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Abstract

An additive spectral method for fuzzy clustering is proposed. The method

operates on a clustering model which is an extension of the spectral decompo-

sition of a square matrix. The computation proceeds by extracting clusters

one by one which makes the spectral approach quite natural. The itera-

tive extraction of clusters, also, allows us to draw several stopping rules to

the procedure. This applies to several relational data types differently nor-

malized: network structure data (the first eigen-vector subtracted), affinity

between multidimensional vectors (the pseudo-inverse Laplacian transforma-

tion), and conventional relational data including in-house data of similarity

between research topics according to working of a research center. We ex-

perimentally compare the performance of our method with that of several

recent techniques and show its competitiveness.
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1. Introduction1

This work is motivated by the problem of clustering research topics within2

a Computer Science research organization according to the similarity between3

topics derived on the basis of the efforts by researchers engaged in them. Our4

similarity measure makes it natural to consider it a result of additive action of5

fuzzy clusters representing the main directions of the organization’s research.6

Our additive model is a natural extension of the crisp additive clustering7

model [33, 32], which itself is an extension of the principal component analysis8

based on the spectral decomposition of square matrices. Therefore, we extend9

the spectral clustering approach, along with its Laplacian data normalization10

options [34], to the model.11

Because of the general nature of the developed method, we compare it12

with existing approaches to fuzzy clustering. In particular, we apply it to13

four similarity/dissimilarity data types: (a) ordinary graphs of community14

structure, (b) affinity similarity data derived from feature based information,15

(c) small real-world benchmark dissimilarity datasets, and (d) similarity data16

including the similarity between research topics. The method appears to be17

completive in our experiments. Moreover, because it is model based there are18

innate stopping criteria that can help in determining the number of clusters.19

The remainder of the paper is organized as follows. Section 2 describes20

the additive fuzzy clustering model and a Fuzzy ADDItive Spectral cluster-21
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ing method FADDIS derived from it in two versions, depending on the set22

of eigenvectors utilized for finding clusters. It also describes the normalized23

Laplace pseudo-inverse transformation, Lapin, which can be usefully applied24

sometimes to sharpen the similarity data structure. Section 3 describes ex-25

periments on application of FADDIS to the four data types above along26

with comparing it with other fuzzy clustering developments, including those27

rather recent ones. Section 4 puts FADDIS in the context of the published28

work in related areas of relational fuzzy clustering, additive clustering, spec-29

tral clustering, and community structure detection. Section 5 concludes the30

paper.31

2. Additive Fuzzy Clustering Model and Spectral Clusters32

2.1. Additive model and iterative extraction of clusters33

Consider a similarity matrix A = (att′) between elements t, t′ of an N -34

element set T . The structure of this matrix will be represented by a set of35

fuzzy clusters.36

Assume that a fuzzy cluster on T is represented by a fuzzy membership37

vector u = (ut), t ∈ T , such that 0 < ut < 1 for all t ∈ T , and an intensity38

μ > 0 that expresses the extent of significance of the pattern corresponding39

to the cluster according to the similarity scale.40

Our additive fuzzy clustering model involves K fuzzy clusters that repro-41

duce the similarities up to additive errors according to the following equa-42

tions:43

att′ =
K∑

k=1

μ2
kuktukt′ + ett′ , (1)
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where uk = (ukt) is the membership vector of cluster k, and μk its intensity.44

The model defines that product μ2
kuktukt′ expresses that part of the simi-45

larity att′ between elements t, t′ that is supplied by cluster k, which depends46

on both the cluster’s intensity and the membership values. The value μ2
k sum-47

marizes the contribution of intensity and will be referred to as the cluster’s48

weight.49

Intuition for model (1) comes from the area of our interest, the analysis50

of research activities in terms of key-words of a taxonomy of the domain such51

as the ACM Computing Classification System (ACM-CCS) [1]. Consider, for52

example, the following list of topics from ACM-CCS classification:53

• D.4.2. Operating systems: storage management54

• D.4.7 Operating systems: organization and design55

• I.2.4. Knowledge representation56

• I.2.10 Vision and scene understanding57

• I.3.5 Computational geometry and object modeling58

• I.4.1 Digitization and image capture59

as that of subjects in which a Computer Science department conducts re-60

search.. Specifically, assume that a group undertakes research in Operating61

Systems, cluster OS = {D.4.2, D.4.7}, another group is doing Image Anal-62

ysis, IA = {I.2.10, I.3.5, I.4.1}, and the third group relates to Hierarchical63

Structures and their applications, HS = {D.4.2, D.4.7, I.2.4, I.2.10, I.3.5}.64

Assume that the group research intensities differ, say, are equal to 4, 3, and65
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2, respectively. Let us assume as well a background similarity between the66

topics, due to the fact that all belong to the area of Computer Science, as67

equal to 1. Then it is natural to define the similarity between topics D.4.268

and D.4.7 as the sum of intensities of the clusters they simultaneously belong69

to: 4 according to OS cluster and 2 according to HS plus the background70

intensity 1, leading to 4+2+1=7. Similarly, the similarity between topics71

D.4.2 and I.3.5 will be 2+1=3, and between topics D.4.2 and I.4.1, just the72

background similarity 1. A similarity matrix can be clearly derived from the73

clusters. Yet the problem is whether we are able to reconstruct the clustering74

from this matrix.75

The model in (1) extends this approach to fuzzy clusters of research top-76

ics. Taking the product of values μut and μut′ to express the extent of77

similarity between t and t′ in this model, reflects the interpretation of fuzzy78

memberships as action forces and, also, makes it mathematically convenient.79

Of course, a different definition of the extent of similarity due to a cluster,80

involving operations more convenient in the fuzzy logics perspective, such81

as of maximum or minimum, rather than multiplication, can also be taken82

without much changing the computational structure of our approach. Yet the83

formulation in (1) is much convenient because of its mathematical structure84

as will be seen in the next section.85

The problem of fitting model (1) can be formalized by using the least-86

squares criterion: given matrix A = (att′), find K fuzzy clusters uk along with87

their intensities μk to minimize the sum of squares of the errors,
∑

t,t′ e
2
tt′ .88

The model (1) much resembles the celebrated spectral decomposition of89

matrix A. Moreover, as it is well known, provided that A is definite semi-90
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positive, the first K eigenvalues and corresponding eigenvectors form a solu-91

tion to the least-squares problem if no constraints on vectors uk are imposed.92

This can lead to a viable two-step clustering strategy, analogous to that of93

some forms of spectral clustering [28, 18]. According to this strategy, K ele-94

ments of the spectral decomposition of A are to be found first, and then these95

are to be projected onto nonnegative normed vectors to form an admissible96

solution to model (1). Unfortunately, our preliminary experiments with such97

a method have not been successful; the method fails to recover even simple98

cluster structures from similarity matrices.99

Therefore, we apply another approach, the one-by-one principal compo-100

nent analysis strategy of iterative extraction for finding one cluster at a time.101

It has been applied at the case of crisp clusters to produce provably tight102

clusters assigned with additive contributions to the data scatter [19, 23].103

Here we extend this strategy to fuzzy clustering.104

Specifically, at each step, we consider the problem of minimization of the105

one-cluster least-squares criterion106

E =
∑

t,t′∈T

(wtt′ − ξutut′)
2 (2)

with respect to unknown positive ξ weight, so that the intensity μ is the107

square root of ξ, and fuzzy membership vector u = (ut), given similarity108

matrix W = (wtt′).109

At the first step, W is taken to be equal to A. Then the matrix changes

by subtracting from it the part of similarities accounted for by the found

cluster, due to the additivity of model (1). The residual similarity matrix for
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obtaining the next cluster is defined as

W − μ2uu′

where μ and u are the intensity and membership vector of the found cluster.110

In this way, A indeed is additively decomposed according to formula (1) and111

the number of clusters K can be set during the process, depending on the112

contributions to the data scatter, rather than beforehand.113

2.2. Finding one fuzzy cluster114

To see how criterion (2) works, let us specify an arbitrary membership115

vector u and find the value of ξ minimizing (2) at this u. Obviously, criterion116

(2) is a convex function of ξ so that the first-order condition of optimality117

should solve the problem:118

∂E

∂ξ
= −2

∑
t,t′∈T

(wtt′ − ξutut′)utut′ = 0.

This implies that119

ξ =

∑
t,t′∈T wtt′utut′∑

t∈T u2
t

∑
t′∈T u2

t′

In matrix terms the optimal ξ is120

ξ =
u′Wu

(u′u)2 (3)

which is obviously non-negative if matrix W is semi-positive definite.121

By putting this ξ in equation (2), one can easily derive that122

E =
∑

t,t′∈T

w2
tt′ − ξ2

∑
t∈T

u2
t

∑
t′∈T

u2
t′ = S(W ) − ξ2 (u′u)

2
,
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where S(W ) =
∑

t,t′∈T w2
tt′ is the similarity data scatter.123

Let us denote the last item by G(u). Then, according to (3),124

G(u) = ξ2 (u′u)
2

=

(
u′Wu

u′u

)2

, (4)

so that the similarity data scatter can be represented as the sum of G(u) and125

E representing, respectively, its explained and unexplained parts:126

S(W ) = G(u) + E. (5)

Since S(W ) (5) is constant, the optimal cluster is to maximize the ex-127

plained part G(u) (4) or its square root,128

g(u) = ξu′u =
u′Wu

u′u
, (6)

The value g(u) in (6) is the celebrated Rayleigh quotient; its maximum129

is known to be the maximum eigenvalue of matrix W reached at the corre-130

sponding eigenvector u, if u is not constrained.131

Also, the formulas above allow us to clear the issue of normalization of132

the membership vector u. Indeed, the additive fuzzy clustering model in133

(1) or (2) makes use of the product μu, without specifying which part of134

it is μ and which is u. This is somewhat alleviated by the expression (3)135

for ξ = μ2 that relates μ to the scale of W . Yet to attend to the conven-136

tional view of independent membership scores, u has to be normalized so137

that individual membership values do not exceed 1. The structure of the138

formulas above suggests a normalization of u by the Euclidean norm, so that139

its square, u′u =
∑

t u
2
t = 1. This normalization is accepted from now on.140

It makes the cluster weight simply equal to ξ = u′Wu and G(u) = ξ2. The141
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Euclidean normalization fits well into the spectral approach which uses the142

same normalization for eigenvectors.143

This shows that the spectral clustering approach is a natural way of action144

in the given context. According to this approach, one should first solve the145

unconstrained problem of maximization of g(u) and then take its projection146

to the set of nonnegative fuzzy membership vectors. Our projection operator147

P(z) is defined as follows:148

P(z) = u/ ‖u‖ , (7)

where u = (ut) is defined by149

ut =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if zt ≤ 0;

zt, if 0 < zt < 1;

1, if zt ≥ 1.

(8)

It should be noted that testing zt ≥ 1 in the operator P is redundant150

because of the assumption that the eigenvector z is normed so that no com-151

ponent of z can be greater than 1.152

This spectral method, that will be referred to as Fuzzy ADDItive Spectral153

clustering algorithm FADDIS, can be easily extended to the case when fuzzy154

clusters are required to form a fuzzy partition so that
∑K

k=1 ukt = 1 for each155

t ∈ T . To make this constraint working, after each cluster extraction step156

k, k = 1, 2, · · ·K − 1, the cumulative belongingness αkt =
∑k

l=1 ult should157

be taken into account in the operator P(z). For each t, the unity in the158

definition of ut (8), should be changed for 1 − αkt – this will warrant that159 ∑K
k=1 ukt ≤ 1.160
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If z is an eigenvector of W corresponding to an eigenvalue λ, so is −z,161

which implies that one should consider both u = P(z) and u− = P(−z) as162

candidates for projecting to the set of fuzzy membership vectors. Obviously,163

P(−z) picks up the absolute values of the negative components of z. This164

raises an issue of which one of u or u− should be taken, along with its165

intensity which is μ = u′Wu or μ− = u−′
Wu−, respectively. We address166

this by taking into account the criterion of maximization of contribution167

G = ξ2 in (5): that one that makes the fourth power of the intensity μ or μ−
168

greater.169

The principle of maximization of the contribution G = ξ2 can be further170

extended to all the eigenvectors, not only those corresponding to the maxi-171

mum eigenvalue. Indeed, as will be seen further, for some matrices W , value172

μ or μ− computed for a non-maximal eigenvalue λ can be greater than those173

for the maximum eigenvalue.174

Therefore we arrive at two versions of FADDIS differing by the way in175

which a fuzzy cluster is selected:176

(m) from projections of the eigenvectors corresponding to the maximum177

eigenvalue only;178

(a) from projections of all the eigenvectors corresponding to all positive179

eigenvalues.180

FADDIS algorithm181

Input: Symmetric similarity matrix A, threshold of the contribution of182

an individual cluster ε > 0, threshold of the total clusters contribution τ > 0.183
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Output: The number of fuzzy clusters K, cluster membership vectors184

u1,u2, ...,uK as well as their intensity values μ1, μ2, ..., μK and contributions185

G1(u1), G2(u2), ..., GK(uK) where indexes k at G(uk) reflect the fact that186

they have been computed at different residual similarity matrices.187

0 Initialization: Set k = 1 and W = A; compute the data scatter S =188 ∑
i,j w2

ij.189

1 Spectral: Find the set of all positive eigenvalues Λ = {λ} and corre-190

sponding normed eigenvectors Z = {zλ} for matrix W .191

2 Stop-condition: If Λ is empty, computation stops and outputs whatever192

clusters, along with their intensities and contributions, have been found193

so far.194

3 Fuzzy cluster projection in either m or a version:195

(m) Take the normed eigenvector z and its negation −z correspond-196

ing to maximum λ ∈ Λ, use operator P to compute their fuzzy pro-197

jections u and u−, and take that one that maximizes the contribution,198

G(u) or G(u−), as uk along with corresponding μk = u′
kWuk and199

G(uk).200

(a) Take eigenvectors z and −z corresponding to all λ ∈ Λ, use201

operator P to compute their fuzzified projections, and take that one of202

them that maximizes the contribution, G(u), as uk along with corre-203

sponding μk = u′
kWuk and G(uk).204

4 Stop-condition: Check whether G(uk)/S < ε or
∑k

l=1 G(ul)/S > τ . If205

either is, or both are, true, the computation stops, k is taken as K,206
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and all found clusters are output. Otherwise, add 1 to k, set W equal207

to W − μ2uku
′
k and go to step 1.208

2.3. Properties of FADDIS algorithm209

There are a number of properties of FADDIS procedure:210

1. The residual matrix W can get all the eigenvalues negative even if the211

initial matrix A is semi-positive definite, which may bring the procedure212

to a halt because formula (3) would lead to a negative ξ in this case –213

this is reflected in Step 2 of FADDIS.214

2. Any matrix A can be equivalently substituted by its symmetric version215

Ã = (A + A′)/2, to exclude complex-valued eigenvalues.216

3. The cluster contributions are additive so that each can be expressed as217

a proportion of the initial similarity data scatter S.218

4. The cluster contributions tend to decrease at each step, but they do not219

necessarily form a monotone decreasing sequence, because the spectral220

cluster does not necessarily globally minimize criterion (2).221

5. The procedure converges so that the total cluster contribution increases222

at each step.223

Most items among the above are based on experimental evidence, but224

some can be proven in a mathematically rigorous way as follows.225

Assertion 1. At any u, the value of the criterion g(u) does not change if226

W s = (W + W ′)/2 is put instead of W .227
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Proof: Indeed, when wtt′ is changed for ws
tt′ the only items affected are228

in the numerator, the sum wtt′utut′ + wt′tut′ut. But ws
tt′utut′ + ws

t′tut′ut =229

(wtt′ +wt′t)utut′ +(wt′t +wt′t)ut′ut)/2 = wtt′utut′ +wt′tut′ut, which proves the230

statement.231

Thus, the optimizers of g(u) do not change if W s is used in (6), which232

proves the assertion.233

Following this statement, it is always assumed in the remainder that234

the data matrix W has been symmetrized with the transformation W s =235

(W + W ′)/2 to warrant all the eigenvalues real.236

Assertion 2. For the iteratively extracted clusters μkuk with optimal μk =237

√
ξk in (3), even if uk are not optimal (k = 1, 2, ..., K), their contributions238

to the original similarity data scatter are additive so that239

S(A) = G1(u1) + G2(u2) + ...GK(uK) + EK , (9)

where EK is the scatter of the final residual matrix.240

Proof: We prove the formula for K = 2, which is easy to extend to241

other K values by induction. Indeed, the scatter of the residual matrix242

W1 = W − μ2
1u1u

′
1 after subtraction of the first cluster is but the value of243

E1 in equation (5): S(W ) = G1(u1) + E1 where E1 = S(W1). A similar244

decomposition S(W1) = G2(u2) + E2 holds for the second cluster. After245

substituting this equation for S(W1) for E1 in the former equation, that246

becomes S(W ) = G1(u1) + G2(u2) + E2 which proves the statement.247

These properties substantiate the following criteria for halting the process248

of iterative extraction of fuzzy clusters used in FADDIS procedure:249

1. The maximum value of ξ (3) for the spectral fuzzy cluster is negative.250
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2. The contribution of a single extracted cluster is too low, less than a251

pre-specified ε > 0 value. For example, for a network like Karate club252

of about 30 members in section 3.1, a cluster should contribute at least253

as much as an average entity, so that ε = 1/30 should be considered a254

fair choice in this problem.255

3. The residual scatter E becomes smaller than a pre-specified 1−τ value,256

say less than 5% of the original similarity data scatter, which means257

that the total cluster contribution has become greater than τ , that is258

95% in the example.259

4. A pre-specified number Kmax of clusters is reached – in some real-world260

problems such a number can be set indeed.261

2.4. Laplace transformation and its adaptation to the additive model262

The spectral approach to clustering similarity data, along with the so-263

called Laplacian normalization, became popular after publication by Shi and264

Malik [34]. This paper proposed a very successful normalized cut criterion265

proven to be related to the problem of minimization of the Rayleigh quotient266

for the Laplace matrix rather than the similarity matrix itself.267

Given a similarity matrix W , its Laplace matrices are defined as follows.268

First, an N × N diagonal matrix D is computed, with (t, t) entry equal to269

dt =
∑

t′∈T wtt′ , the sum of t’s row of W . Then combinatorial Laplacian270

and normalized Laplacian are defined with equations L = D − W and Ln =271

D−1/2LD−1/2, respectively. Both matrices are semipositive definite and have272

zero as the minimum eigenvalue. The minimum non-zero eigenvalues and273

corresponding eigenvectors of the Laplacian matrices are utilized then as274

14



relaxations of combinatorial partition problems [34, 28, 39, 18]. Of these two275

Laplace matrices, the normalized Laplacian in general is considered superior276

[18].277

Yet the Laplacian normalizations cannot be used in our approach as is,278

because FADDIS relies on maximum rather than minimum eigenvalue. To279

pass over this issue, the authors of [28] utilized a complementary matrix280

Mn = D−1/2WD−1/2 which relates to Ln by equation Ln = I − Mn where281

I is the identity matrix. This means that Mn has the same eigenvectors as282

Ln, whereas the respective eigenvalues relate to each other as λ and 1 − λ,283

so that matrix Mn can be used for our purposes as well.284

Yet we prefer using the Laplace Pseudo INverse transformation, Lapin

for short, defined as

L+
n = Z̃Λ̃−1Z̃ ′

where Λ̃ and Z̃ are defined by the spectral decomposition Ln = ZΛZ ′ of ma-285

trix Ln in the following way. First, set T ′ of indices of elements corresponding286

to non-zero elements of Λ is determined, after which the matrices are taken287

as Λ̃ = Λ(T ′, T ′) and Z̃ = Z(:, T ′). The Lapin transformation leaves the288

eigenvectors of Ln unchanged while inverting the non-zero eigenvalues λ �= 0289

to those 1/λ of L+
n . Then the maximum eigenvalue of L+

n is the inverse of290

the minimum non-zero eigenvalue λ1 of Ln, corresponding to the same eigen-291

vector. The inverse of a λ near 0 could make the value of 1/λ quite large292

and greatly separate it from the inverses of other near zero eigenvalues of Ln.293

Consider, for example, λ1 = 0.05 and λ2 = 0.2 so that their complements to294

unity are 0.95 and 0.8 while the inverses are 20 and 5 – the growth of the295

gap between the values, from 0.15 to 15, is impressive indeed. The latter gap296
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suits the FADDIS’ one-by-one approach much better.297

This ability allows the Lapin transformation to manifest clusters accord-298

ing to human intuition, such as presented in Fig. 1 where two clusters, heap299

in the center and ring around it, cannot be separated by variance based al-300

gorithms such as K-Means or EM for mixtures of Gaussian distributions but301

are easily separated by spectral clustering [18]. This is caused by the fact302

that after the Lapin transformation the similarity structure becomes clear-303

cut with all the positive Lapin similarities within the two intuitive clusters304

and all the negative Lapin similarities between them. Yet there can be cases,305

as will be seen further, at which Lapin transformation does not work at all306

(see also [30]).307

3. Experiments in Application and Comparison308

In this section, we consider four types of similarity data that have some309

differences, not always clearly understood, that have been analyzed in the310

literature with different approaches. These data types are:311

1. Ordinary graphs with a “flat” similarity structure; they have been in-312

tensely used in the problem of detection of community structure.313

2. Small real-world dissimilarity data that have been subject of analysis314

in founding papers on relational fuzzy clustering.315

3. Affinity data that are obtained by transforming coordinate based data316

with a, typically Gaussian, kernel. Because of the high sensitivity of317

the Gaussian kernel, these data manifest high versatility in similarities,318
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which make the affinity data a sound target for the spectral clustering319

approach.320

4. Similarity data either derived from in-house surveys of research activi-321

ties or obtained in psychological experiments.322

We are going to use these types of data for both testing FADDIS and com-323

paring it to other fuzzy clustering techniques.324

3.1. Application to Finding Community Structure325

The research in finding community structure in ordinary graphs has been326

revitalized recently by M. Newman and others, with the usage of the so-327

called modularity criterion and reformulating it within the spectral cluster328

analysis framework (see, for example, [27, 26, 36, 18]). The graph with a set329

of vertices T is represented by the similarity matrix A = (att′) between graph330

vertices such that att′ = 1 if t and t′ are connected by an edge, and att′ = 0,331

otherwise. Then matrix A is symmetrized by the transformation (A + A′)/2332

after which all diagonal elements are made zero, att = 0 for all t ∈ T . We333

assume that the graph is connected; otherwise, its connected components are334

treated separately.335

We first apply FADDIS algorithm, in both -m and -a versions, to Zachary336

karate club network data, which serves as a prime test bench for community337

finding algorithms. This ordinary graph consists of 34 vertices, corresponding338

to members of the club and 78 edges between them - the data and references339

can be found, for example, in [27, 39]. The members of the club are divided340

according to their loyalties toward the club’s two prominent individuals: the341
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administrator and instructor. Thus the network is claimed to consist of two342

communities, with 18 and 16 differently loyal members respectively.343

Applied to this data, both versions of FADDIS lead to the same three344

fuzzy clusters to be taken into account. Indeed, the fourth cluster both times345

accounts for just 2.4% of the data scatter, which is less than the inverse of346

the number of entities τ = 1/34 suggested above as a natural threshold value.347

Some characteristics of the found solution(s) are presented in Table 1.348

All the membership values of the first cluster are positive - as mentioned349

above, this is just the first eigenvector; the positivity means that the net-350

work is well connected. The second and third FADDIS clusters match the351

claimed structure of the network: they have 16 and 18 positive components,352

respectively, corresponding to the two observed groupings.353

Let us compare our results with those of a recent spectral fuzzy clustering354

method developed in [39]. The latter method finds three fuzzy clusters, two of355

them representing the groupings, though with a substantial overlap between356

them, and the third, smaller, cluster consisting of members 5,6,7,11,17 of just357

one of the groupings – see [39], p. 487. We think that this latter cluster may358

have come up from an eigenvector embracing the members with the largest359

numbers of connections in the network. It seems for certain that FADDIS360

outperforms the method of [39] on Zachary club data.361

To test the performance of FADDIS algorithm in detecting community362

structure on a larger scale, we devised an experiment in randomly drawing363

a community network. This network comprises two communities, each con-364

sisting of a random number of members from 6 to 15; the connecting edges365

are drawn uniform randomly with probability p within each community and366
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probability q between the communities. Although the uniform distributions367

do not necessarily reflect those in real world networks [27, 26], this seems368

an appropriate bench-mark for testing a general clustering algorithm such as369

FADDIS.370

After a network is generated, a version of FADDIS is run; then the first371

membership vector is discarded, and the following two types of errors are372

recorded over the two entity sets corresponding to the positive membership373

values in the second and third membership vectors, after identifying that of374

the generated communities they correspond to:375

• the confusion error, which is the number of entities wrongly assigned376

between the two clusters, related to the total number of entities gener-377

ated;378

• the omission error, which is the number of entities not assigned to379

clusters 2 and 3 at all, related to the total number of entities generated;380

At these data sets, the results of FADDIS-a did not differ from those381

of FADDIS-m, indicating that the largest eigenvalue always leads to the382

best contributing clusters in this setting. Table 2 presents averages and383

standard deviations of each of the confusion and omission error values over384

a thousand data generation runs. Each cell in it corresponds to a pair (p, q),385

p = 0.6, 0.7, 0.8, 0.9 and q = 0.1, 0.2, 0.3, 0.4; each of the mean values is386

accompanied with the standard deviation after slash. Within every cell, the387

confusion error is on top with the omission error underneath.388

As one can see, the errors are rather high at p = 0.6, reaching its minimum389

of total 27.4 % at q = 0.2. At each q, the errors decrease with the growth390
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of internal connections p. One would expect the greatest error at the worst391

conditions, the smallest internal links at p = 0.6 and the largest external392

links at q=0.4, which is the case indeed. Yet a non-trivial feature of the393

error, that has been always observed over many series of 1000 runs of the394

data generation routine, is the lack of monotonicity of the errors with respect395

to q. The error appears to be always smaller at q = 0.2 than at q = 0.1.396

Moreover, with the growth of p the minimum error moves to even greater q397

values. For example, at p = 0.9, the error, totaling to 4.5%, is the smallest398

at q = 0.3.399

Overall, the results show that the method is consistent, and in fact, ef-400

ficient in discovering the two-community structure. Its performance when401

there are more communities in the graph remains to be tested.402

3.2. Fuzzy clustering affinity data403

The affinity data is a relational similarity data obtained from a feature

based dataset using a semi-positive definite kernel, usually the Gaussian one.

Specifically, given an N × V matrix Y = (ytv), t ∈ T and v = 1, 2, ..., V ,

non-diagonal elements of the similarity matrix W are defined by equation

wtt′ = exp(−
∑V

v=1(ytv − yt′v)
2

2σ2
),

with the diagonal elements made equal to zero, starting from founding papers404

[34, 28]. The value ss = 2σ2 is a user-defined parameter, that is pre-specified405

to make the resulting similarities wtt′ spread over interval [0,1].406

To see how this approach works, we adapt an example from [25]: two407

2D clusters are generated, one from a normal distribution corresponding to408

a small ball whereas the other from a uniformly distributed strip, which is409
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much longer. When y-axis difference between the clusters is small, separating410

them is of an issue for spectral clustering algorithms [25]. By changing the411

distance between the clusters, one can test the consistency of a clustering412

method. Specifically, a hundred points are randomly generated by using413

Gaussian distribution N(1,0.5) over both axes to make cluster 1, and two414

hundred points are generated uniform randomly in a strip taking the fragment415

of x-axis from 0 to 50 while maintaining its width over y-axis equal to one.416

This is illustrated in Fig. 2: the strip is put at y = 3.5 on part (a)417

and at y = 0.5 on part (c) of it. Then the data are standardized with418

the conventional z-scoring: by subtracting grand means from each of the419

coordinates and dividing the results by the feature’s standard deviation.420

Because of a combined use of Gaussian kernel and Lapin transformation,421

the final similarities are much diverse so that the very first fuzzy cluster422

here covers no general similarity between entities but should correspond to423

a meaningful grouping in the data.424

Table 3 presents the averaged results of FADDIS algorithm over a hundred425

runs of data generation at three different ratios of the cluster sizes. No suffix426

-m or -a is attached to the name of the algorithm because both lead to the427

same results at these datasets. The number of points generated is always428

300, but the cluster distribution differs: only 100 entities belong to the ball429

in the left column, 150 in the middle column, and 200 in the column on430

the right. The clusters are defuzzified at 0 level and compared with those431

generated. The same two types of errors that have been defined in Section432

3.1 are registered here: the error of confusion that occurs if a point belonging433

to one cluster is identified by the algorithm as belonging to the other, and434
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the error of omission occurring if a point belongs to neither of the two first435

clusters.436

In general, the errors are consistent with the expectations. They are437

monotone decreasing with the growth of y and almost disappear at y = 3.0438

or greater. However the character of the monotonicity is different at different439

cluster size distributions. At 100/200 ratio, the error is high at y = 0.5, but440

almost disappears starting from y = 2.5; moreover, the error of omission is441

rather low here. But at the opposite, 200/100, ratio, at small y values, the442

errors of omission are rather high while the confusion errors are relatively443

small, and the errors keep appearing even at higher degrees of separation of444

the clusters.445

By changing the threshold of defuzzification the errors can be significantly446

decreased. Specifically, at the threshold of defuzzification 0.2, the confusion447

errors entirely disappear, while omission errors become lower, at small y448

values, and zero, at larger y values, as clearly seen in Table 4.449

To compare our approach with other methods for fuzzy clustering of affin-450

ity data, we pick up an example from Brouwer [5]. This example concerns a451

two-dimensional data set, that we refer to as Bivariate4, comprising four clus-452

ters generated from bivariate spherical normal distributions with the same453

standard deviation 950 at centers (1000, 1000), (1000,4000), (4000, 1000),454

and (4000, 4000), respectively. The data forms a cloud presented in Fig. 3.455

This data was analyzed in [5] by using the matrix D of Euclidean distances456

between the generated points. Five different fuzzy clustering methods have457

been compared, three of them relational, by Roubens [31], Windham [35] and458

NERFCM [12], and two of fuzzy c-means (FCM) with different preliminary459
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pre-processing options of the similarity data into the entity-to-feature format,460

FastMap and SMACOF [5]. Of these five different fuzzy clustering methods,461

by far the best results have been obtained with method FCM applied to a462

five-feature set extracted from D with FastMap method [5]. The adjusted463

Rand index [15] of the correspondence between the generated clusters and464

those found with the FCM over FastMap method is equal on average, of 10465

trials, 0.67 according to [5]; no standard deviation is reported.466

To compare FADDIS with these, we apply Gaussian kernel to the data467

generated according to the Bivariate4 scheme and pre-processed by the z-468

score standardization so that similarities, after z-scoring, are defined as aij =469

exp(−d2(yi, yj)/0.5) where d is Euclidean distance. This matrix then is Lapin470

transformed to the matrix W to which FADDIS is applied.471

To be able to perform the computation using a PC MatLab, we reduce472

the respective sizes of the clusters, 500, 1000, 2000, and 1500 totaling to473

5000 entities altogether in [5], tenfold to 50, 100, 200 and 150 totaling to 500474

entities. The issue is of doing a full spectral analysis of the square similarity475

matrices of the entity set sizes, which we fail to do with our PC MatLab476

versions at a 5000 strong dataset. We also experimented with fivefold and477

twofold size reductions. This should not much change the results because of478

the properties of smoothness of the spectral decompositions [14].479

Indeed, one may look at a 5000 strong random sample as a combination480

of two 2500 strong random samples from the same population. Consider a481

randomly generated N × 2 data matrix X of N bivariate rows, thus leading482

to Lapin transformed N × N similarity matrix W . If one doubles the data483

matrix by replicating X as XX = [X; X], in MatLab notation, which is just484
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a 2N × 2 data matrix consisting of a replica of X under X, then its Lapin485

transformed similarity matrix will be obviously equal to486

WW =

⎡
⎣W W

W W

⎤
⎦

whose eigenvectors are just doubles (z, z) of eigenvectors z of W . If the second487

part of the double data matrix XX slightly differs from X, due to sampling488

errors, then the corresponding parts of the doubled similarity matrix and489

eigenvectors also will slightly differ from those of WW and (z, z). Therefore,490

the property of stability of spectral clustering results [14] will hold for thus491

changed parts. This argument equally applies to the case when the original492

sample is supplemented by four or nine samples from the same population.493

In our computations, five consecutive FADDIS clusters have been ex-494

tracted for each of randomly generated ten Bivariate4 datasets. The very495

first cluster has been discarded as reflecting just the general connectivity496

information, and the remaining four were defuzzified into partitions so that497

every entity is assigned to its maximum membership class. The average498

values of the adjusted Rand index, along with the standard deviations at499

Bivariate4 dataset versions of 500, 1000, and 2500 generated bivariate points500

are presented in Table 5 for both cases of FADDIS, -a and -m. The results501

support our view that the data set size is not important if the proportions of502

the cluster structure do not change. According to the tables, both FADDIS-503

m and FADDIS-a methods outperform the results obtained by the five fuzzy504

clustering methods reported in [5].505

One can see, also, that FADDIS-a provides a slightly better recovery of506
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the Bivariate4 cluster structure than FADDIS-m. This is caused by the fact507

that FADDIS-m tends to halt, because of negative eigenvalues, at getting508

just three clusters rather than four: the two smallest clusters are merged509

in one by FADDIS-m. This tendency of FADDIS-m in discovering a coarse510

cluster structure before halting will be observed at other data types too.511

A remark:512

The entity-to-feature format of the Bivariate4 data suggests that rela-513

tional cluster analysis is not necessarily the best way to analyze it; a genuine514

data clustering method such as K-Means may bring better results. Indeed,515

an application of the “intelligent” K-Means method from [21] to the original516

data size of N = 5000 has brought results with the average adjusted Rand517

index of 0.75 (the standard deviation 0.045), which is both higher and more518

consistent than the relational methods applied here and in [5].519

3.3. Experiments with benchmark dissimilarity data520

We take on three small real-world datasets that have been used exten-521

sively by researchers in fuzzy clustering: Windham’s dissimilarity data [35],522

Davé-Sen Country dissimilarity data [7] and celebrated Iris data [9].523

Analysis of Windham’s dissimilarity data524

A matrix of dissimilarity values dij between eleven objects is presented in525

Table 6 in which there are clear groupings of objects 1-5 and 7-11, whereas526

object 6 has close connections with objects 5 and 7. This dataset has been527

considered by Windham in [35] and then used as a clear-cut structure example528

in [11, 3, 12, 7, 5].529

We transform this matrix into a similarity matrix W by applying Gaus-530

sian kernel transformation wij = exp(−d2
ij/100). Then we apply FADDIS-a531
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to both W and its Lapin transformation L+
n .532

At W , there have been four clusters whose contributions have been greater533

than one thousandth (see Table 7). The first of them covers all entities to534

reflect the general connectivity. The other three match the structure of the535

data rather well so that cluster II corresponds to the grouping 7-11, cluster536

III, the grouping 1-5, and cluster IV, to the grouping 5-7, though this latter537

cluster contributes just 2% of the data scatter.538

At the Lapin transformed matrix, only two clusters have been extracted539

before the value (3) became negative bringing the process to a halt. Positive540

components of these correspond to each of the two groupings, 1-5 and 7-11.541

These results go along with the results of application of fuzzy clustering542

methods described in [31, 3, 12, 7, 5]. All of them require pre-specifying the543

number of clusters, at K = 2, and they all, except for the method by [31]544

that merged all in one cluster (see [5]), produce two clusters at which the545

five-element groupings have high membership values and object 6 is shared546

between them. Our result with the three meaningful clusters over matrix W547

in Table 7, in which object 6 does not belong to the groupings but forms one548

of its nearest neighbors, seems adequate too. Another feature of FADDIS549

clustering results is a rather sharp separation in the membership values:550

many are zeros, which is not the case with more conventional approaches551

which require special efforts for the defuzzification.552

Analysis of Davé-Sen Country dissimilarity data553

The Country dataset, taken from [7], Table II, presents dissimilarities554

between 12 countries obtained by averaging the results of a survey among555

students in political science (see Table 8).556
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Table 9 shows the clustering results found by applying three reference al-557

gorithms from the literature of relational fuzzy clustering: RFC[7], NERFCM[12],558

and FastMap[5] (see discussion in Section 4). Each of the algorithms finds559

three clusters, with ‘Egypt’ moving from cluster c3 to cluster c2 in the case560

of FastMap.561

Table 10 shows the results of applying algorithms FADDIS-m and FADDIS-562

a to the data transformed to the similarity matrix W by subtracting all the563

dissimilarities from their maximum value. In this case, four clusters were564

found, with the fourth cluster separating ‘Egypt’ from the countries ‘Brazil’,565

‘India’ and ‘Zaire’. The lowest dissimilarity between ‘Egypt’ and the other566

countries, 4.67, may justify the separation.567

The clustering structure resulting from the application of FADDIS to568

Lapin transformed matrix W is meaningless along with the very low contri-569

butions of each of the five clusters to the explanation of data scatter (see, for570

example, FADDIS-a results in Table 11).571

However, with the Gaussian kernel pre-processing applied to the dissim-572

ilarity matrix itself, followed by Lapin transformation, FADDIS leads to573

meaningful results. FADDIS-a leads to a number of fragmented clusters.574

Yet FADDIS-m halts after just two clusters extracted because of the neg-575

ative eigen-values. These two clusters are presented in Table 12. It looks576

like the final similarity matrix here does capture the data structure, however577

rough, to merge smaller patterns with the two grand patterns, of more or578

less a free economy, the USA et al. to more or less a rigid one, the USSR et579

al.580

Analysis of Fisher-Anderson’s Iris data581
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Although the celebrated Iris dataset [9] is not in the relational data for-582

mat, we have been tempted to analyze it here to see how FADDIS would fare583

along the other applications of fuzzy clustering techniques.584

In order to apply the FADDIS algorithm to 150× 4 Iris entity-to-feature585

data set, it has been transformed into a 150 × 150 dissimilarity matrix by586

applying the Euclidean distance metric, and then transformed to a similarity587

matrix W by subtracting it from the maximum distance.588

Tables 13-14 show the confusion matrices of FADDIS-m/FADDIS-a fol-589

lowed by the clusters’ contribution to the data scatter at matrix W as is590

(Table 13) of after applying to W the Lapin transformation (left part of Ta-591

ble 14 for FADDIS-m and right part of Table 14 for FADDIS-a). With the592

original W , both FADDIS-m and FADDIS-a provide the same result (Table593

13): they find 3 clusters exactly (which corresponds to the original number594

of classes) with 10 (6.6%) misclassified cases. This favorably compares with595

results of other fuzzy clustering algorithms: “The typical result of comparing596

hardened FCM or HCM partitions to the physically correct labels of Iris is597

14–17 errors” (see [29], p. 528).598

With the Lapin transformation applied, FADDIS-m finds 3 clusters also599

but with a higher precision error of 12% plus 6,67% of entities not clustered600

at all (omission error). FADDIS-a results are even worse: it finds 5 clusters601

with a precision error of 36,7% and omission error of 3,33%. Yet it should602

be made clear that the conclusion of a bad working of FADDIS here can be603

drawn with no knowledge of the pre-defined clusters at all: just note how604

low are the contributions of FADDIS found clusters meaning that they are605

but noise.606
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Once again the use of affinity data obtained with a Gaussian kernel here607

leads to even worse results, except for the FADDIS-m applied after Lapin608

transformation of the affinity data. It finds a coarse picture of just two609

clusters (once again the algorithm halts because of negative eigenvalues),610

one coinciding with the first Iris class and the other merging Iris second and611

third classes together. This result concurs with the claims [4] that the Iris612

data set may consist of just two, not three, clusters and, more importantly,613

feeds in at the capacities of FADDIS-m in discovering a coarse structure of614

the data.615

3.4. Application to genuine similarity data616

The potential single distinction of the genuine relational, or similarity,617

data from the affinity data is in handling the diagonal. It is made zero at618

the affinity data so that the entire focus is on the relations between the619

entities. Yet at the genuine similarity data the diagonal may bear an impor-620

tant distinction between the entities, which may affect the results. Indeed,621

zeroing the diagonal may change the results, because of changes in the sum-622

mary values dt in the denominator (while leaving L-values in the numerator623

unaffected).624

Consider, for example, a typical genuine similarity dataset in Table 15,625

that presents the frequency of human confusion between different segmented626

numerals (such as those in Fig. ??); the greater the confusion, the greater627

the similarity. The diagonal dominates the data and shows, for example,628

that humans tend to identify 1 and 0 better than 8 and 9.629

Consider results of applying FADDIS at two options – one with the di-630

agonal unchanged (u), the other with the diagonal zeroed (z). Defuzzified631
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clusters at threshold 0.3 are shown for the first five FADDIS-a membership632

vectors in Table 16. One can see that two clusters at which (u) and (z)633

results agree are groupings of numerals {1,4,7} and {6, 8, 0}. These are ex-634

actly the clusters that have been found in [20] by a hierarchical aggregation635

algorithm maximizing the chi-squared coefficient of the aggregate table. The636

other clusters are significantly differ, except perhaps the clusters {3, 5, 9} at637

(z), and {3,5,6,9} at (u), both closely resembling cluster {3,5,9} from [20].638

Yet some may say that these differences are not quite important because of639

low contributions to the data scatter.640

Consider now the similarities between research topics derived from our641

survey of researchers in a University department or research center. These642

motivate the additive model in (1) as described in Section 2.1. The authors643

developed a publicly available tool ESSA for e-surveying of members of Com-644

puter Science Research organizations (see [22] and645

https://copsro.di.fct.unl.pt/). This tool is used to obtain a data table whose646

columns correspond to a set of V individuals or project teams in the orga-647

nization (v = 1, 2, · · · , V ), and rows to (some of) research topics taken to648

be leaves of the ACM-CCS taxonomy ([1]). The (t, v) entry in the table is649

the score ftv given by member v to the topic t, to express the share of their650

total research effort devoted to topic t; ftv is greater than 0 but smaller than651

1, and the column v sums up to unity - a property which suggests a specific652

normalization weight assigned to each of the columns, as explained below.653

Also, the estimates ftv can be derived from the body of documents posted654

on web, though this method can be applied only to organizations whose655

members do post English-written documents of their research on the Internet.656
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Then the similarity att′ between topics t and t′ can be defined as the657

inner product of vectors of scores ft = (ftv) and ft′ = (ft′v), v = 1, 2, · · · , V .658

Since all the individual scores sum up to unity,
∑

t∈T ftv = 1 for each v, the659

scores of individuals bearing more topics tend to be smaller than those of660

individuals engaged in fewer numbers of topics. To make up for this, the661

inner product is moderated by a natural weighting factor, the ratio of the662

number of topics marked by individual v, nv, and nmax, the maximum nv663

over all v = 1, 2, ..., V ,664

att′ =
V∑

v=1

nv

nmax
ftvft′v. (10)

The similarity measure (10) has the following properties:665

• The similarity matrix is definite semipositive.666

• The similarity between two topics can be positive if and only if there667

is at least one researcher that is engaged in both.668

• The greater the individual membership values, the greater the similar-669

ity.670

• Given a pair of topics, the greater the set of researchers engaged in671

them, the greater the similarity.672

Let us describe in brief FADDIS results obtained for topic-to-topic simi-673

larity matrices corresponding to two real-world Computer Science organiza-674

tions, one a research center labeled here as A, the other a University depart-675

ment labeled here as B. The matrices can be found in [24].676

First, some technical characteristics of the results:677
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1. Clustering results do not much depend on the diagonal entries, either678

left untouched or zeroed: there is no difference between the versions in679

membership values at the first three decimals at all.680

2. FADDIS versions -m and -a lead to different results. Whereas FADDIS-681

a brings forth a number of clusters with declining, however sharply,682

contributions, FADDIS-m abruptly halts at both these data sets not683

because of low contributions but because the continuation of the process684

becomes impossible: the next spectral cluster membership vector gives685

a negative value to the weight (3), which goes along with the idea686

FADDIS-m revealing a coarse cluster structure in the dataset. We687

accept FADDIS-m results as those found without any use of knowledge688

of the domain.689

Because one of the organizations, A, is a research center whereas the690

other, B, is a university department, one should expect that the total num-691

ber of research topics in A is smaller than that in B, and, similarly, the692

number of clusters in A should be less than that in B. Indeed, research cen-693

ters are usually created for a limited set of research goals, whereas university694

departments must cover a wide range of topics in teaching, which necessarily695

affects the research efforts. Both of these appear to be true: the number696

of ACM-CCS topics scored in A is 46 versus 54 in B. Also, the number of697

clusters in A is two, whereas in B it is four.698

The clusters found at both research center A and university department B699

have a more or less clear meaning and are consistent with the informal assess-700

ment of the research conducted in each of the research organizations. More-701
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over, the sets of research topics that have been chosen by individual members702

at the ESSA survey follow the cluster structure rather closely, falling mostly703

within one of them. The FADDIS results for the two data (ESSA) surveys704

can be consulted in [24].705

4. Related Work706

This paper crosses several lines of research, of which the following will be707

mentioned here in sequence: relational fuzzy clustering, additive clustering,708

spectral clustering, and detection of community structure.709

Relational fuzzy clustering710

Relational fuzzy clustering is an activity of deriving fuzzy clusters from711

a relation, that is, a matrix of a dissimilarity index on T , (d(t, t′)), t, t′ ∈ T .712

This can be divided in two major streams: one utilizing the fuzzy logics713

operations such as minimum or plus but no operation of division, and the714

other involving all the numeric operations, including division. The former715

is rather thin and less developed (see, for instance, [37] and [10]). Our ap-716

proach falls in the latter stream, which can be traced to papers [31] and [35]717

that utilized, essentially, the sum
∑K

k=1

∑
t,t′ u

2
tku

2
t′kd(t, t′) as the criterion718

to minimize over unknown membership vectors uk, k = 1, ..., K. A similar719

criterion, proven to be equivalent to the criterion of popular fuzzy c-means720

method [4], was utilized by [11] to derive their RFCM algorithm, that works721

in two-phase iterations similar to c-means, including a relational analogue722

to the concept of cluster centroid. Specifying the so-called “fuzzifying” con-723

stant at the level of 2, the RFCM criterion is the sum over k = 1, ..., K of724

items
∑

t,t′ u
2
tku

2
t′kd(t, t′)/

∑
t u2

tk where d(t, t′) must be the squared Euclidean725
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distance - otherwise, RFCM may lead to negative membership values. But726

even in this format, RFCM appears to be superior to Windham’s assignment-727

prototype algorithm [3]. Later this restriction was relaxed, initially, by mod-728

ifying RFCM into NERFCM algorithm to include the addition of a positive729

number to all off diagonal distances [12] and, more recently, by directly im-730

posing the non-negativity constraint for membership values [7]. The latter731

paper also extended the concept of fuzzy clustering to include the so-called732

“noise” cluster to hold the bulk of membership values for entities that are far733

away of the K clusters being built. Paper [5] makes use of a two-stage proce-734

dure in which the first stage, such as FastMap mentioned above, supplies the735

entities with a few distance-approximating features so that the second stage736

utilizes a conventional algorithm such as fuzzy c-means for building fuzzy737

clusters in thus produced feature space.738

FADDIS differs from these, first of all, in that it does not require the739

cluster membership values to form a fuzzy partition so that, for any entity t,740

the sum of its cluster membership values does not necessarily sum up to 1.741

Moreover, in our setting, the membership vector goes along with the cluster742

intensity so that the entries in the resulting index μu, although non-negative,743

are not necessarily less than or equal to unity. This may seem to be a step744

too far, yet it is perfectly fitting the concept of fuzzy set introduced in [38].745

An advantage of such an approach is that there is no need to introduce the746

concept of noise cluster [7] - the odd entities just get all membership values747

equal to zero. Another convenience is a natural definition of the validity of a748

cluster and set of clusters in our setting - by using the concept of contribution749

to the data scatter; the greater the better.750
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One more difference, the sequential character of FADDIS, makes it some-751

what natural to address the problem of the number of clusters, which is752

impenetrable in the convenient settings. It is probably these features that753

make FADDIS that competitive in cluster recovery as shown above.754

It is worth mentioning that some authors refer to fuzzy clusters whose755

membership values not necessarily sum up to 1 as possibilistic clusters (see,756

for example, [29, 8]). FADDIS clusters can be considered possibilistic too,757

albeit additional conditions that each cluster membership vector is normed758

and supplied with the cluster intensity value. In contrast to possibilistic759

clustering algorithms, though, FADDIS involves no additional parameters760

such as the reference distance in [8] to be adjusted.761

The difference of FADDIS clustering criterion, apart from the fact that762

it applies to similarities rather than dissimilarities, should not be overstated763

though. There is a striking similarity between the RFCM criterion for a764

single cluster and our g(u) criterion in (5). Indeed, denote ztk = u2
tk, then765

the former becomes
∑

t,t′ ztkzt′kd(t, t′)/
∑

t ztk which differs from the Rayleigh766

quotient g(z) by the denominator only, it is the sum of z’s rather than of767

their squares.768

From the computational point of view, FADDIS is straightforwardly linked769

to a repetitive finding the matrix spectral decomposition, especially heavy770

in version (a) in which all eigenvectors are tested. That effectively limits771

the sizes of computationally feasible datasets to about three-four thousand772

entities, in a PC located environment with built-in spectral operations, like773

MatLab. In this aspect, the two-stage method by [5] is much better suitable774

to larger datasets.775
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Additive clustering776

The additive clustering of similarity data has been introduced, in English,777

by Shepard and Arabie [33] in the setting involving cluster membership vec-778

tors uk constrained to be just 1/0 binary vectors. Paper [19] referred to779

even earlier publications, in Russian, and proposed the iterative cluster ex-780

traction framework in that setting. However, the additive clustering model781

had not been extended to relational fuzzy clustering until a simplified ver-782

sion of model (1) was considered in [32]. This model involves a constant, not783

cluster-specific, intensity, cites no specific applications, and uses the Newton’s784

descent method for fitting it. Newtons method involves many initialization785

parameters that need to be pre-specified, which is not what an innocent user786

would be willing to do. Thus, this paper appears to be the first treatise to787

properly extend the additive model to fuzzy clustering.788

Spectral clustering789

With respect to additive clustering model in (1), the spectral approach790

seems a most natural way to go because the equation is an extension of the791

spectral decomposition of matrix A onto fuzzy membership values. Yet, ap-792

plied as is, by taking the first K eigenvectors and projecting them to cluster793

membership vectors, the approach, according to our experiments (not re-794

ported), fails to discover the clusters even in rather simple data structures.795

The spectral approach to clustering has gained popularity after Shi and Ma-796

lik’s change of the setting to, first, just one eigenvector, for a single cut, and,797

second, Laplacian data normalization [34].798

The idea of computation of Laplace matrix as a normalization step ap-799

pears tremendously effective, along with Gaussian kernel, at discovery of800
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clusters of elongated geometry such as image segments or circular clusters801

[34, 28, 18]. The meaning of the pseudo-inverse Laplacian is currently under802

intense mathematical study in terms of conductivity of linear electric circuits803

(see, for example, [6, 30]) as well as the meaning of Gaussian kernel affinity804

transformation (see, for example, [25]).805

It should be mentioned that, in our setting, the pseudo-inverse Laplace806

(Lapin) transformation is a device to fit into the nature of FADDIS clustering807

criterion, which has nothing to do with its electric network interpretation.808

In our experiments, Lapin transformation works, quite well, at the affinity809

and genuine similarity data; yet it fails on the innate dissimilarity data and810

ordinary graphs; the latter seems to have theoretical underpinnings [30].811

Community detection812

The single cut idea was extended, within the framework of community813

detection, to other normalizations by Newman and Girvan [27, 26]. Their814

idea of normalization comes from interpretation of the similarity data, even if815

an ordinary graph, as a manifestation of interactions between items t, t′ ∈ T .816

To see the “real modularity structure” behind the interactions, the random817

interaction part, proportional to dtdt′ for each pair (t, t′), is to be subtracted818

first. After this, the spectral clustering approach should be applied [26].819

This paper also can be put in that category, as well as any other method820

within the sequential extraction approach, since FADDIS makes just one821

cluster extracting step at a time. Moreover, in the context of community822

detection problem, FADDIS can be viewed as a further advancement into the823

approach of removal of random interactions from the similarities. Indeed, for824

a connected interaction graph, the first eigenvector is all positive, thus, equal825

37



to the first FADDIS cluster membership function. This first eigenvector z1,826

as is well known [2], is a further elaboration of the summary values dt taken827

to represent the “random interaction force” in the modularity transformation828

– z1 takes into account not only direct interactions but indirect interactions829

as well. That means that subtraction from the data the similarities μ1z1tz1t′830

according to the eigenvector makes a better cleaning of the similarities from831

the background interactions. It is probably this feature that makes FADDIS832

competitive in the context of community structure analysis.833

5. Conclusion834

The major feature that puts FADDIS aside from the relational clustering835

approaches [3, 4, 5, 7, 11, 16, 31, 35, 37, 39] is that the cluster membership836

values directly contribute to the similarities, in an additive way, according to837

model (1). This comes with the price of imposing another novel feature, the838

cluster’s intensity, to account for the similarity index scale. This somewhat839

blurs the meaning of a fuzzy membership value as proportion or probabil-840

ity which must never exceed the unity. Yet, along with the least squares841

criterion, this sharpens the found clusters and puts much more zeros in the842

membership vectors than in fuzzy clusters found by other methods.843

Another feature of our approach is a natural setting for incomplete clus-844

tering: the method can and do get some of the entities not clustered at all845

- those with zero membership values to all the clusters. One more feature846

is that each cluster is accompanied with its weight, the contribution to the847

data scatter that basically accounts for the similarities between entities most848

belonging to the cluster: the larger the weight the greater within cluster sim-849
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ilarities. On one hand, this characteristic can be used as another measure of850

clustering quality in addition to those introduced in [5]. On the other hand,851

the weights are utilized in FADDIS as natural stopping criteria, along with852

the most definite criterion of non-negativity of the maximum eigenvalue.853

The presented material shows that FADDIS correctly clusters benchmark854

data, shows consistency over experimentally generated datasets, and is com-855

petitive over other approaches.856

There are several issues that remain to be addressed:857

1. Difference between FADDIS (m) and (a) versions.858

In our experimental settings, the case of negative maximum eigenvalue859

for stopping has occurred only at (m) version and never at (a) version.860

Moreover, even at (m) version, it works in most analyses of similarity861

between ACM-CCS items and very rarely at other cases. The propen-862

sity of FADDIS-m to capturing coarse structures of datasets after Lapin863

transformation with an abrupt halt because the residual matrix be-864

comes negative definite should be further explored.865

2. Data normalization.866

As we have seen, different data types may require different data nor-867

malization strategies. According to our experiments, community data868

should get just the symmetrization and diagonal removal, but not a869

Laplacian transformation. When we did apply the normalized Lapla-870

cian transformation to the random test data with two communities871

described in Section 3.1, the confusion error grew on average to about872

30% and the omission error about 25%, which is much greater than873
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errors at the unnormalized data. Explanation of this effect remains874

a task for the future (see [30]). However, the normalization with the875

pseudo-inverse Laplacian transformation works quite well at the affin-876

ity or similarity data. Specifics of these data types should be further877

explored.878

3. Scalability.879

FADDIS takes as many spectral decompositions as the number of clus-880

ters. In the version (m) only first eigenvector is needed, but version881

(a) uses all of them. This makes the scalability of the approach heavily882

linked to the scalability of the spectral decomposition, which leaves us883

with moderate, up to several thousand entities, data sizes. A break-884

through may come with the progress of approximation techniques; a885

step in this direction is the usage of maximum spanning trees for ap-886

proximating Lapin normalization [13].887
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Figures’ Captions1022

1023

1. Figure 1: Two intuitively obvious clusters: stars in the middle and dots1024

in the ring.1025

2. Figure 2: Two versions of clusters of different shapes: that on (a) cor-1026

responds to distance 3.5 between them over y-axis, and on (c), distance1027

0.5 over y-axis. Figures (b) and (d) present the clusters after z-scoring1028

of the data.1029

3. Figure 3: Digits: Styled digits formed by segments of the rectangle.1030

4. Figure 4: Bivariate4: the data of four bivariate clusters generated from1031

Gaussian distributions according to [5].1032
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Tables1033

1034

Table 1: Characteristics of Karate club clusters found with FADDIS.
Cluster Contribution, % λ1 Weight Intensity

I 29.00 3.36 3.36 1.83

II 4.34 2.49 1.30 1.14

III 4.19 2.00 0.97 0.98
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Table 2: The average confusion and omission errors of FADDIS clusters, along with

their standard deviations, at different probabilities of the within community links

(in rows) and between community links (in columns) resulting from a thousand

data generation runs. The confusion error and its standard deviation are on top

in every cell.

0.4 0.3 0.2 0.1

0.329/0.110 0.237/0.136 0.160/0.140 0.166/0.151
0.6

0.173/0.112 0.146/0.120 0.114/0.119 0.140/0.131

0.227/0.132 0.141/0.129 0.103/0.125 0.128/0.145
0.7

0.123/0.118 0.088/0.110 0.082/0.117 0.121/0.138

0.110/0.111 0.072/0.100 0.061/0.096 0.098/0.135
0.8

0.064/0.103 0.051/0.102 0.050/0.104 0.089/0.131

0.043/0.069 0.031/0.059 0.036/0.071 0.074/0.125
0.9

0.019/0.067 0.014/0.058 0.025/0.082 0.062/0.131
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Table 3: Average confusion and omission errors, along with their standard devia-

tions (after slash), after a hundred of data generation runs at each of the different

values of the y coordinate of the strip cluster, from y = 0.5 to y = 3.5 – the

cases presented in Fig. 2. The columns refer to different ratios of the cluster

cardinalities.
y 100/200 150/150 200/100

0.209/0.051 0.135/0.040 0.099/0.059
0.5

0.064/0.116 0.069/0.111 0.249/0.172

0.151/0.027 0.080/0.024 0.040/0.040
1.0

0.049/0.030 0.072/0.046 0.152/0.099

0.087/0.033 0.042/0.013 0.037/0.045
1.5

0.034/0.018 0.021/0.015 0.052/0.081

0.016/0.010 0.010/0.006 0.020/0.041
2.0

0.005/0.007 0.003/0.004 0.018/0.088

0.001/0.002 0.003/0.004 0.010/0.028
2.5

0.000/0.001 0.000/0.001 0.007/0.066

0.000/0.001 0.001/0.002 0.002/0.003
3.0

0.000/0.000 0.000/0.000 0.000/0.001

0.000/0.000 0.000/0.000 0.001/0.001
3.5

0.000/0.000 0.000/0.000 0.000/0.000
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Table 4: Average confusion and omission errors, along with their standard devia-

tions (after slash), after the defuzzification at threshold 0.2. The rows correspond

to different values of the y coordinate of the strip cluster, from y = 0.5 to y = 3.5

– the cases presented in Fig. 2. The columns refer to different ratios of the cluster

cardinalities.
y 100/200 150/150 200/100

value th=0.2 th=0.2 th=0.2

0.000/0.000 0.000/0.000 0.000/0.000
0.5

0.047/0.078 0.110/0.135 0.225/0.175

0.000/0.000 0.000/0.000 0.000/0.000
1.0

0.058/0.035 0.081/0.039 0.154/0.082

0.000/0.000 0.000/0.000 0.000/0.000
1.5

0.034/0.022 0.019/0.012 0.05/0.077

0.000/0.000 0.000/0.000 0.000/0.000
2.0

0.005/0.007 0.003/0.004 0.006/0.006

0.000/0.000 0.000/0.000 0.000/0.000
2.5

0.000/0.000 0.000/0.000 0.001/0.002

0.000/0.000 0.000/0.000 0.000/0.000
3.0

0.000/0.000 0.000/0.000 0.000/0.001

0.000/0.000 0.000/0.000 0.000/0.000
3.5

0.000/0.000 0.000/0.000 0.000/0.000
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Table 5: Adjusted Rand Index values for FADDIS-m -a at different sizes of Bivari-

ate4 dataset
FADDIS-m clusters FADDIS-a clusters

Size mean std mean std

500 0.69 0.06 0.70 0.04

1000 0.71 0.06 0.70 0.03

2500 0.75 0.01 0.73 0.01

Table 6: A table of dissimilarity index between eleven objects (Table 1 from [5]).

Object 1 2 3 4 5 6 7 8 9 10 11

1 0 6 3 6 11 25 44 72 69 72 100

2 6 0 3 11 6 14 28 56 47 44 72

3 3 3 0 3 3 11 25 47 44 47 69

4 6 11 3 0 6 14 28 44 47 56 72

5 11 6 3 6 0 3 11 28 25 28 44

6 25 14 11 14 3 0 3 14 11 14 25

7 44 28 25 28 11 3 0 6 3 6 11

8 72 56 47 44 28 14 6 0 3 11 6

9 69 47 44 47 25 11 3 3 0 3 3

10 72 44 47 56 28 14 6 11 3 0 6

11 100 72 69 72 44 25 11 6 3 6 0

52



Table 7: FADDIS results for data objects of Table 6 for two data normalizations:

Gaussian kernel transformation (W ) and Lapin transformation (L+
n ).

Objects Clusters at W Clusters at L+
n

I II III IV I II

1 0.2460 0 0.4553 0 0.47 0

2 0.2662 0 0.4322 0 0.45 0

3 0.3490 0 0.5464 0 0.50 0

4 0.2662 0 0.4322 0 0.45 0

5 0.3567 0 0.3473 0.3947 0.36 0

6 0.3120 0 0 0.7606 0 0

7 0.3567 0.3924 0 0.5155 0 0.35

8 0.2662 0.4266 0 0 0 0.45

9 0.3490 0.5447 0 0 0 0.50

10 0.2662 0.4266 0 0 0 0.45

11 0.2460 0.4305 0 0 0 0.48

Contri 0.4875 0.1076 0.1094 0.0233 0.24 0.24

Intens 2.0594 1.4116 1.4176 0.9634 2.46 2.46
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Table 8: Country Dissimilarity (CD) data from [7].

Country C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

C1-Belgium 0 5.58 7.00 7.08 4.83 2.17 6.42 3.42 2.50 6.08 5.25 4.75

C2-Brazil 5.58 0.00 6.50 7.00 5.08 5.75 5.00 5.50 4.92 6.67 6.83 3.0

C3-China 7.00 6.50 0.00 3.83 8.17 6.67 5.58 6.42 6.25 4.25 4.5 6.08

C4-Cuba 7.08 7.00 3.83 0.00 5.83 6.92 6.00 6.42 7.33 2.67 3.75 6.67

C5-Egypt 4.83 5.08 8.17 5.83 0.00 4.92 4.67 5.00 4.50 6.00 5.75 5.00

C6-France 2.17 5.75 6.67 6.92 4.92 0.00 6.42 3.92 2.25 6.17 5.42 5.58

C7-India 6.42 5.00 5.58 6.00 4.67 6.42 0.00 6.17 6.33 6.17 6.08 4.83

C8-Israel 3.42 5.50 6.42 6.42 5.00 3.92 6.17 0.00 2.75 6.92 5.83 6.17

C9-USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75 0.00 6.17 6.67 5.67

C10-USSR 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17 0.00 3.67 6.50

C11-Yugoslavia 5.25 6.83 4.5 3.75 5.75 5.42 6.08 5.83 6.67 3.67 0.00 6.92

C12-Zaire 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92 0.00

Table 9: Country Dissimilarity (CD) data: results from application of the algo-

rithms RFC[7], NERFCM[12] and FastMap[5].

RFC NERFCM Fast Map

C1 {China, Cuba, USSR, Y ugoslavia} {China, Cuba, USSR, Y ugoslavia} {China, Cuba, USSR, Y ugoslavia}
C2 {Belgium, F rance, Israel, USA} {Belgium, F rance, Israel, USA} {Belgium, Egypt, F rance, Israel, USA}
C3 {Brazil, Egypt, India, Zaire} {Brazil, Egypt, India, Zaire} {Brazil, India, Zaire}
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Table 10: Country Dissimilarity (CD) data: results from application of the algo-

rithms FADDIS-m and FADDIS-a without Lapin transformation.

FADDIS-m/-a no Lapin

cluster contrib

C1 {China,Cuba, USSR, Y ugoslavia} 0.733

C2 {Belgium,France, Israel, USA} 0.069

C3 {Brazil, India, Zaire} 0.025

C4 {Egypt} 0.032

Table 11: Country Dissimilarity (CD) data: no good clusters with FADDIS-a ap-

plied after Lapin transformation.

FADDIS-a after Lapin

cluster contrib

C1 {China,Cuba, USSR} 0.090

C2 {Belgium,France, USA} 0.053

C3 {Egypt, India} 0.062

C4 {Brazil, Zaire} 0.055

C5 {Israel, Y ugoslavia} 0.025

Table 12: Country Dissimilarity (CD) data Gauss-Lapin transformed: FADDIS-m

results
FADDIS-m after Gauss-Lapin

cluster contrib

C1 {Brazil, Cuba, India, USSR, Y ugoslavia, Zaire} 0.546

C2 {Belgium,China,Egypt, France, Israel, USA} 0.063
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Table 13: FADDIS-m and FADDIS-a confusion matrix for the Iris data set, pre-

processed with standard normalization; no Lapin transformation applied.

Predicted Clusters

1 2 3

Original 1 50 0 0

classes 2 0 46 4

3 0 6 44

Contrib 0.9071 0.0392 0.0128

Table 14: FADDIS-m confusion matrix for the Iris data set, pre-processed with

standard normalization followed by Lapin transformation.

FADDIS-m FADDIS-a

1 2 3 1 2 3 4 5

Original 1 50 0 0 50 0 0 0 0

classes 2 0 23 17 4 19 9 5 12

3 0 1 49 0 11 21 6 8

Contrib 0.0067 0.0055 0.0029 0.0067 0.0066 0.0066 0.0064 0.0064
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Table 15: The Keren and Baggen (1981) data on confusion of the segmented nu-

meral digits in an identification experiment [20].

Response

Stimulus 1 2 3 4 5 6 7 8 9 0

1 877 7 7 22 4 15 60 0 4 4

2 14 782 47 4 36 47 14 29 7 18

3 29 29 681 7 18 0 40 29 152 15

4 149 22 4 732 4 11 30 7 41 0

5 14 26 43 14 669 79 7 7 126 14

6 25 14 7 11 97 633 4 155 11 43

7 269 4 21 21 7 0 667 0 4 7

8 11 28 28 18 18 70 11 577 67 172

9 25 29 111 46 82 11 21 82 550 43

0 18 4 7 11 7 18 25 71 21 818
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Table 16: FADDIS results at Digits data with the diagonal unchanged, u, or zeroed,

z (both defuzzified at 0.3 threshold).

Numeral Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

u z u z u z u z u z

1 + +

2 + + +

3 + + +

4 + + +

5 + + +

6 + + + +

7 + +

8 + +

9 + +

0 + + +

Contribution,% 20.3 23.2 8.3 9.5 8.3 5.2 2.3 1.0 3.5 0.6

Intensity 2.38 1.38 1.90 1.04 1.89 0.90 1.38 0.60 1.53 0.52
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Figure 1: Two intuitively obvious clusters: stars in the middle and dots in the ring.
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Figure 2: Two versions of clusters of different shapes: that on (a) corresponds to distance

3.5 between them over y-axis, and on (c), distance 0.5 over y-axis. Figures (b) and (d)

present the clusters after z-scoring of the data.

Figure 3: Digits: Styled digits formed by segments of the rectangle.

60



−2000 0 2000 4000 6000 8000
−4000

−2000

0

2000

4000

6000

8000

Figure 4: Bivariate4: the data of four bivariate clusters generated from Gaussian distri-

butions according to [5].
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