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Abstract

Background: Vectorial capacity and the basic reproductive number (R0) have been instrumental in structuring thinking
about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important
simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that
insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission
dynamics and strategies for disease prevention.

Methodology/Principal Findings: Based on survival analysis we derived new equations for vectorial capacity and R0 that are
valid for any pattern of age-dependent (or age–independent) vector mortality and explore the behavior of the models
across various mortality patterns. The framework we present (1) lays the groundwork for an extension and refinement of the
vectorial capacity paradigm by introducing an age-structured extension to the model, (2) encourages further research on
the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general,
and (3) provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity
compared to other vector-borne disease prevention strategies.

Conclusions/Significance: Accounting for age-dependent vector mortality in estimates of vectorial capacity and R0 was
most important when (1) vector densities are relatively low and the pattern of mortality can determine whether pathogen
transmission will persist; i.e., determines whether R0 is above or below 1, (2) vector population growth rate is relatively low
and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with
age-independent mortality, and (3) the vector exhibits complex patterns of age-dependent mortality and R0,1. A limiting
factor in the construction and evaluation of new age-dependent mortality models is the paucity of data characterizing
vector mortality patterns, particularly for free ranging vectors in the field.
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Introduction

The basic reproductive number (R0) and vectorial capacity are

integral parts of the language, science, and control of vector-borne

disease [1]. For almost 100 years, since the initial work by Ross [2]

through the contributions by Macdonald [3] and Garrett-Jones [4]

into the present, deviation from simplifying assumptions of the

models has rarely been examined. Important assumptions are that

vectors do not senescence, vector populations are homogeneous,

size of adult vector populations is constant, vector bites are

delivered at random and uniformly, and infected vectors never lose

their infectiousness [1]. Nowadays many basic assumptions are

being revised. Because of climate change the influence of

temperature and its variations on malaria transmission is

investigated thoroughly [5,6,7]. The departure from assumption

that vectors do not senescence is discussed in [8,9]. All these

considerations are important for development the intervention

strategies to control vector transmitted diseases [10,11]. In order to

better understand how variation in one of the most sensitive

components of a vector’s role in pathogen transmission effect

transmission dynamics and estimation of R0, we explored the

consequences of a shift from age-independent to more biologically

realistic age-dependent vector mortality. In distinction to previous

works [8,9] we consider a set of models for vector mortality, which

reflect different change of mortality with age. They are Gompertz

model with exponential growth of mortality, which is traditional in

demography, logistic model with mortality leveling at advanced

age as in heterogeneous population, models with declining, U-

shaped and hump-shaped dependencies of mortality on age. In the

paper we derive the general form for vectorial capacity in aging

vector population. Parameterization of the survival function S xð Þ
in such population gives expression for vectorial capacity for any

vector mortality model and can be used for any vector control

scenario.
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The basic reproductive number describes the potential for

spread of an infectious disease. It defines the average number of

secondary cases that arise from the introduction of a single

infectious individual into a completely susceptible population [12].

If R0.1 the pathogen will spread to other individuals and an

epidemic can occur [2,3]. If R0,1 transmission will not persist.

For mosquito-borne disease, R0 is given by the classic formula

[12]:

R0~
bc

r
C

where b is the proportion of bites by infectious vectors that lead to

host infection, c is the proportion of bites on infected hosts that

lead to vector infection, 1/r is the length of time it takes to

naturally clear a host from infection, and C is vectorial capacity,

defined as the number of infective mosquito bites that arise

following the introduction of a single infectious host into a

susceptible population. Vectorial capacity describes the potential

for a vector population to transmit a parasite [4]. It can be used to

explore the relative impact of different disease prevention

strategies, or put differently, ways to reduce R0 below 1. For

example, an effective vaccination will decrease R0 by reducing

infection rates of hosts (b) and mosquito vectors (c).

For two of the most important vector-borne diseases of humans,

malaria and dengue [13,14], vaccines are not yet available.

Although anti-parasitic drugs are a component of malaria

prevention, an analogous strategy is not planned for dengue; i.e.,

use of antivirals for population based dengue prophylaxis [15]. In

cases like this, vector control is a prominent component of disease

prevention programs. The goal is to reduce R0 below 1 by

reducing vectorial capacity (C). This can be achieved as illustrated

by the classic model for vectorial capacity [12,16]:

C~
ma2

g
e{gn

Where m is the number of vectors per host, a is the human biting

rate, g is the mortality rate of vectors, and n is the extrinsic

incubation period (Table 1). Many vector control programs use

insecticides in an effort to decrease vectorial capacity by reducing

mosquito vector population densities (m) and increasing the adult

mosquito mortality rate (g). Vectorial capacity can also be used to

estimate threshold density necessary for sustained transmission

where R0 = 1, which provides an operational target for vector

control programs. If an intervention can decrease vector densities

below this level, R0 will be less than 1 and pathogen transmission

will decrease to elimination. Although it is difficult to make precise

estimates of vectorial capacity for reasons explained by Dye [17],

understanding the relative impact of different intervention

strategies on model components can provide helpful insights into

the approaches that are most likely to successfully prevent vector-

borne disease in a given situation.

Simplifying assumptions of the classic models for vectorial

capacity and R0 are useful approximations. Some, however, are

inconsistent with mosquito biology and can constructively be

viewed as starting points for more complex analyses [1].

Growing evidence indicates that age-independent vector mor-

tality (i.e., constant g across all adult mosquito ages) is violated

by mosquitoes in the laboratory and field [9,18–24]. For

example, mortality rates for the principal mosquito vector of

dengue virus, Aedes aegypti, increase with age and, thus, are age-

dependent [9,23–26].

The age pattern of vector mortality is epidemiologically

important because it can have strong effects on the probability

that a vector will live long enough to become infectious and

transmit a pathogen [17]. Horizontal transmission for pathogens,

like malaria and dengue, requires that a vector is exposed to the

pathogen after imbibing an infected blood meal, survives an

incubation period during which the pathogen multiples or

develops so that at the end of that period the vector is infectious,

and then transmits the pathogen when it bites a susceptible

vertebrate host. Incubation periods of many vector-borne patho-

gens are thought to be only slightly shorter than the mean lifespan

of their vector. Relatively small changes in lifespan can, therefore,

result in relatively large changes in the number of vectors that

become capable of pathogen transmission. All other factors being

equal, transmission rates will be highest if mortality rates decrease

with vector age because the vector population will be composed of

mostly older vectors that have lived long enough to become

infectious. On the other hand, when vectors senesce, transmission

is expected to decrease because the population age-distribution

will shift to younger vectors, most of who will not live long enough

to become infectious. For these reasons, understanding underlying

patterns of mortality is of fundamental importance for effective

design and implementation of vector control strategies. This is

highlighted in the conceptual development of strategies that target

the older, potentially infective portion of vector populations

[27,28]. In this paper we develop and investigated new models for

R0 and vectorial capacity that take age-dependence of vector

mortality into account.

Materials and Methods

Background
Styer et. al [9] modeled total population vectorial capacity (Ct)

for Ae. aegypti as a function of age-specific vectorial capacity, Cx,

(i.e., daily number of potentially infective bites resulting from a

mosquito of age x biting one infectious host) and the age structure

of the population, Vx:

Ct~
Xv

x~s

Cx|Vx½ �~
Xv

x~s

ma2 P
xzn

i~x
pi|exzn

� �
|Vx

� �
ð1Þ

where s is the age at which mosquitoes begin biting hosts, v is the

oldest biting age class, Vx is the fraction of the mosquito

population in age class x, m is the number of vectors per host, a

is the number of host specific bites per vector per day, n is the

duration of the extrinsic incubation period, pi is daily survival at

age i, and ex+n is the expectation of remaining infectious life at age

x+n (Table 1). Styer et al. [9] conducted a laboratory study to

determine the pattern of age-dependent mortality for Ae. aegypti

(i.e., exponential, logistic, or Gompertz’s mortality models) and

performed simulations of equation 1 using parameter estimates for

best fit mortality models. They demonstrated that Ae. aegypti

senesce and that senescence produces different estimates of

population vectorial capacity than when assuming age-indepen-

dent vector mortality.

Although Styer et al.’s [9] model was useful in demonstrating

how senescence can influence the dynamics of mosquito-borne

diseases, it is not general enough to be easily applied to other

vector species (mosquitoes other than Ae. aegypti as well as other

non-mosquito insect vectors) with different mortality patterns. To

address this issue we built on the Styer et al. [9] model in three

ways. We derived (1) equations for the age structure of the

mosquito population, Vx in equation 1, so that it can be used for

any vector and different patterns of age-dependent mortality, (2) a

Age-Structured Vectorial Capacity Model
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new equation for R0 that incorporates age-dependent vectorial

capacity, and (3) a new equation for the proportion of the host

population that is infectious when vector mortality is age-

dependent. We illustrate the behavior of the model using

parameter estimates from Styer et al. [9] for Ae. aegypti and

different models of age-dependent mortality.

Vectorial Capacity in Vector Population
Based on equation (1), we modeled total vectorial capacity of a

population of mosquitoes, C. The derivation of the formula is

given in Supplement S1. Some assumptions were made in the

derivation. We assume that age structure of the mosquito

population are constant over time and that age-dependent

fecundity and mortality rates do not vary across time. The

resulting expression for the vectorial capacity of a population of

mosquitoes is given by:

C~
ma2

Ðv
0

S tð Þe{rtdt

ðv

s

e{rx

ðv

xzn

S tð Þdtdx

where S xð Þ is the survival function of mosquitoes at age x, r is

the intrinsic population growth rate of the mosquitoes popula-

tion, and v is the maximal life span. This formula gives the

general form for vectorial capacity in aging vector population. It

captures two important features of the population. First, it can

be used for any mortality model in vector population, which

produces the specific form for survival function S xð Þ. In the

case of age-independent mortality survival function is given by

the classical expression S xð Þ~e{gx, where g is mortality rate.

Presented formula allows calculating vectorial capacity of a

Table 1. Parameter descriptions.

Parameter Description

R0 Basic reproductive number, the number of secondary cases that arise from the introduction of one infected
host into a completely susceptible population

B Proportion of bites by infectious vectors that lead to host infection

C Proportion of bites on infected hosts that lead to vector infection

1/r Duration of viremic period in host

C Vectorial capacity, number of infective bites that arise following the introduction of a single infectious host
into a completely susceptible population

M Number of vectors per host

N Total number of mosquitoes

A Biting rate

G Age-independent mortality rate of vectors

N Duration of extrinsic incubation period

Cx Age-specific vectorial capacity

Vx Fraction of the vector population in age class x

S Minimum age at which vectors begin biting hosts

V Maximum vector life span

pi Daily survival at age i

ex Remaining life expectancy at age x

dx Age distribution

R Intrinsic growth rate

S(x) Survival at age x

g(x) Age-specific mortality rate of vectors at age x

e(x) Fecundity at age x

H Entropy; describes curvature of survival curve

A Initial mortality rate

B Rate of exponential mortality increase with age

Q Parameter influencing location of age-dependent mortality extrema

m Parameter of age-dependence in mortality

J Parameter of age-dependence when mortality declines with age

e0 Mean lifespan

Y(t) Proportion of the vector population that is infectious

X(t) Proportion of the host population that is infected and infectious

pt(x) Probability that vector of age x born at time t is infectious

et(y) Probability that vector born at time t becomes infected during 1st blood meal at age y

E Emergence rate of vectors

doi:10.1371/journal.pone.0039479.t001

Age-Structured Vectorial Capacity Model
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vector population in the case of any parametric or nonpara-

metric model for age-dependent mortality. In this case

S xð Þ~e
{
Ðx
0

g tð Þdt

, where g tð Þ is age-dependent mortality rate.

Second, the formula accounts the possibility of changing in size

of the vector population. To avoid the additional hypothesis

about changing in the age structure of the population we

limited consideration by the case of stable population [29]

where the age structure completely defined by the survival

function. Table 2 summarizes formulas for vectorial capacity

with age-independent and age-dependent mortality for stable (r

and age structure are constant over time) and stationary (r = 0,

age structure is constant over time) vector populations.

Role of Age-dependent Mortality in Determining R0

Age-dependent mortality can have important implications for

the spread of vector-borne pathogens through host populations.

We investigated this by simulating host and vector dynamics and

calculating R0 for Ae. aegypti. A similar exercise could be done for

other vector species.

Supplement S2 presents equations for the proportion of the host

population that is infected or infectious when vector population

exhibits age-dependent mortality. These equations were used in a

species-specific example to simulate dynamics of dengue trans-

mission in a human population by Ae. aegypti. We used the logistic

model for age-dependent mortality:

g xð Þ~aebx 1z
as

b
ebx{1
� �� �{1

(parameters are defined in Table 1) and the parameter estimates

presented in Styer et al. [9] (i.e., a= 0.0018, b = 0.1416,

s = 1.0730).

To calculate the basic reproductive number, R0, in a stable

vector population with age-independent mortality we used the

classic expression [12]:

R0~m
bca2

rg
e{g nzsð Þ

with parameters a = 0.75, b = c = 0.5, g = 1/32, r = 0.01, n = 10,

s = 3 adopted from Styer et al. [9]. The general relationship

between the basic reproductive number and the vector capacity is

given de R0~
bc

r
C from which the basic reproductive number

R0in stable population with age-dependent mortality is given by:

R0~
mbc a2

r
Ð?
0

S tð Þdt

ð?

s

ð?

xzn

S tð Þdtdx

We use the same parameter values as above and the survival

function for logistic mortality S xð Þ~ 1z
as

b
ebx{1
� �� �{1=s

to

explore the dynamics of these models.

Results

Vectorial Capacity for Different Patterns of Age-
dependent Mortality

To examine the behavior of the model, we calculated

vectorial capacity for Ae. aegypti as an example using parameter

estimates from Styer et al. [9] for age-independent (i.e.,

exponential), Gompertz, and logistic mortality models (Fig. 1)

with different values of intrinsic population growth, r. In all

calculations maximal life span was set to infinity (v~?). For

the age-independent mortality exponential model, vector capac-

ity is negatively related to r across all values of r examined

(Fig. 2). Vectorial capacity differs most between age-independent

and age-dependent mortality models at intermediate and low r

values. If age-independent mortality increases, the corresponding

vectorial capacity curve goes down and can intersect the curves

for age-dependent mortalities but at any case vectorial capacity

for age-independent mortality decreases with an increase of

intrinsic population growth parameter r. When, however, the

vector exhibits age-dependent mortality characterized by the

logistic or Gompertz models, vectorial capacity exhibits a

unimodal relationship with r (Fig. 2).

Next we evaluated how age-dependent mortality affects

vectorial capacity of a stationary vector population (r = 0) with

Gompertz, declining, U-shaped, and unimodal age-dependent

mortality trajectories (Table 3). We did not test the logistic

mortality model (Table 3) because with the parameter estimates in

Styer et al. [9] it gives vectorial capacity values close to the

Gompertz model (Fig. 2). Although we were primarily interested in

examining the difference between the mortality models, there can

be considerable variability in the form of the survival function

within each mortality model. The unimodal mortality model, for

example, can have variation in the age at which the maximum

mortality occurs and the overall shape of that relationship.

To better examine the full range of behavior within each

mortality model we present vectorial capacity as a function of life

table entropy, H [30]. This value generalises behaviour of the

survival curve and allows comparison of different curves without

consideration of the corresponding parameters. Entropy describes

the curvature of the survival curve (Fig. 3) and can be interpreted

as the percentage change in life expectancy produced by a 1%

decrease in the force of mortality at all ages [30]. Entropy is given

by:

H~
{1

e0

ð?

0

S xð Þ ln S xð Þdx

where e0 is mean life span given by e0~
Ð?
0

S xð Þdx [31] and S(x) is

survival at age x. It is clear that for any survival curve H is not

Table 2. Formulas for vectorial capacity in stable and
stationary vector populations.

Population Type of Mortality Vectorial Capacity

Stable Age-independent C~ ma2

g
e{gn{ rzgð Þs

Age-dependent
C~ ma2Ðv

0

S tð Þe{rtdt

Ðv
s

e{rx
Ðv

xzn

S tð Þdtdx

Stationary Age-independent C~ ma2

g
e{g nzsð Þ

Age-dependent
C~ ma2Ðv

0

S tð Þdt

Ðv
s

Ðv
xzn

S tð Þdtdx

doi:10.1371/journal.pone.0039479.t002
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negative. In the case of a non-aging population, mortality with age

is constant giving a concave, exponentially decreasing survival

curve (proportion surviving vs. age) and H = 1 (Fig. 3). For

rectangular survival curves where all individuals die at exactly the

same age, H = 0. Finally, when there is very high infant mortality

followed by relatively higher survival rates for older individuals,

Figure 1. Illustration of mortality models examined with different parameter values. Parameter values not listed; Gompertz: a= 0.01,
declining: m = 0.7, g = 0.1, logistic: a = 0.007, s = 0.2, U-Shaped: m = 0.001, e0 = 24, unimodal: g = 0.05, e0 = 30.
doi:10.1371/journal.pone.0039479.g001

Age-Structured Vectorial Capacity Model
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H.1. Entropy is thus a continuum that represents different forms

of the survival function (Fig. 3) and is directly related to the pattern

of age-dependent mortality.

Figure 4 presents vectorial capacity as function of H for

stationary vector populations under fixed values of mean life span,

e0, for different mortality models. For the Gompertz model

(Fig. 4A, Table 3), age-independent mortality, and maximum

vectorial capacity for a given lifespan occurs when b, the

exponential mortality increase with age, equals 0 and H = 1. With

a fixed value for vector lifespan, decreasing H and increasing b
generates lower vectorial capacity (Fig. 4A). An increase in b
corresponds to an increase in mortality rate across all ages (Fig. 1)

or proportionally greater increase in mortality for older vectors

that would have lived long enough to become infectious than

younger vectors that are not old enough to have completed the

pathogens incubation period (Fig. 1). For a given value of H,

vectorial capacity decreases with decreasing lifespan. A shorter

lifespan reduces the probability that a vector will become infected

during its lifetime and if infected, reduces the number of times that

a vector can transmit a pathogen to susceptible hosts.

For a declining mortality rate (Fig. 4B, Table 3), age-

independent mortality occurs when parameter j= 1 (H = 1). In

contrast to the Gompertz model, age-independent mortality gives

the lowest vectorial capacity. For a given value of mean life span,

vectorial capacity decreases as H decreases and j increases. In

general, the decrease in vectorial capacity with increases in j is

likely due to an overall increase in the population mortality rate

(Fig. 1).

For a U-shaped relationship between vectorial capacity and age

(Fig. 4C, Table 3), the minimum of the mortality function is

located at xmin = qe0. Changing q changes the location of this

minimum (Fig. 1). For age-independent mortality, m = 0 and, as for

the Gompertz model, gives the highest vectorial capacity for this

model. For a given mean lifespan, vectorial capacity decreases

with a decrease in q and H and an increase in g (Fig. 4C) because

this increases overall mortality (Fig. 1).

With unimodal mortality (Table 3), the H-dependence of

vectorial capacity differs fundamentally from the cases described

above (Fig. 4D). In our calculations, we varied parameters m and g.

The location of the maximum mortality was determined as

xmax~ve0. For age-independent mortality (H = 1), vectorial

Figure 2. Vectorial capacity in a stable population for three mortality models (see Table 3 for functions). Parameters used in
calculations are: exponential (dotted line, g = 0.0313), Gompertz (dashed line, a= 0.00662, b = 0.06234), and logistic (solid line, a = 0.00662,
b = 0.06234, s = 1.073); taken from Styer et al. 2007a.
doi:10.1371/journal.pone.0039479.g002

Table 3. Mortality models used in this study.

Mortality Model Function

Exponential (age-independent) g(x) = g

Gompertz (increases with age) g xð Þ~aebx

Logistic
g xð Þ~ aebx

1z as
b

ebx{1ð Þ

Decline with Age g xð Þ~mkxzg, kv1

U-shaped g xð Þ~mx2{kxzg, k~2qme0

mw0, qw0, g§k2=4m

Unimodal g xð Þ~ max {m x{ q{1=4ð Þe0ð Þ x{ qz1=4ð Þe0ð Þ,g½ �,
mw0, qw0:25, gƒ1=e0

doi:10.1371/journal.pone.0039479.t003

Age-Structured Vectorial Capacity Model
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capacity is at a minimum. In contrast to the case with U-shaped

mortality, any deviation from age-independent mortality increases

vectorial capacity. For a given lifespan, vectorial capacity can be

positively or negatively related to H depending on the value of q.

As H decreases, older vectors have a higher probability of

surviving (Fig. 2). However, changes in q change the age at which

mortality is at a maximum (Fig. 1). This is important because the

age when vector mortality is at a maximum determines if mortality

is relatively high or low for age groups best able to transmit a

pathogen. The interaction between these 2 processes generates the

complex pattern for a given lifespan.

Across all mortality models examined, mean lifespan is an

important parameter determining vectorial capacity (Fig. 4). For

decreasing, U-shaped, and unimodal mortality models, other

parameters are also important. This is particularly true for the

unimodal mortality curve where vectorial capacity is sensitive to

changes in the parameter determining the location of the mortality

maximum.

Role of Intrinsic Growth Rate r
Figure 2 shows vectorial capacity in a stable population in

dependence on intrinsic rate of grows r for three mortality models:

exponential, Gompertz and logistic. The largest differences in

vectorial capacity between these models occurs when value of r is

intermediate or low. For age-independent mortality, lower r values

correspond to lower birth rates because the mortality rate is

constant. In this case, decreasing r by decreasing birth rates causes

an increase in the proportion of the vector population in older age

classes that are capable of transmitting a pathogen, which in turn

increases vectorial capacity. Conversely, with age-dependent

mortality age-specific mortality and fecundity rates vary non-

linearly with different values of r. The complex interaction

between nonlinear birth and death rates and r lead to a decrease

in vectorial capacity as r decreases, which can occur because mean

age and thus transmission potential decrease as r decreases. This

reinforces the need for new data that can be used to refine and test

predictions regarding associations between intrinsic rate of growth

and the complexity of age-dependent mortality.

R0 and Dynamics of Host Infection
Depending on mosquito population density, there are epidemi-

ological important differences in dynamics of human and

mosquito infections with age-dependent versus age-independent

vector mortality (Fig. 5). When mosquito density is relatively high

(m = 1.5), using the logistic mortality model and parameter

estimates obtained by Styer et al.’s [9] mortality study, the basic

reproductive number with age-dependent mortality is R0~167:3
and R0~449:6 for the age-independent mortality. For such high

values of Ro, epidemic levels of transmission would be expected for

both age-independent and -dependent mortality and stationary

values would be similar for infectious host and vector populations

(Fig. 5A,B). A different type of dynamics occurs when using the

same parameter estimates, but with a low mosquito density,

m = 0.007. With age-dependent mortality R0~0:8 and the

proportion of infected vector and host populations declines with

time (Fig. 5C,D). For age-independent mortality R0~2:1 and the

infected proportion of the population increases over time.

Discussion

The new mathematical models derived and investigated in this

paper extend the theoretical and empirical understanding of age-

dependent vector mortality in ways that can add to the conceptual

basis of vector-borne disease prevention. The formula for

dependence of vectorial capacity from the vector survival is

general enough and can be used in calculation of vectorial capacity

for any of age-dependent mortality of vectors. One immediate

utility of the formula is in the case, when a vector is exposed to two

causes of death: exogenous, which does not depend on the vector

age, such as predation, swatting, weather conditions, and

endogenous, related to ageing and vector senescence. It is realistic

to consider these two causes as independent hazards, which

mathematically means that the resulting mortality is a sum of the

exogenous and endogenous mortalities. The presented formula

allows calculations of vectorial capacity to find the limits of

control, when measures, aimed to increase the exogenous

mortality, can be effective against the background of endogenous

age-dependent mortality. In this case the value of age-independent

Figure 3. Hypothetical survivorship curves for different values of H, entropy.
doi:10.1371/journal.pone.0039479.g003

Age-Structured Vectorial Capacity Model
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mortality component can be considered as a parameter for

construction of optimal control strategy under given resource

limitations.

Introduction of age-dependent mortality broadens and refines

the vectorial capacity paradigm by introducing an age-structured

extension to the model. It encourages further research on the

actuarial dynamics of vector populations and the contribution of

dynamics in vector mortality to dynamics in pathogen transmis-

sion. It provides a quantitative basis for understanding the relative

impact of reductions in vector longevity compared to other

strategies for prevention of vector-borne disease; i.e., various forms

of vector control, vaccines, and anti-pathogen drugs that are

applied separately or in combination.

Our analysis indicates that different age-dependent patterns of

mortality can influence vectorial capacity differently. Although

mean lifespan remains an important determinant of vectorial

capacity, other parameters that affect the shape of a mortality

curve are also important. We used demographic entropy to

illustrate such influence in one value, which is free from the

specific parameterization of age-dependent mortality. In addition

to mean life span, our analysis of entropy illustrates how survival

curves can differ from the original assumption of exponential, or

age-independent, mortality profile.

The shift from age-independent to age-dependent mortality can

be viewed as conceptually advantageous because it captures

transmission dynamics in a more biological relevant way [9]. It

also increases the mathematical complexity of the models, which

raises questions about their general applicability in applied,

epidemiologic contexts. A key issue in this regard concerns the

strength of the insights gained from the increased complexity,

biological and mathematical. That is, does including the additional

age-dependent elements substantially improve the power of the

models for guiding disease surveillance and prevention? Results

from our analyses indicate that there are important differences in

the epidemiologic output from age-dependent vs -independent

vector mortality models. Understanding the nature of output

differences is challenging because it depends on variation in

complex characteristics of the system being examined. Examples

include novel vector control strategies that target older vectors or

aim to shorten vector lifespan [27,32] or prevent disease by

pathogen elimination [33].

Our vectorial capacity model has several limitations. It assumes

no emigration or immigration of vectors or hosts, which can be

particularly important if rates are not equal. It is deterministic and

does not account for individual variatiability (hidden heterogene-

ity) in chances of survival. In some cases it may be difficult to fit

Figure 4. Vectorial capacity versus entropy H for different values of mean life span e0. (A) Gompertz’s, (B) declining, (C) U-shaped, and (D)
unimodal mortality models. For each model, age-independent mortality for each life span is noted by an open circle.
doi:10.1371/journal.pone.0039479.g004
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simple mortality functions (e.g., Gompertz, Weibull, etc. [30]) to

field or laboratory data [34]. More research is needed to examine

the impact on vectorial capacity when vector age-structure and

population growth rate vary over time.

Estimates of vectorial capacity, and thus R0, for mosquito-borne

pathogens differ most between cases of age-independent and age-

dependent mortality when: (1) vector densities are relatively low,

(2) vector population growth rate is relatively low and there are

differences in the complex interactions between birth and death;

and (3) vectors exhibit complex patterns of age-dependent

mortality. In many parts of the world vector control is an integral

or even primary component of vector-borne disease prevention.

Our analyses indicate that when vector control programs are

successful and mosquito densities are reduced to low levels, the

mortality model used to predict sustainability of that success or the

effort needed for the final push to eliminate the pathogen can lead

to strikingly different conclusions. At the same low vector density

(m = 0.007), age-independent mortality predicts increasing, epi-

demic transmission (Ro.1) and age-dependent mortality predicts

local pathogen extinction (Ro,1). An age-independent model may

overestimate the effort needed to meet public health goals at low

vector densities.

Our conclusions support earlier results indicating that age-

dependent vector mortality can influence transmission dynamics

and the success of disease prevention strategies in meaningful ways

[9,27,35]. In a similar study, Bellan [8] demonstrated that age-

dependent vector mortality has important effects on vectorial

capacity and vector control. By focusing only on the logistic

mortality model and possible effects of two control measures

(decreased survival and decreased recruitment that is equal across

all ages, with each intervention affecting a single parameter) and

simplifying the equation for vectorial capacity, he demonstrated

that the effects of interventions may be over- or under-estimated

when assuming age-independent survival. Our study, however,

goes further by providing a single complete formula for vectorial

capacity that can be used for any vector, mortality model, and

control scenario. Our formula allows researchers to calculate

vectorial capacity and assess the effects of various control measures

for their own particular system. Importantly, this equation may be

easily expanded to include more complex functions affecting

vectorial capacity including density-dependent mortality (in

addition to age-dependent mortality) or factors affecting biting

rate.

It is important to note that despite growing evidence showing

notable effects of age-dependent mortality on estimates of vectorial

Figure 5. Transmission dynamics when an infectious host is introduced at time = 0. (A) age-dependent mortality, m = 1.5, (B) age-
independent mortality m = 1.5, (C) age-dependent mortality, m = 0.007, (D) age-independent mortality m = 0.007. Solid line denotes humans and
dashed line mosquitoes.
doi:10.1371/journal.pone.0039479.g005
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capacity and effects of control, we still know very little about the

prevalence and pattern of age-dependent mortality in natural

mosquito populations [20,23,24,25]. Age-dependent mortality and

the diversity of its patterns has been examined for non-vector

insects [20,34]. Most of those studies lacked sufficiently large

sample sizes to accurately estimate mortality rates of relatively

rare, older-aged individuals [34]. We similarly know little about

what factors govern disease vector mortality patterns or how

mortality patterns vary through space and time. Theoretically,

variation in patterns of age-dependent mortality could cause

frequent and dramatic fluctuations in vectorial capacity and

entomological thresholds below which epidemic pathogen trans-

mission will cease. New techniques to better estimate patterns of

age-dependent vector mortality, how mortality patterns vary in

space and time, and the factors determining those patterns are

needed to better understand when and how age-dependent vector

mortality has its greatest affects on transmission dynamics and

disease intervention campaigns.

The field of aging research can make substantial contributions

to improved understanding and more efficient prevention of

vector-borne disease because it deals with factors and mechanisms

affecting age-specific patterns of mortality among different species

[36,37]. Identifying concepts and interventions capable of

accelerating vector aging processes, and understanding how such

manipulations affect pathogen transmission parameters can

stimulate investigation of new approaches for vector-borne disease

control. Consideration of more realistic situations will require

more sophisticated models and more comprehensive computa-

tional analyses of alternative scenarios. For example, undefined

heterogeneities in vector mortality patterns are likely to be

important determinants in the success or failure of vector control

programs. Due to variation within and between mortality patterns,

a strategy that works well at one place and time may not work at

another. Our analysis indicates that a more sophisticated

analytical framework, which is mathematically and computation-

ally plausible, will stimulate increasingly insightful thinking about

age-dependent vector mortality and prevention of vector-borne

disease. Although our analyses use data from a single mosquito

species, Ae, aegypti, our models are intended to have broad

application for a wide range of vector species and vector-borne

diseases.
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