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1 Introduction
This article is devoted to study of possible geometric structures of attractors
of typical dynamical systems.

In the most simple cases, an attractor of a dynamical system is a union
of finite set of smooth manifolds. There are widely known examples of sys-
tems whose attractors are locally homeomorphic to a Cartesian product of a
Cantor set by a manifold (say, Smale–Williams solenoid map) or a “Cantor
book” (Lorenz attractor).

Recently, there emerged a few examples of locally typical dynamical sys-
tems having more complicated attractors. In particular, I [15] introduced
the notion of a bony attractor, and Díaz with various co-authors [3, 4, 5]
introduced a similar notion of a porcupine horseshoe.

In [15], bony attractors were found in a rather artificial space of step skew
products over a Bernoulli shift. Later in PhD thesis [16] these results were
extended to the set of diffeomorphisms of the three-dimensional torus. In
this article, we extend the results to the set of diffeomorphisms of T2 × Sd
for any sphere Sd. We also simplify the proofs and fix some minor problems
found in the proofs.

In the next Section, we shall introduce the required notions and notation,
and formulate the main theorem. After that we shall prove the assertions of
main theorem one by one.

2 Required notions, notation and main theo-
rem

2.1 Maximal attractor and the likely limit set

First, recall two formalizations of the notion of attractor, the likely limit set
and the maximal attractor.

Definition 1. Let F : X → X be a continuous dynamical system. The
ω-limit set ω(x) of a point x ∈ X is the set of limit points of the positive
semi-orbit F n(x).

Definition 2 (Milnor, [17]). The likely limit set of a dynamical system F :
X → X on a topological space equipped with a measure is the minimal
closed set AM(F ) such that F n(x) → AM(F ) as n → ∞ for almost every
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point x ∈ X. Equivalently, AM(F ) is the minimal closed set such that
ω(x) ⊂ AM(F ) for almost every point x ∈ X.

Definition 3. Given a dynamical system F : X → X, F (X) b X, the
maximal attractor of F is the intersection

Amax(F ) =
⋂
n≥0

F n(X).

It is easy to show that AM(F ) ⊂ Amax(F ). Indeed, Amax(F ) includes the
ω-limit sets of all points x ∈ X.

2.2 Main Theorem

Now we are ready to formulate the main theorem.

Theorem 4 (Main Theorem). There exists a non-empty open subset U of the
set of C2 diffeomorphisms on X = T2×Sd such that for every diffeomorphism
G ∈ U the following holds.

1. There exists a G-invariant topological fibration Fc of X such that each
fiber is diffeomorphic to Sd.

2. For an uncountable set of fibers Fc(x) of Fc, the likely limit set AM

intersects Fc(x) on a set with non-empty interior. For such fibers, we
shall say that the closure of the interior of AM ∩ Fc(x) is a bone.

3. The union of fibers that contain bones is dense in X.

4. For an uncountable set of fibers Fc(x) of Fc, the likely limit set AM

intersects Fc(x) on a single point. We shall say that the union of these
points is the graph part of the attractor.

5. The graph part of attractor is dense in AM.

6. µAM = 0; moreover, the Hausdorff dimension of AM is less than d+2.

7. There exists a disk D ⊂ Sd such that G(T2 × D) b T2 × D and the
maximal attractor Amax =

⋂
i≥0 Gi(T2 × D) of the restriction of G to

T2 ×D coincides with AM.
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2.3 (Partially) hyperbolic maps

Next, we shall need some notions from partial hyperbolic theory. For a more
detailed introduction, see [18].

Definition 5. A smooth dynamical system F : X → X on a manifold is
called partially hyperbolic in a broad sense if there exist µ < λ, c > 0 and
two invariant distributions Es

x ⊂ TxX and Eu
x ⊂ TxX, dFx(Es,u

x ) = Es,u
F (x),

such that TxX = Es
x ⊕ Eu

x and

‖dF n
x |Esx‖ ≤ cµn, ‖dF−n|Eux‖ ≤ cλ−n.

Definition 6. A smooth dynamical system F : X → X is called partially
hyperbolic in a strict sense if there exists C > 0,

0 < λ1 ≤ µ1 < λ2 ≤ µ2 < λ3 ≤ µ3, µ1 < 1, λ3 > 1

and an invariant decomposition

TxX = Es
x ⊕ Ec

x ⊕ Eu
x , dF (Es,c,u

x ) = Es,c,u
F (x)

such that for n > 0 we have

C−1λn1‖v‖ ≤ ‖dF nv‖ ≤ Cµn1‖v‖, v ∈ Es(x),

C−1λn2‖v‖ ≤ ‖dF nv‖ ≤ Cµn2‖v‖, v ∈ Ec(x),

C−1λn3‖v‖ ≤ ‖dF nv‖ ≤ Cµn3‖v‖, v ∈ Eu(x).

The distributions Es and Eu are always integrable. The corresponding
foliations are called stable and unstable. If Ec is integrable as well, then the
corresponding foliation is called central.

2.4 Ilyashenko–Gorodetski–Negut strategy

Recall that a skew product over a map A : B → B with fiber M is a map
F : X → X, X = B ×M , of the form,

F (b, x) = (A(b), fb(x)),

i.e., a map preserving the vertical fibration { b } ×M .
Consider a skew product F : X → X over a linear hyperbolic diffeomor-

phism A : T2 → T2. Suppose that F is partially hyperbolic in a strict sense
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with { b }×M , b ∈ B, as central fibers. Moreover, suppose that the modified
dominated splitting condition holds,

max

(
λ−1 +

∥∥∥∥∂fb(x)∂b

∥∥∥∥
C0(X)

,

∥∥∥∥∂fb(x)∂x

∥∥∥∥
C0(X)

)
< λ,

where λ is the greater eigenvalue of A.
The following theorem is a particular case of Ilyashenko–Negut Theorem

[12] which is in turn based on the earlier research by A. Gorodetski and
Ilyashenko [6, 8, 7].

Theorem 7 (Yu. Ilyashenko, A. Negut, [12]). Let F be a C2 skew product
over A : T2 → T2, and F satisfies the assumptions stated above. Then for ρ
small enough and a C2 diffeomorphism G : X → X which is ρ-close to F in
C1(X) the following holds.

• There exists a continuous map p : X → T2 such that p ◦ G = A ◦ p.

• The map H : (b, x) 7→ (p(b, x), x) is a homeomorphism that conjugates
G to a continuous skew product G over A.

• The fiber maps gb of G are smooth and are C1 O(ρ)-close to those of
F .

• The maps H, H−1 and G are Hölder continuous in b with exponent
1−O(ρ).

This theorem allows us to construct open sets of diffeomorphisms having
an interesting property. The strategy involves the following steps.

• Construct a skew product F over a linear Anosov diffeomorphism that
has the properties we are interested in.

• Consider a small perturbation G of F in the space of diffeomorphisms.

• Use Gorodetski–Ilyashenko–Negut Theorem to obtain a skew product
G conjugated to G.

• Prove that G has the properties we are interested in.

• Use the Hölder continuity of p to show that G has these properties as
well.
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This strategy introduced by Yu. Ilyashenko and A. Gorodetski in [7, 8]
and further developed in [6]. The strategy was successfully used by various
authors [9, 11, 10, 13] to obtain open sets of diffeomorphisms having non-
trivial properties.

2.5 Notation

We will frequently study the iterations of fiber maps. We will use the follow-
ing notation throughout this paper.

fb,n(x) = πM(F n(b, x)) = fhn−1(b) ◦ · · · ◦ fb(x);
Mb,n = fh−n(b),n(M);

Amax =
⋂
n≥0

F n(X);

Mb = {x | (b, x) ∈ Amax } =
⋂
n≥0

Mb,n.

3 Construction of U
Let A be the linear Anosov diffeomorphism given by the matrix

(
m m+1
m−1 m

)
,

where m is a large natural number that we will choose later. Consider the
following Markov partition for this shift [1] (a description with picture is
available in [14, 16]).

First, let us split the torus into two parallelograms Q1 and Q2 with sides
parallel to the eigenvectors of A as shown in Figure 1. This is a pre-markov
partition. Then take the image of this partition under A, and draw both the
original partition and its preimage under A in the same picture. One can
show that the intersections of the parallelograms of the initial pre-Markov
partition with their images under A form a Markov partition for A.

Let D be the unit disk in Rd. We will fix the fiber maps over some
parallelograms of the Markov partition, then extend our map to other par-
allelograms.

Fix a regular simplex p0 . . . pd ⊂ D with side 0.5 whose center of mass is
located at the origin and a small positive number ε. Let fi, 0 ≤ i ≤ d be the
linear contractions to pi with coefficient 1− ε. Let fd+1 be a map such that

• the origin is a repellor for fd+1, fd+1(0) = 0, ‖Df−1d+1(0)‖ < 1;
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Figure 1: A pre-markov partition for m = 3

• fd+1 contracts outside a small neighborhood of the origin;

• max ‖Dfd+1‖ < 1 + ε.

We also put fd+2 = fd+1.
For m large enough, we can choose 2d + 6 parallelograms of Markov

partition Rij, i = 0, . . . , d+ 2, j = 1, 2, such that

• Rij is of type (j, j);

• the distance between Ri,j and Ri′,j′ is at least 1
10d

provided that i 6= i′.

Now we put fb(x) = fi(x) for b ∈ Rij, and extend it to a skew product
on T2 ×D such that

• all fiber maps fb are convex combinations of fi;

• F (b, x) is Lipschitz continuous in b with constant 20dε;

• fb contracts in average,∫
T2

logmax
x
‖Dfb(x)‖ db < 0.
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Finally, in order to extend F to a skew product F̃ on T2 × Sd we attach
another disk D′ to D, and extend each fiber map fb by a uniformly expanding
map on D′.

We will show that a small neighborhood of F̃ in the space of C2 diffeo-
morphisms of T2 × Sd satisfies all the assertions of the Main Theorem.

Theorem 8. There exists ρ such that the ρ-neighborhood of F̃ constructed
above in C1 topology satisfies all assertions of the Main Theorem.

Remark 9. The first assertion immediately follows from Ilyashenko–Negut
Theorem stated above.

Below we shall prove that for every G̃ ∈ U, the maximal attractors of
G = G̃|T2×D satisfies all assertions of the Main Theorem, then prove that this
maximal attractor coincides with the likely limit set of G (and, hence, of G̃).

We prove most assertions of the Main Theorem for a wider class of dif-
feomorphisms. In this case, we formulate exact assumptions on G (or G) not
using settings from Theorem 8.

4 Existence of bones
The existence and density of the leaves containing bones will be based on the
following lemma.

Lemma 10. Let G : X → X, X = B×M , be a continuous skew product over
a hyperbolic diffeomorphism A : B → B. Let b ∈ B be one of the periodic
points of A, Aq(b) = b. Suppose that the iterated fiber map gb,q has a domain
U ⊂ M such that U b gb,q(U). Then Mb ⊃ U , and Mb′ has non-empty
interior for every point b′ ∈ B of the unstable manifold of b.

Proof. The first assertion is trivial, gb,qn(M) ⊃ gb,qn(U) = gb,qn−q(gb,q(U)) ⊃
gb,q(n−1)(U) ⊃ · · · ⊃ U , thus Mb ⊃ U .

Let us prove the second assertion. Since U b gb,q(U), there exists a
neighborhood V ⊂ B, b ∈ V , such that U b gb̃,q(U) for every b̃ ∈ V . There-
fore, for a point b′ such that h−qn(b′) → b as n → ∞, there exists n0 such
that A−qn(b′) ∈ V for n ≥ n0. Due to the arguments from the first para-
graph of the proof, MA−qn0 (b′) ⊃ U , hence Mb′ = gA−qn0 (b′),qn0

(MA−qn0 (b′)) ⊃
gA−qn0 (b′),qn0

(U).

8



Corollary 11. For each map G ∈ U, the maximal attractor Amax includes
an uncountable set of bones, and the set of leaves that include bones is dense
in the phase space.

Proof. Consider the rectified map G. Since both rectangles Rd+1,1 and Rd+2,1

are of type (1, 1), there is an uncountable set of periodic orbits that never
leave the union Rd+1,1 ∪ Rd+2,1. Clearly, each periodic point of this type
satisfies the assumptions of the previous lemma.

Finally, there exists an uncountable set B of periodic points of A such
that for any point b′ in the unstable fiber of a point b ∈ B the maximal
attractor intersects { b′ } ×D on a set with non-empty interior.

5 Hausdorff dimension of the attractor
Lemma 12. Let A : T2 → T2 be a linear Anosov diffeomorphism with
eigenvalues λ±1, λ > 1. Consider a continuous skew product G : X → X,
X = T2 ×M over A, where M is a d-dimensional manifold. Suppose each
fiber map gb is Lipschitz continuous,

dM(gb(m), gb(m
′)) ≤ Lb dM(m,m′),

and the fiber maps depend Hölder continuously on the point in the base,

dM(gb(m), gb′(m)) ≤ CH dT2(b, b′)α.

Finally, suppose that the fiber maps contract in average,

Lf := exp

(∫
logLb dµ

)
< 1.

Then dimH Amax < dimX. Moreover, dimH Amax < dimX − ε, where
ε = ε(α, b 7→ Lb) is continuous in α.

Plan of the proof. Let n be a large natural number, δ be a small positive
number. Consider a covering {Bl } of the base by � δ−2 parallelogram
of size � δ with sides parallel to the eigenvectors of A. Since the fiber
maps contract in average, Gn(X) intersects most vertical fibers on sets of
exponentially small diameter,

µ
{
b ∈ T2

∣∣ diamMb,n > Ln
}
< e−βn, where β > 0, Lf < L < 1.
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Therefore, most parallelogramsBl contain a point b ∈ Bl such that diamMb,n <
Ln. On the other hand, if δ is small enough, the restriction of Gn to
A−n(Bl) ×M sends each horizontal plaque A−n(Bl) × {m } to an “almost”
horizontal plaque, thus the projection of Gn(X)∩ (Bl×M) to M is included
by a small neighborhood of any Mb,n, b ∈ Bl.

Finally, for most parallelograms the set MBl,n has an exponentially small
diameter, and we can cover Bl ×MBl,n by � δ−d balls of diameter δ. For
the rest of parallelograms, we just cover Bl ×M by � δ−d balls of diameter
δ.

Proof. Step 1. The image of a small horizontal plaque and the choice of
δ. Let B be a small subset of T2, diamB = δ, let n be a natural number.
Consider a horizontal plaque A−n(B)×{m } and its image under Gn. Let us
estimate the size of this image in the vertical direction, i.e., the diameter of
the projection of Gn(A−n(B)×{m }) to M . Take two points b, b′ ∈ A−n(B).
Note that d(Ai(b), Ai(b′)) ≤ δλn for all i = 0, . . . , n− 1. Therefore,

dM(gb,i+1(m), gb′,i+1(m)) ≤ L̂f dM(gb,i(m), gb′,i(m)) + CH(δλ
n)α,

where L̂f = maxb∈B Lb. Substituting each inequality to the next one, we
have,

dM(gb,n(m), gb′,n(m)) ≤ CH(δλ
n)α(1 + L̂f + · · ·+ L̂n−1f ) <

CH

L̂f − 1
L̂nf δ

αλnα.

Next, fix a number ν < 1 and put δ :=
(

ν

L̂fλα

)n
α . Then due to the previous

inequality,

dM(gb,n(m), gb′,n(m)) <
CH

L̂f − 1
νn.

Step 2. Estimate on the diameter of MBl,n. Due to the previous inequal-
ity,

diam(MBl,n) ≤ min
b∈Bl

diam(Mb,n) +
2CH

L̂f − 1
νn.

Fix L ∈ (Lf , 1). Due to Special Ergodic Theorem (a version of Large Devia-
tion Theorem, see [19]), there exists β > 0 and C > 0 such that

µ

{
b ∈ T2

∣∣∣∣∣ 1n
n∑
i=1

logLA−i(b) > logL

}
< Ce−βn
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for n large enough. Therefore, for all but at most Ce−βnδ−2 parallelograms
Bl we have

min
b∈Bl

diam(Mb,n) ≤ diamM × Ln,

thus
diam(MBl,n) ≤ diamM × Ln + 2CH

L̂f − 1
νn.

Step 3. Covering of Gn(X). Let us construct a covering of Gn(X) by
balls of diameter δ. If Bl satisfies the previous inequality, then we cover
Bl×MBl,n by - δ−dmax(L, ν)nd balls of size δ. Otherwise, we cover Bl×M
by � δ−d balls of size δ. Finally, the number of balls of diameter δ used in
this covering is at most

C2(δ
−2 × δ−dmax(L, ν)nd + e−βnδ−2 × δ−d) - C2δ

−d−2max(Ld, νd, e−β)n,

therefore the Hausdorff dimension of the maximal attractor is at most

dimH Amax ≤ lim inf
n→∞

log(C2δ
−d−2max(Ld, νd, e−β)n)

− log δ

= d+ 2 +
αmax(d logL, d log ν,−β)
log L̂f + α log λ− log ν

< d+ 2 = dimX.

Clearly, this inequality provides a lower bound for dimX − dimH Amax that
depends only on α and b 7→ Lb.

Corollary 13. For a diffeomorphism G ∈ U, the Hausdorff dimension of the
maximal attractor is less than d+ 2.

Proof. Let us apply the previous lemma for the original example F . Let ε0
be the estimate on d+ 2− dimH Amax provided by the lemma.

Recall that the fiber maps of the rectified map G are C1 close to those of
the original map F . Therefore, for a small enough perturbation we have the
same upper estimate on Lb. Hence, if the distance between F and G is small
enough,

dimH Amax(G) < α(d+ 2),

thus
dimH Amax(G) < α−1 dimH Amax(G) < d+ 2.
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6 Density of the graph
Lemma 14. For m large enough, for any G ∈ U the graph part of the
attractor is dense in Amax.

Proof. It is easy to show that the strong stable direction of F has slope at
most

k0 =

∥∥∥∥∂fb(x)∂b

∥∥∥∥(λ− ∥∥∥∥∂fb(x)∂x

∥∥∥∥)−1 < 20dε

λ− 1− ε
.

Choose a strong stable cone field such that each line inside a stable cone
has slope at most 2k0. If the perturbation is small enough, this cone field is
invariant under G−1, hence the strong stable leaves of G have slope at most
2k0.

Consider the regular simplex J with vertices p′0 = 0.5pi. For m large
enough, 2k0 < 0.01ε, hence for every point x ∈ J there exists i ∈ { 0, . . . , d }
such that fi(J) includes the 4k0-neighborhood of x. Next, if the perturbation
is small enough, then the same holds for all maps fb, b ∈ Rij.

Now, let us prove that the graph part of Amax(G) is dense in Amax(G).
Consider a point (b0,m0) ∈ Amax(G) and its small neighborhood V . Let γu be
a small arc of the unstable leaf of A passing through p(b0,m0), m0 ∈ VM ⊂
D be a small neighborhood of m0. Clearly, if both γu and VM are small
enough, V includes H−1(γu × VM). Therefore, V contains the saturation V ′
of this set by small arcs of the strongly stable leaves of G. Without loss of
generality, we may assume that p(V ′) is a parallelogram with sides parallel
to the eigenvectors of A.

Let N be a number such that the side of A−N(p(V ′)) going in the stable
direction has length at least 2. Consider two cases.

Case 1. The preimages of { b0 } × VM under Gn, n ≥ N , never in-
tersect T2 × J . In this case each inverse fiber map g−1A−n−1(b0)

expands on
g−1A−n(b0),n(VM). Therefore, at most one point of { b0 } × VM belongs to the
maximal attractor of G. On the other hand, (b0,m0) ∈ Amax(G) and the
intersection ({ b0 } × D) ∩ Amax(G) is a connected set. Therefore, this in-
tersection is a single point, i.e., (b0,m0) belongs to the graph part of the
attractor.

Case 2. There exists n ≥ N such that G−n({ b0 } × VM) ∩ T2 × J is not
empty. Denote by (b0,m1) one of the points of ({ b0 } × VM) ∩ Gn(T2 × J).
Consider the strongly stable leaf of G passing through H−1(b0,m1). Let us
intersect this leaf with V ′, and take the connected component γss passing
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through H−1(b0,m1). Let us prove that γss contains a point of the graph
part of Amax.

Consider the preimage of γss under Gn. Note that p ◦ G−n ◦ γss is a
segment on the strongly stable leaf of A passing through b0 of length at least
2. Cutting γss if needed, we can and will assume that p◦G−n ◦γss has length
exactly 2, hence the projection of G−n ◦ γss to the fiber D has diameter at
most 4k0.

Since g−1A−n(b0),n(m1) ∈ J , there exists i0 ∈ { 0, . . . , d } such that Gb(J)

includes the 4k0 neighborhood of g−1A−n(b0),n(m1) for every b ∈ Ri0j. In partic-
ular, Gb(J) includes the projection of G−n ◦ γss to the fiber. Recall that the
length of p ◦ G−n ◦ γss is equal to 2, hence this curve intersects both “unsta-
ble direction” sides of one of the pre-markov parallelograms. Therefore, this
curve intersects both “unstable direction” sides of one of the rectangles Ri0j.
Finally, we obtain an arc γ(n+1)

ss ⊂ γss such that G−n−1(γ(n+1)
ss ) ⊂ T2 × J .

Due to the construction of the Markov partition and the choice of Rij, the
image of G−n−1(γ(n+1)

ss ) under p intersects both “unstable direction” sides of
the same pre-Markov rectangle. Hence, we can apply the same construction
to γ(n+1)

ss and n+ 1, etc.
Finally, we obtain a sequence of arcs

γss ⊃ γ(n+1)
ss ⊃ γ(n+2)

ss ⊃ . . .

such that (b,m) ∈ γ(n+k)ss implies that G−n−k(b,m) ∈ T2×J and gA−n−k(p(b,m))

is a contracting map with coefficient at most 1− ε. Let (b,m) be the unique
point that belongs to all these arcs. Then (b,m) ∈ V ∩Amax(G) and all fiber
maps gA−n(p(b,m)), n > N contract. Therefore, (b,m) belongs to the graph
part of Amax(G).

7 Coincidence of attractors
In previous sections, we proved that the maximal attractor Amax(G) has all
the properties stated in the Main Theorem for the likely limit set AM. In
this section, we shall prove that Amax(G) = AM(G) thus finishing the proof
of the Main Theorem.

In order to prove the coincidence of attractors, we shall show that AM(G)
cannot be disjoint with a fiber of the invariant fibration F c. We shall need
the following lemma. It must be known for ages, but I failed to find a
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reference. A very similar result was proved (though not formulated as an
isolated statement) in [2, p. 215]. I would like to thank V. Kleptsyn
who pointed me to this book. The following proof essentially repeats the
last paragraph of the proof of Proposition 11.1 in this book, providing much
more details.

Lemma 15. Consider a dynamical system G : X → X partially hyperbolic
in the broad sense, see 5. Suppose that λ > 1 and dimEu

x = 1. Consider a
closed set V ⊂ X such that G(V ) ⊂ V . Then

• either µV = 0,

• or V includes an arc of a stable leaf of G.

Proof. Suppose µV > 0. Take a Lebesgue point p0 of V . Near p0, take
a smooth 1-dimensional foliation such that the tangent lines to the leaves
belong to the stable cone field. Due to Fubini Theorem, the intersection of
V with one of the leaves γ has positive 1-dimensional Lebesgue measure.

Without loss of generality, we can assume that 0 is a Lebesgue point of
γ−1(V ). Take a small positive number δ such that

µ(γ−1(V ) ∩ (−δ, δ)) > 2δ(1− ε).

Let n(δ) be the least natural number such that the image γδ of the curve
γ|(−δ,δ) under Gn(δ) is longer than one. Let γ′δ : (0, l(δ))→ X be the curve γδ
parametrized by arc length. The Denjoy Distortion Lemma implies that the
distortion of the map Gn(δ) on γ((−δ, δ)) is bounded, hence

µ(γ′−1δ (V )) > (1− Cε)l(δ).

Consider the family of curves γ′δ, δ → 0. Due to Arzelà–Ascoli Theorem,
this family has a limit point in the space of C1-smooth curves. Denote by γ0
the limit curve parametrized by arc length. Clearly, γ0 is an arc of a leaf of
the unstable foliation of G. Since V is closed, the inequality above implies
that µ(γ−10 (V )) = 1, hence V includes γ0. This completes the proof of the
lemma.

Lemma 16. Let G : X → X be a smooth diffeomorphism partially hyperbolic
in the strict sense. Suppose that there exist a map p(X) : X → B and a
transitive Anosov diffeomorphism A : B → B such that
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• p ◦ G = A ◦ p and preimages p−1(b), b ∈ B are compact sets;

• the preimages p−1(b), b ∈ B are leaves of the central foliation (in par-
ticular, the central distribution is integrable);

• the strongly unstable foliation has dimension one, and projects to the
unstable foliation of A.

Then the likely limit set AM(G) intersects each fiber p−1(b), b ∈ B, by at least
one point.

Proof. Suppose that there exists b ∈ B such that AM(G) is disjoint with
p−1(b). Then AM(G) is disjoint with a small neighborhood p−1(U), b ∈ U ⊂ B
of this fiber.

Choose an open set U ′ b U , and consider the set V of points x ∈ X such
that the positive semi-orbit of x never visits p−1(U ′),

V =
{
x ∈ X

∣∣ ∀n ≥ 0Gn(x) /∈ p−1(U ′)
}
=
⋂
n≥0

G−n(X \ p−1(U ′)).

Clearly, V is a closed set. The union Ṽ of all preimages G−n(V ) is the set of
points x that visit p−1(U ′) at most finitely many times. Since U ′ b U , this
union includes the set of points x ∈ X whose ω-limit sets are disjoint with
p−1(U).

Since AM(G) ∩ p−1(U) = ∅, the set Ṽ has full Lebesgue measure, hence
µV > 0. Due to the previous lemma, V includes an arc of a leaf of the
strongly unstable foliation, thus p(V ) includes an arc γu of a leaf of the
unstable foliation of A. By definition of V , none of the curves An(γu) intersect
U ′ which is impossible. This contradiction proves the lemma.

Finally, let us prove that in the settings of Theorem 8, AM(G) = Amax(G).
Due to Hirsch–Pugh–Shub and Ilyashenko–Gorodetski Theorems, G satisfies
all assumptions of the previous lemma, hence AM(G) intersects each leaf
p−1(b) by at least one point. Therefore, AM(G) includes the graph part of
Amax(G). Since the graph part of Amax(G) is dense in Amax(G), AM(G) =
Amax(G).

Finally, we proved all assertions of Main Theorem.
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