selecting a branching element. For instance, a branching
can be done on an element x with the largest value of the tolerance with respect to an
optimal solution S} of the relaxation. The reason for the choice of such an element is
that the solution S} is the most sensible (in terms of values of the objective function)
with respect to an elemination of x from S} (if x € S}) or an addition of x to ST (if
x ¢ S7). At the same time, the similarity between S} and an unknown optimal solution
S5 of the initial problem lead to an idea that S5 is substantially sensitive with respect
to an addition/removal of x. Thereby, one can claim with a high reliability that either
x belongs to some optimal solutions of the initial problem and its relaxation, or it does
not belong to any pair of such solutions.

One might develop heuristic algorithms for solving intractable COPs based on
determining an element of a polynomial-time relaxation with the largest tolerance
(with respect to an optimal solution S* of the relaxation) and an inclusion/exclusion
of this element in/from a heuristic solution of the initial problem depending on its
membership of S*. This scheme will be implemented further.

We offer the WIST as a polynomial-time relaxation of the WIS. The choice of such
a relaxation is based in a variety of reasons. Firstly, any connected graph contains
at least one spanning tree. Since this tree contains all vertices of the graph, then the
weight of its optimal independent set is a majorant for weights of all independent sets
of the graph. Secondly, an optimal solution of the WIST and values of all tolerances
with respect to this solution can be calculated in linear time (due to Algorithm 1).

In order to describe the algorithm let us introduce some notations. Let H be a given
graph and G be an induced subgraph of H. By Set;, (G) we will denote a procedure to
compute a heuristic solution for G with respect to the suggested approach. By G \ {x}
and G \ N (x) we will denote the induced subgraphs obtained from G by removals of
x or its neighbourhood, respectively. The mentioned algorithm is presented below.

Algorithm 2 WISHeuristics(H)
1: return Set;, (H);

Let us estimate the computational complexity of this algorithm. Let H has n vertices
and m edges. We will assume that all graphs in Algorithm 3 are represented by sorted
lists of edges. Connected components of a graph can be computed in O (m + n) time.
Denote by time(n, m) the time needed to compute a spanning tree of a connected
graph with n vertices and m edges. Recall that Algorithm 1 simultaneously computes
an optimal solution S* and all tolerances with respect to this solution in O (n) time.
Suppose that a set of vertices returned by Set;, (G) is stored in a linked list. Thus, one
call of Set;,(G) runs in O(n + m + time(n, m)) time. There are at most n calls of
Set, (G), therefore the complexity of Algorithm 3 is O (n(n + m + time(n, m))).

Now it is necessary to fix a spanning tree in Algorithm 3. We propose to use the
maximum spanning tree of G(V, E), where the weight function/ : £ — Ry is

@ Springer

J Comb Optim (2015) 29:433-450 443

Algorithm 3 Set), (G)

1: if G is not connected then
2: Determine all connected components G, Go, ..., G of the graph G;

k
3: return |J Ser,(G;);
i=1
4: else
5: if G is a tree then
6: Compute an optimal solution S* of the WIS for G (using Algorithm 1);
7 return S*;
8: else
9 Find a spanning tree T of the graph G;
10: Compute an optimal solution $* of the WIST for 7 and values of all tolerances with respect to S*
(using Algorithm 1);
11: Determine z = arg max({{g+ (x) : x € S*}U{ug«(y) : y & S*});
12: if z € §* then

13: return (Set, (G \ {N(2)}) U {z});
14: else
15: return Set;, (G \ {z});

Fig. 2 An example of the WIS

defined as I(e¢) = max(c(a), c(b)). This choice is based on the intuition that vertices
with larger weights are included into an exact optimal solution of the WIS for G
with a higher probability. Therefore, we want to choose a spanning tree of the graph
G such that neighbourhoods of vertices with large weights in the tree were similar
to neighbourhoods of the same vertices in the graph. Such a similarity is provided
with the Kruskal’s algorithm for solving the maximum spanning tree problem. Recall
that at the first phase of the Kruskal’s algorithm edges are sorted and at the second
phase feasible edges are selected (Kruskal 1956). The former phase can be done in
O(mlog(m)) time and the latter one in O(ma(m,n)) time, where «(m, n) is the
inverse Ackermann’s function (Cormen et al. 2001). In order to represent all graphs,
arising in Algorithm 3, by sorted lists of edges it is enough to sort only edges of
H and store the sorted edges in a list. Therefore, edges sorting in subsequent calls
of the Kruskal’s algorithm can be omitted and, hence, time(n, m) € O(ma(m, n)).
Considering the above details, we conclude that the execution time of Algorithm 3 is
O(n(n +ma(n, m)) +mlog(m)) = O(nmo(n, m)).

Let us demonstrate Algorithm 2 on the graph depicted below (see Fig. 2).

Edges of some optimal spanning tree are highlighted to make them thicker.

The graph (see Fig. 3) has many optimal trees. Let us fix one of them. An opti-
mal solution $* for the corresponding WIST is unique and it coincides with the
set {xl,x4,x5}. Hence, ZS*(xl) = 3, ls*(X4) = 2, 15*()65) = 2 and us*()cz) = 3,

@ Springer

444 J Comb Optim (2015) 29:433-450

Fig. 3 The first graph with an
optimal spanning tree

Fig. 4 The second graph with
an optimal spanning tree

Fig. 5 The third graph with an g
optimal spanning tree @ @

us«(x3) = 4, us=(xg) = 2. So, x3 is the unique vertex with the maximal tolerance.
Since x3 ¢ S*, this vertex should be removed. We have the graph in Fig. 4.

The last graph has the unique optimal spanning tree. One of its optimal independent
sets is {x1, x5, xg}. For this set $* we have Ig+(x|) = 3, [s+(x5) = 0, [s+(xg) = 0 and
us(x2) = 3, ug+(xq) = 0. The vertex x, has the maximal tolerance with respect to
S* and it does not belong to S*, so it should be deleted. The result is shown below
(see Fig. 5).

The graph has two connected components, one of them is the one-vertex graph. This
vertex is included to the solution. For the second connected component an optimal tree
is unique and one of its optimal independent sets is {x4}. All tolerances with respect
to this solution are equal to zeros. Hence, x4 is the vertex with the maximal tolerance
and it is included to the solution. One can easily verify that the found solution {x1, x4}
is also the unique optimal independent set of the initial graph.

6 Computational experiments
Let us describe conditions of our experiments and analyze their results. Two numerical

parameters characterizing a quality of our heuristic are considered. We are interested
in values of such parameters and we are not interested in time of their computation.

@ Springer

J Comb Optim (2015) 29:433-450 445

Table 3 Results for

. . Densi Approximation Dominanc
E;lt(;ics:s{enyl graphs with 50 ! o ra?il()) ?n % e ra(t)io ina% ‘

0.05 0.048 100 100

0.1 0.096 100 100

0.15 0.152 98.9 99.99
0.2 0.198 83.3 99.35
0.25 0.254 89.2 99.45
0.3 0.302 81 97.18
0.35 0.34 76.6 91.91
0.4 0.406 69.5 87.69
0.45 0.446 73.7 89.8

0.5 0.494 97.8 99.72
0.55 0.543 66.2 89.15
0.6 0.598 743 90.94
0.65 0.652 574 55.67
0.7 0.696 50.8 49.69
0.75 0.744 63.5 82.57
0.8 0.802 63 79.04
0.85 0.848 522 60.57
0.9 0.91 77.9 96.55
0.95 0.952 66.9 78.38

The first of the mentioned characteristics is the approximation ratio, which is defined
as the fraction of the weight of an obtained heuristic solution to the weight of an optimal
solution. The second one is the dominance ratio that is the fraction of the number of
independent sets, which weights do not exceed weight of a heuristic solution, to the
number of all maximal independent sets. An exact optimal solution is found by the
simple greedy branching (in a dense case) or by the branch-and-bound algorithm with
the lower bound provided by our heuristic (in a sparse case), all independent sets are
enumerated by means of the Bron-Kerbosch’s algorithm (Bron and Kerbosch 1973).
Recall that the density of a graph with n vertices is the fraction of the number of its
edges to @ (i.e., the number of edges in the complete n-vertex graph).

We consider random graphs which are produced by different random graph models.
The first one is the Erdés-Renyi model. In this model graphs are generated on the set of
vertices {1, 2, ..., n} and for each pair of distinct vertices i and j an edge (i, j) belongs
to the graph with a fixed probability p. Graphs with n vertices 1,2,3,...,n and m
edges are produced by the second model. Here a pair (i, j) of distinct vertices is chosen
uniformly at random among all feasible pairs, it is added as an edge and removed
from a set of feasible pairs. The process is repeated m times. As the third model we
consider power-law graphs, i.e. graphs for which the fraction of the number of vertices
of degree d to the number of all vertices is asymptotically distributed proportionally
to d~#, where B > 1. To generate such graphs we use a tool from the Boost Graph
Library (www.boost.org/doc/libs/1_-41_-0/boost/graph/plod_-generator.hpp).

@ Springer

www.boost.org/doc/libs/1_{-}41_{-}0/boost/graph/plod_{-}generator.hpp

446

J Comb Optim (2015) 29:433-450

Table 4 Results for

. . Densi Approximation Dominanc
E;ﬂ?cs:;enyl graphs with 100 ’ o ra?il()) ;)n % e ra(t)io ina%)
0.05 0.048 99.9 -
0.1 0.096 97.1 —
0.15 0.148 93.4 -
0.2 0.196 91.6 97.8
0.25 0.256 88.9 99.9
0.3 0.308 67.5 90.7
0.35 0.346 56.2 57.6
0.4 0.398 82.5 99.3
0.45 0.449 37.7 26
0.5 0.496 51.2 61.3
0.55 0.54 37.8 233
0.6 0.594 45.5 383
0.65 0.656 76.6 95.9
0.7 0.698 37.9 28.5
0.75 0.744 359 32.5
0.8 0.805 53.1 56.7
0.85 0.854 28.1 27.57
0.9 0.9 329 25.6
0.95 0.953 45.2 40.8
number of vertices ;atlo 1r: %§ ;atlo 1r: % ratio in % 5
orm = yn orm = form=n2
[nloga(n)]
50 0.061/100 0.23/97.7 0.288/95.7
60 0.051/98.9 0.2/83.7 0.262/95.1
70 0.043/100 0.178/100 0.242/95
80 0.038/100 0.16/77.7 0.226/75.5
90 0.034/100 0.146/78.8 0.213/73.1
100 0.03/100 0.134/90.2 0.202/66.6
110 0.028/100 0.124/88.1 0.192/88.8
120 0.025/98.3 0.116/82.2 0.184/67
130 0.023/100 0.109/77.3 0.177/73
140 0.022/99.8 0.103/92.4 0.17/80.9
150 0.02/100 0.097/88.5 0.162/70.5

The first computational experiment is for Erd6s-Renyi graphs with 50 and 100
vertices and the values of p are chosen from 0.05 to 0.95 with the step 0.05. Weights
of all vertices are uniformly generated within the range [0, 100n]. The expectation of
the density for Erds-Renyi graphs is equal to p (Tables 3, 4).

@ Springer

J Comb Optim (2015) 29:433-450 447

Table 6 Results for power-law

graphs with 50 vertices p Density glzil(a)rﬁfganon 22?2?%06
1.1 0.361 98.67 99.87
1.2 0.304 91.25 96.94
1.3 0.248 97.49 99.74
14 0.204 95.16 99.57
1.5 0.169 100 100
1.6 0.153 100 100
1.7 0.120 100 100
1.8 0.107 100 100
1.9 0.091 100 100
2.0 0.076 100 100
2.1 0.066 100 100
22 0.060 99.99 99.31
2.3 0.053 99.99 98.42
2.4 0.046 99.9 93.49
2.5 0.039 100 100
2.6 0.037 100 100
2.7 0.034 100 100
2.8 0.031 100 100
2.9 0.031 100 100
3.0 0.029 100 100
3.1 0.028 100 100
32 0.028 100 100
33 0.025 100 100
34 0.025 100 100
35 0.023 100 100
3.6 0.023 100 100
3.7 0.022 100 100
3.8 0.022 100 100
39 0.022 100 100
4.0 0.02 100 100

A dash means that we did not wait until an end of the computations, because the
Bron-Kerbosch’s algorithm took too much time. So, the first experiment shows that
for Erd6s-Renyi graphs our heuristic stably works better for graphs of a small density.
This phenomena seems to be independent of a type of graphs and it depends only on a
growth of the number of edges. Let us make sure of that by conducting an experiment
for graphs of the second model with various functions of a growth of the number of
edges. Weights of vertices are distributed as in the first experiment (Table 5).

We can observe from the second series of experiments that if the number of edges
grows not quickly, the heuristic algorithm steadily works well enough and this stability

@ Springer

448 J Comb Optim (2015) 29:433-450

Table 7 Results for power
law-graphs with different 8 and
number of vertices

B Dens./appr. ratio Dens./appr. ratio Dens./appr. ratio
in % for n = 100 in % for n = 300 in % for n = 500

2.0 0.075/99.78 0.069/99.09 0.068/100

2.1 0.061/100 0.058/99.89 0.057/99.41

22 0.053/99.85 0.049/99.39 0.048/99.6

23 0.047/99.56 0.042/99.28 0.041/100

24 0.04/100 0.036/100 0.034/99.45

2.5 0.035/100 0.03/99.39 0.03/99.59

2.6 0.032/100 0.026/99.8 0.025/99.69

2.7 0.028/100 0.022/100 0.022/99.57

2.8 0.025/100 0.02/99.53 0.019/99.89

2.9 0.023/100 0.017/99.98 0.016/99.73

3.0 0.02/100 0.015/99.66 0.014/99.87
g;l;l;ssml;e;uis éosr power-law Density Approximation ratio in %

100 0.036 100

200 0.031 100

300 0.03 100

400 0.03 99.71

500 0.03 99.75

600 0.029 99.78

700 0.029 99.69

800 0.029 99.78

900 0.029 99.78

1,000 0.029 99.62

is almost independent of n. On the other hand, a growth of the relative number
of edges in graphs leads to downgrading the heuristic indicators and a strong their
dispersion.

Power-law graphs are important for the analysis and solution of real-world prob-
lems, because they are appropriate mathematical models of scale-free networks (see
Barabasi and Reka 1999; Bollobas et al. 2001; Faloutsos et al. 1999; Kumar et al.
1999). The parameter B for such networks is typically in the range 2 < 8 < 3. It is
true for the WWW graph, the Call graph, the Math Reviews graph (the Collaboration
graph), graphs of social and airline networks. Power-law graphs with typical above g
are extremely sparse, because for power-law graphs with n vertices, m edges and § > 2
the asymptotical equality m = % ;({,3(;)1) n holds (Aiello et al. 2000), where ¢ (B) is the
Riemann’s zeta function. Taking into account the results of the previous experiments,
one could expect that our heuristic algorithm will stably work well enough on power-
law graphs with typical 8. Let us be convinced of it by making the corresponding

@ Springer

J Comb Optim (2015) 29:433-450 449

computational experiments (weights for vertices are chosen in the same way as in the
previous experiments) (Tables 6, 7, 8).
We see that our expectations came true for power-law graphs.

Acknowledgments All authors are partially supported by LATNA Laboratory, NRU HSE, RF govern-
ment grant, ag. 11.G34.31.0057. This study comprises research findings of the first two authors from the
“Calculus of tolerances for combinatorial optimization problems: theory and algorithms” project carried out
within the Higher School of Economics’ 2011-2012 Academic Fund Program. This research was supported
by the Federal Target Program “Research and educational specialists of innovative Russia for 2009-2012",
state contract No 14.B37.21.0393.

References

Aiello W, Chung F, Lu L (2000) A random graph model for power-law graphs. Exp Math 10:53-66

Balas E, Saltzman M (1991) An algorithm for the three-index assignment problem. Oper Res 39:150-161

Barabasi A, Reka A (1999) Emergence of scaling in random networks. Science 286:509-512

Bekker H, Braad E, Goldengorin B (2005) Selecting the roots of a small system of polynomial equations
by tolerance based matching. Lect Notes Comput Sci 3503:610-613

Bron C, Kerbosch J (1973) Finding all cliques of an undirected graph. Commun ACM 16:575-577

Bollobas B, Riordan R, Spencer J, Tusnady G (2001) The degree sequence of a scale-free random graph
process. Random Struct Algorithms 18:279-290

Boyko V, Goldengorin B, Kuzmenko V (2006) Tolerance-based algorithms. Theory Optim Decis 5:98-104
(in Ukrainian)

Chen C, Kuo M, Sheu J (1988) An optimal time algorithm for finding a maximum weight independent set
in a tree. BIT Numer Math 28:353-356

Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction of algorithms, 2nd edn. MIT Press/McGraw-
Hill, Cambridge

Ernst C, Dong C, Jager G, Richter D, Molitor P (2010) Finding good tours for huge euclidean TSP instances
by iterative backbone contraction. In: AAIM, pp 119-130

Faloutsos M, Faloutsos P, Faloutsos C (1999) On the power-law relationships of the internet topology.
Comput Commun Rev 29:251-262

Gal T, Greenberg H (1997) Advances in sensitivity analysis and parametric programming. Kluwer Academic
Publishers, New York

Germs R, Goldengorin B, Turkensteen M (2012) Lower tolerance-based branch and bound algorithms for
the ATSP. Comput Oper Res 39:291-298

Ghosh D, Goldengorin B, Gutin G, Jager G (2007) Tolerance-based greedy algorithms for the traveling
salesman problem. In: Bapat R, Das A, Partasaraty T, Neogy S (eds) Mathematical programming and
game theory for decision making. World Scientific Publishing, Singapore

Goldengorin B, Jager G, Molitor P (2006) Tolerances applied in combinatorial optimization.] Comput Sci
2:716-734

Greenberg H (1998) An annotated bibliography for post-solution analysis in mixed integer and combina-
torial optimization. In: Woodruff D (ed) Advances in computational and stochastic optimization, logic
programming and heuristic search. Kluwer Academic Publishers, New York, pp 97-148

Helsgaun K (2000) An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur J
Oper Res 126:106-130

Helsgaun K (2009) General k-opt submoves for the Lin-Kernighan TSP heuristic. Math Program Comput
1:119-163

Jager G, Molitor P (2008) Algorithms and experimental study for the traveling salesman problem of second
order. In: COCOA, pp 211-224

Kruskal J (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am
Math Soc 7(1):48-50

Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999) Trawing the Web for emerging cyber-communities.
Comput Netw 7:1481-1493

Murty K (1968) An algorithm for ranking all the assignments in order of increasing cost. Oper Res 16:
682-687

@ Springer

450 J Comb Optim (2015) 29:433-450

Ramaswamy R, Orlin J, Chakravarti N (2005) Sensitivity analysis for shortest path problems and maximum
capacity path problems in undirected graphs. Math Program 102:355-369

Reinfeld N, Vogel W (1965) Mathematical programming. Prentice Hall, Englewood Cliffs

Shier D, Witzgall C (1980) Arc tolerances in minimum-path and network flow problems. Networks 10:
277-291

Sotskov Y, Leontev V, Gordeev E (1995) Some concepts of stability analysis in combinatorial optimization.
Discret Appl Math 58:169-190

Tarjan R (1982) Sensitivity analysis of minimum spanning trees and shortest path trees. Inf Process Lett
14:30-33

Turkensteen M, Ghosh D, Goldengorin B, Sierksma G (2008) Tolerance-based branch and bound algorithms
for the ATSP. Eur J Oper Res 189:775-788

Van der Poort E, Libura M, Sierksma G, Van der Veen J (1999) Solving the k-best traveling salesman
problem. Comput Oper Res 26:409-425

Volgenant A (2006) An addendum on sensitivity analysis of the optimal assignment. Eur J Oper Res
169:338-339

@ Springer

	A tolerance-based heuristic approach for the weighted independent set problem
	Abstract
	1 Introduction
	2 Definitions and notation
	3 A formula for tolerances with respect to the WIS
	4 Linear-time algorithm for computing tolerances for the WIS on trees
	5 A heuristic for the weighted independent set problem
	6 Computational experiments
	Acknowledgments
	References

