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We study the problem of classification of complete non-Riemannian conformal folia-

tions of codimension q > 2 with respect to transverse equivalence. It is proved that two

such foliations are transversally equivalent if and only if their global holonomy groups

are conjugate in the group of conformal transformations of the q-dimensional sphere

Conf (Sq). Moreover, any countable essential subgroup of the group Conf (Sq) is re-

alized as the global holonomy group of some non-Riemannian conformal foliation of

codimension q. Bibliography: 16 titles.

1 Introduction

A foliation (M,F ) is said to be conformal if it admits the transversal conformal structure (cf.

an exact definition in Section 6). We recall that a subset of a foliated manifold is saturated if

it can be represented as the union of leaves. By an attractor of a foliation (M,F ) we mean a

nonempty closed saturated subset M of M possessing an open saturated neighborhood U such

that the closure L in M of any leaf L in U \M contains M . The neighborhood U is called the

basin of the attractor M . If, in addition, U = M , then the attractor M is said to be global.

As is proved in [1], any conformal foliation (M,F ) of codimension q > 2 either is Riemannian

or has an attractor. In [1, Theorem 4], it is proved that any non-Riemannian conformal foliation

of codimension q > 2 on a compact manifold is a transversally homogeneous foliation, which

strengthens the results of [2, 3].

In this paper, we solve the classification problem for complete non-Riemannian conformal

foliations of codimension q > 2 with respect to transverse equivalence.

We note that the group of conformal transformations of a q-dimensional Euclidean space E
q

coincides with the similarity group Sim(Eq) and is (canonically) isomorphic to the stationary

subgroup of the Lie group Conf (Sq) of all conformal transformations of the standard sphere S
q.

The group Conf (Sq) can be identified with the group of Möbius transformations Mob(q) of the

sphere S
q [4]. We recall that (Sim(Em),Em)-foliations, m � 1, are referred to as transversally

similar foliations in [5]

Translated from Problemy Matematicheskogo Analiza 79, March 2015, pp. 105-118.

1072-3374/15/2081-0115 c© 2015 Springer Science+Business Media New York

115

DOI 10.1007/s10958-015-2429-y



It is known that any conformal foliation can be regarded as a Cartan foliation in the sense

of Blumenthal [6] or (which is equivalent in this case) in the sense of [5]. A conformal foliation

(M,F ) is said to be complete if it is a complete Cartan foliation in the sense of [5]. As is shown

in [7, Theorem 3], the completeness of a conformal foliation is equivalent to the existence of

Ehresmann connections in the sense of Blumenthal–Hebda [8] for this foliation.

As was proved in [7, Theorem 5], any complete non-Riemannian conformal foliation (M,F )

of codimension q > 2 is a (Conf (Sq),Sq)-foliation and has a global attractor. Furthermore, if

f : ˜M → M is the universal covering map for M , then the induced foliation (˜M, ˜F ) is formed

by the fibres of a locally trivial fibration r : ˜M → N, where N = E
q if the foliation (M,F ) is

transversally similar; otherwise, N = S
q. The group of desk transformations Γ = Γ(f) induces

the group Ψ of conformal transformations of the conformal manifold N which is called the global

holonomy group of the foliation (M,F ). Thus, the foliation (M,F ) is covered by the locally

trivial fibration r : ˜M → N .

Let F be the set of foliations covered by fibrations (in the sense of Definition 2.2 below).

We denote by FC the subset of F consisting of complete conformal non-Riemannian foliations of

codimension q > 2 (cf. [7]).

For a foliation (M,F ) covered by a fibration we introduce a pair (N,Ψ), where N is the

universal covering map for the base of this foliation and Ψ is an at most countable group of

diffeomorphisms of N , called the global holonomy group of this foliation (cf. Proposition 1.1).

We use the notation (N,Ψ) = β(M,F ).

First of all, we prove the following assertion.

Theorem 1.1. Let N be an arbitrary simply connected manifold. Any countable subgroup

of the group of diffeomorphisms of the manifold N is realized as the global holonomy group of

some foliation covered by a fibration.

Definition 1.1. Foliations (M,F ) and (M ′, F ′) are transversally equivalent if there exists

a foliation (M,F) and surjective submersions p : M → M and p′ : M → M ′, which are Serre

fibrations, with connected fibers such that

F = {p−1(L) | L ∈ F} = {p′−1(L′) | L′ ∈ F ′}. (1.1)

Unlike the notion of transverse equivalence due to Molino [9, p. 63], Definition 1.1 contains

the additional requirement that the submersions p : M → M and p′ : M → M ′ are Serre

fibrations, i.e., possess the covering homotopy property (we recall the definition in Section 2).

By this requirement, the transverse equivalence of foliations covered by fibrations is realized by

a foliation covered by a fibration.

We say that two foliations (M,F ) and (M ′, F ′) are equivalent if they are transversally equiv-

alent in the sense of Definition 1.1. As will be shown below (Proposition 4.1), it is an equivalence

relation. We denote by [(M,F )] the equivalence class containing the foliation (M,F ).

We begin with the transverse equivalence of foliations covered by fibrations. The set of classes

of transversally equivalent foliations in F is denoted by ˜F. Thus, ˜F = {[(M,F )] | (M,F ) ∈ F}.
We consider the category P of pairs (N,Ψ), where N is an arbitrary simply connected

manifold and Ψ is an at most countable group of diffeomorphisms of the manifold N . Morphisms

of two objects (N,Ψ) and (N ′,Ψ′) in P are pairs of maps (d, θ), where d : N → N ′ is a smooth

map and θ : Ψ → Ψ′ is a group homomorphism such that d ◦ ψ = θ(ψ) ◦ d for all ψ ∈ Ψ. We

denote by [(N,Ψ)] the class of isomorphic objects of the category P containing (N,Ψ). Let
˜P = {[(N,Ψ)] | (N,Ψ) ∈ P}.
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Theorem 1.2. The map B : ˜F → ˜P : [(M,F )] �→ [β(M,F )] = [(N,Ψ)], (M,F ) ∈ F, is a

bijection.

We recall that the group Ψ of conformal transformations of a Riemannian manifold (N, g)

with a Riemannian metric g is called inessential if there is a smooth positive function λ on N

such that Ψ is the isometry group of a Riemannian manifold (N,λg). Otherwise, the subgroup

Ψ is called essential.

We denote by PC the subcategory of the category P whose objects are pairs (N,Ψ), where

either N = S
q and Ψ is an essential countable subgroup of the group Conf (Sq) or N = E

q and

Ψ is an essential countable subgroup of the group Sim(Eq). Morphisms in PC are isomorphisms

(d, θ) of the category P, where d : N → N ′ is a conformal diffeomorphism. Moreover, either

N = N ′ = S
q or N = N ′ = E

q.

We set ˜FC := {[(M,F )] | (M,F ) ∈ FC} and ˜PC := {[(N,Ψ)] | (N,Ψ) ∈ PC}. Based on

Theorem 1.2, we prove the following classification theorem.

Theorem 1.3. The map BC = B|FC
: ˜FC → ˜PC : [(M,F )] �→ [β(M,F )] = [(N,Ψ)],

(M,F ) ∈ FC, is a bijection.

Corollary 1.1. 1. Two complete conformal, but not transversally similar foliations (M1, F1)

and (M2, F2) of codimension greater than 2 are transversally equivalent if and only if their global

holonomy groups Ψ1 and Ψ2 coincide (up to conjugation in the group Conf (Sq)).

2. Two complete non-Riemannian transversally similar foliations (M1, F1) and (M2,F2) of

codimension at least 1 are transversally equivalent if and only if their global holonomy groups

Ψ1 and Ψ2 coincide (up to conjugation in the group Sim(Eq)).

Remark 1.1. By Corollary 1.1, the global holonomy group defined up to conjugation in the

group Conf (Sq) is a complete invariant of the class of transversally equivalent non-Riemannian

conformal foliations of codimension greater than 2.

From the proof of Theorem 1.2 and [7, Theorem 7] we obtain the following assertion.

Proposition 1.1. Every class of transversally equivalent foliations in ˜F or ˜FC contains a

two-dimensional suspended foliation

In [5], for complete Cartan foliations (M,F ) and, in particular, conformal ones the structure

Lie algebra g0 = g0(M,F ) was introduced in the case of Riemannian foliations on compact

manifolds, it coincides with the structural algebra introduced in [9]. By [10, Theorem 7], it is

possible to interpret this Lie algebra as follows.

Theorem 1.4. The structure Lie algebra g0 of a complete non-Riemannian conformal foli-

ation (M,F ) of codimension q > 2 is isomorphic to the Lie algebra of the Lie group Ψ, where

Ψ is the closure of the global holonomy group Ψ of this foliation in the Lie group Conf (Sq) if

(M,F ) is not a transversally similar foliation or in the Lie group Sim(Eq) in the opposite case.

In particular, the structure Lie algebra g0 is equal to zero if and only if Ψ is a Klein group.

For any subgroup Ψ of the group Conf (Sq) the limit set is defined and is denoted by Λ(Ψ),

(cf. [11]). From Theorems 1.3 and 1.4 we obtain the following assertion.

Proposition 1.2. The Lie group Ψ, the structure Lie algebra g0, and the limit set Λ(Ψ)

of the global holonomy group Ψ of a complete non-Riemannian conformal foliation (M,F ) of

codimension q > 2 are invariants with respect to transverse equivalence.
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From Theorem 1.3 and [7, Theorem 5] we obtain the following assertion.

Theorem 1.5. Let ξ be an arbitrary class of transversally equivalent non-Riemannian con-

formal foliations of codimension greater than 2, let (M,F ) be any foliation of ξ, and let [(N,Ψ)] =

B(ξ). Then the induced foliation ˜F = f∗F on the space ˜M of the universal covering map

f : ˜M → N is formed by the fibers of a locally trivial fibration r : ˜M → N , where N is either S
q

or E
q; there exists a global attractor M of the foliation (M,F ); moreover, M has structure of

one of the following types:

(i) the attractor M is a nontrivial minimal set if and only if the global holonomy group Ψ of

the foliation (M,F ) is not elementary, and M = f(r−1(Λ(Ψ))), where Λ(Ψ) is the limit set of

the group Ψ,

(ii) the attractor M is a single closed leaf or the union of two closed leaves if and only if Ψ

is an elementary subgroup of the group Conf (Sq) or Sim(Eq) respectively; moreover, M is the

union of two leaves only for those foliations that are not transversally similar.

Thus, by Theorem 1.5, all transversally equivalent conformal foliations in FC have global

attractors with the same transversal structure determined by the structure of the global attractor

Λ(Ψ) of the global holonomy group Ψ.

Examples (cf. Section 7) show that the structure of global attractors of conformal foliations

with the Klein global holonomy group, i.e., with the trivial structure Lie algebra can be rather

complicated, unlike transversally similar foliations which are, in this case, proper and have a

unique closed leaf which that is a global attractor.

2 Foliations Covered by Fibrations

2.1. Preimage of a foliation under a submersion. A continuous map p : X → Y pos-

sesses the covering homotopy property with respect to a topological space K if for any continuous

map G0 : K → X and any homotopy Ht : K → Y , t ∈ [0, 1], such that p ◦G0 = H0 there exists

an extension of G0 to a homotopy Gt : K → X satisfying the equality p ◦Gt = Ht.

We recall that a Serre fibration is a continuous surjective map having the covering homotopy

property with respect to any finite polyhedron (cf., for example, [12]). It is known that for

Serre fibrations it is possible to construct the exact homotopy sequence for a fibration. It is also

known that any locally trivial fibration is a Serre fibration. If a Serre fibration is a submerion,

then it is called a smooth Serre fibration.

Let p : M → N and f : ˜N → N be surjective submersions. We set f∗M := {(y, z) ∈ ˜N×M |
f(y) = p(z)}. Then f∗M is a closed embedded submanifold of the product of manifolds ˜N ×M

which is the preimage of the diagonal Δ of N ×N under the map f × p : ˜N ×M → N ×N . We

introduce the canonical projections p̃ : f∗M → ˜N : (y, z) → y and ˜f : f∗M → M : (y, z) → z,

where (y, z) is any point in f∗M .

We note that f∗M → p∗ ˜N : (y, z) �→ (z, y), (y, z) ∈ f∗M , is a diffeomorphism of manifolds

and the canonical projections p̃ and ˜f are equivalent.

Lemma 2.1. 1. Let p : M → N and f : ˜N → N be surjective submersions. Then the

canonical projections ˜f : f∗M → ˜N and p̃ : f∗M → M are also surjective submersions satisfying
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the commutative diagram

f∗M
˜f−−−−→ M

⏐

⏐

�
p̃

⏐

⏐

�

p

˜N
f−−−−→ N.

(2.1)

If p (f respectively) is a Serre fibration, then p̃ ( ˜f respectively) is also a Serre fibration.

2. If p : M → N is a Serre fibration with connected fibers and f : ˜N → N is a covering map,

then p̃ : f∗M → M is a Serre fibration with connected fibers which are diffeomorphically mapped

to the corresponding fibres of the fibration p : M → N under the covering map ˜f : f∗M → M .

Proof. 1. The definition of f∗M and canonical projections imply the commutativity of the

diagram and the equalities p◦ ˜f = pr1 ◦ (f ×p) and p̃◦f = pr2 ◦ (f ×p), where pri : N ×N → N ,

i = 1, 2, are the projections onto the first and second factors of the product respectively. Since

f × p : ˜N ×M → N ×N and pri are surjective submersions, the above equalities imply that ˜f

and p̃ are also surjective submersions.

We assume that p is a Serre fibration. We show that p̃ : f∗M → ˜N is also a Serre fibration.

Let K be an arbitrary finite complex, and let Ht : K → ˜N , t ∈ [0, 1], be a given homotopy.

Consider a continuous map G0 : K → f∗M such that p̃◦G0 = H0. Then Φt := f ◦Ht : K → N is

a homotopy in N with Φ0 = f ◦H0. Since p◦ ˜f = f ◦ p̃, the superposition ˜G0 := ˜f ◦G0 : K → M

lies over Φ0 with respect to p. Moreover, G0 = (H0, ˜G0), which means G0(x) = (H0(x), ˜G0(x))

for any x ∈ K. Since p : M → N is a Serre fibration, there exists a homotopy ˜Φt : K → M

covering Φt and such that ˜Φ0 = ˜G0. We note that ˜Ht := (Ht,˜Φt) : K → f∗M is a homotopy

with G0 = (H0, ˜G0) covering the homotopy Ht. This means that p̃ : f∗M → ˜N is a Serre

fibration.

Because of the similarity of the canonical projections, a similar assertion holds for f and ˜f .

2. Suppose that p : M → N is a Serre fibration with connected fibers and f : ˜N → N

is a covering map. By definition, f∗M = {(y, z) ∈ ˜N × M | f(y) = p(z)} and p̃ : f∗M →
˜N : (y, z) �→ y. Consequently, for any fixed point y0 ∈ ˜N the fiber p̃−1(y0) is diffeomorphically

mapped to the fiber p−1(f(y0)) under the map ˜f and, consequently, is connected.

Take any point z ∈ M . Then x = p(z) ∈ N . Since f : ˜N → N is a covering map, there

exists a neighborhood U of a point x which is regularly covered by f . Moreover, W = p−1(U)

is a neighborhood of the point z in M which is regularly covered by ˜f : f∗M → M . Thus,
˜f : f∗M → M is a covering map.

Definition 2.1. The above fibration p̃ : f∗M → ˜N is called the preimage of the fibration

p : M → N under the submersion f : ˜N → N .

2.2. Equivalence of two definitions. It is easy to prove the following assertion.

Lemma 2.2. Let p : ̂M → M be a covering map. If (M,F ) is a foliation, then there exists

a foliation (̂M, ̂F ) such that the restriction p|
̂L
: ̂L → L of the projection p onto an arbitrary

leaf ̂L of (̂M, ̂F ) is a covering map on the corresponding leaf of (M,F ).

The foliation (̂M, ̂F ) is said to be induced and is denoted by ̂F = p∗F.
A foliation (M,F ) is simple if it is formed by the fibers of a submersion p : M → N [9].
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Lemma 2.3. Let (M,F ) be a simple foliation formed by a smooth Serre fibration p : M → N ,

and let k : ˜M → M be a covering map. Then

(i) the induced foliation (˜M, ˜F ), ˜F = k∗F , is formed by the fibers of a smooth Serre fibration

p̃ : ˜M → ˜N over the Hausdorff manifold ˜N ,

(ii) there exists a covering map ˜k : ˜N → N such that following diagram is commutative:

˜M
p̃−−−−→ ˜N

⏐

⏐

�k

⏐

⏐

�
˜k

M
p−−−−→ N

(2.2)

Furthermore if k : ˜M → M is the universal covering map, then ˜k : ˜N → N is also the universal

covering map.

Proof. We denote by ˜N = ˜M/ ˜F the space of leaves of the induced foliation (˜M, ˜F ). A leaf

L, regarded as a point of the leaf space, is denoted by [L]. Let p̃ : ˜M → ˜N : ˜L → [˜L], ˜L ∈ ˜F , be

the projection onto the leaf space. By Lemma 2.2, the image L = k(˜L) of any leaf ˜L ∈ ˜F is a

leaf of the foliation (M,F ). Consequently, the mapping ˜k : ˜N → N satisfying the commutative

diagram (2.2) is defined.

Consider any points x ∈ N and y ∈ p−1(x). Since the foliation (M,F ) is simple, there exists

a fibered neighborhood U of the point y such that every leaf of (M,F ) intersects U along at most

one connected subset, called a local leaf. Therefore, without loss of generality we assume that

U is a contractible coordinate neighborhood which is regularly covered by k : ˜M → M . At any

point z ∈ k−1(y), there exists a neighborhood W such that k|W : W → U is a diffeomorphism.

Since ˜F = k∗F , every leaf of the foliation (˜M, ˜F ) intersecting the neighborhood W intersects it

over exactly one local leaf. Therefore, (˜M, ˜F ) is a regular foliation in the sense of Palais [13].

As is proved in [13], the space of leaves of a regular foliation ˜M/ ˜F is naturally equipped with

the structure of a smooth (possibly, non-Hausdorff) manifold, relative to which the projection

p̃ : ˜M → ˜N is a submersion.

Since the diagram (2.2) is commutative, ˜k : ˜N → N is a surjective submersion of manifolds

of the same dimension. Hence ˜k is a local diffeomorphism. Let us prove that ˜k : ˜N → N

is a Serre fibration. Let Ht : K → N , t ∈ [0, 1], be a homotopy of a finite complex K in

N , started with H0, and let G0 : K → ˜N be a continuous map such that ˜k ◦ G0 = H0. We

consider any continuous map ˜G0 : K → ˜M such that p̃ ◦ ˜G0 = G0. The submersion p ◦ k is a

Serre fibration since it can be regarded as a superposition of Serre fibrations. Therefore, for Ht

there exists a covering homotopy ˜Gt : K → ˜M started with ˜G0. We set ˜Ht := p̃ ◦ ˜Gt. Then
˜k ◦ ˜Ht = (˜k ◦ p̃) ◦ ˜Gt = (p ◦ k)˜Gt = Ht. Consequently, ˜Ht : K → ˜M is a covering homotopy

for Ht : K → N ; moreover, ˜H0 = G0. Thus, ˜k : ˜N → N is a Serre fibration which is a local

diffeomorphism. Therefore, ˜k : ˜N → N is a covering map.

We note that the manifold ˜N is Hausdorff since it can be regarded as the covering space of

a Hausdorff manifold N .

Similarly, it turns out that p̃ : ˜M → ˜N is a smooth Serre fibration.

Suppose that k : ˜M → M is the universal covering map. Since p̃ : ˜M → ˜N is a Serre

fibration with simply connected fibre space and connected fibers, the exact homotopic sequence

of this fibration implies the simple connectedness of its base ˜N . Consequently, ˜k : ˜N → N is

the universal covering map.
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Remark 2.1. If, in the assumptions of Lemma 2.3, we omit the condition that a simple

foliation (M,F ) is formed by the fibers of a Serre fibration, then the foliation (˜M, ˜F ) induced

on the covering space ˜M is not, generally speaking, simple, which is confirmed by Example 7.1.

Definition 2.2. We say that a foliation (M,F ) is covered by a fibration if there exists a

covering map f : M ′ → M such that the induced foliation f∗F formed by the fibers of a smooth

Serre fibration p : M ′ → N .

Definition 2.3. Let (M,F ) be an arbitrary smooth foliation, and let k : ˜M → M be the

universal covering map. If the induced foliation ˜F = k∗F on ˜M is formed by the fibers of

a smooth Serre fibration f : ˜M → N , then we say that the foliation (M,F ) is covered by a

fibration.

Lemma 2.4. Definitions 2.2 and 2.3 are equivalent.

Proof. Definition 2.3 implies Definition 2.2. Suppose that, in the sense of Definition 2.2, a

foliation (M,F ) is covered by a fibration p : M ′ → N and f : M ′ → M is a covering mapping,

i.e., the induced foliation F ′ = f∗F is formed by the fibers of a smooth Serre fibration p. We

consider the universal covering map k : ˜M → M ′. By Lemma 2.3, the induced foliation ˜F = k∗F ′

is formed by the fibers of a smooth Serre fibration p̃ : ˜M → ˜N . Since f ◦ k : ˜M → M is the

universal covering map and (f ◦ k)∗F = ˜F is the induced foliation on ˜M , then the foliation

(M,F ) is covered by a fibration in the sense of Definition 2.3.

2.3. The global holonomy group.

Proposition 2.1. Let (M,F ) be a foliation covered by a fibration f : ˜M → N , where

k : ˜M → M is the universal covering map. Let Φ be the group of desk transformations of this

covering map. Then there exists a normal subgroup ˜Φ of the group Φ such that the action of the

quotient group ̂Φ = Φ/˜Φ is induced on the quotient manifold ̂M = ˜M/˜Φ; moreover, M = ̂M/̂Φ

and the following assertions hold:

1) the quotient maps h : ˜M → ̂M and s : ̂M → M are regular coverings with the groups of

desk transformations ˜Φ and ̂Φ respectively; moreover, k = s ◦ h,
2) the induced foliation ̂F is formed by the fibers of a smooth Serre fibration r : ̂M → N ;

moreover, f = r ◦ h and the manifold N is simply connected,

3) the group ̂Φ induces on N the group of diffeomorphisms Ψ under a submersion r : ̂M → N ;

moreover, the natural projection χ : ̂Φ → Ψ is a group isomorphism.

Proof. Let Φ be the group of desk transformations of the universal covering map k : ˜M →
M . Since every ϕ ∈ Φ is an automorphism of the foliation f : ˜M → N , it follows that ϕ

induces a diffeomorphism ψ = ψ(ϕ) from the manifold N onto itself satisfying the equality

f ◦ ϕ = ψ(ϕ) ◦ f . The set of all such transformations form the group Ψ = {ψ(ϕ) | ϕ ∈ Φ},
and the natural projection μ : Φ → Ψ : ϕ �→ ψ(ϕ) is a group epimorphism. Since ˜Φ := Kerμ

is the normal subgroup of the group Φ acting on ˜M freely and properly discontinuously, the

quotient manifold ̂M := ˜M/˜Φ is defined and the action of the quotient group ̂Φ := Φ/˜Φ on ̂M

is free and properly discontinuous; moreover, M ∼= ̂M/̂Φ, the quotient map h : ˜M → ̂M = ˜M/˜Φ

satisfies the equality k = s ◦ h, where s : ̂M → M = ̂M/̂Φ is the projection of the group ̂Φ on

the orbit space. We note that s : ̂M → M is a regular covering map with the group of desk

transformations ̂Φ. By the definition of ̂M , the foliation ̂F := s∗F is formed by the fibers of
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a submersion r : ̂M → N ; moreover, r ◦ h = f . Since f and h are Serre fibrations, the last

equality implies that r is also a Serre fibration. From the exact homotopy sequence of the Serre

fibration f : ˜M → N it follows that the base N is connected by the simple conectedness of M

and connectedness of fibers.

We note that the group of desk transformations ̂Φ of a regular covering map s : ̂M → M

induces, under a submersion r : ̂M → N , the same group of diffeomorphisms Ψ with the base N

as the group ̂Φ; moreover, the natural group epimorphism χ : ̂Φ → Ψ is a group isomorphism.

Definition 2.4. The group Ψ in Proposition 2.1 is called the global holonomy group of a

foliation (M,F ) covered by a fibration.

The global holonomy group Ψ of a foliation (M,F ) is defined, up to an inner automorphism,

as the group of desk transformations Φ. To avoid the ambiguity, we assume that the points

x ∈ M and y ∈ k−1(x) ∈ ˜M defining the group Φ are fixed.

3 Proof of Theorem 1.1

3.1. Suspended foliations. The construction of a suspended foliation due to Haefliger

consists in the following. Let B and N be smooth connected manifolds, and let ρ : π1(B, b) →
Diff(N) be a group homomorphism. Suppose that G := π1(B, b) and Ψ := ρ(G). We consider

the universal covering map p̂ : ̂B → B. We DEfine the right action of the group G on the

product of manifolds ̂B ×N as follows:

Θ : ̂B ×N ×G → ̂B ×N : (x, t, g) → (g−1(x), ρ(g−1)(t)),

where ̂B → ̂B : x → g−1(x) is the desk transformation induced by g−1 ∈ G.

The map p : M := ( ̂B×N) /G → B = ̂B/G determines a locally trivial fibration over B with

the standard fiber N associated to the principal bundle p̂ : ̂B → B with the structure group G.

Let Θg := Θ|
̂B×{t}×{g}.

Since Θg( ̂B × {t}) = ̂B × {ρ(g−1)(t)} for all t ∈ N , the action of the discrete group G

preserves the trivial foliation F := { ̂B × {t} | t ∈ N} of the product ̂B ×N . Consequently, the

quotient map f0 : ̂B × N → ( ̂B×N) /G = M induces on M a smooth foliation F with leaves

transversal to fibres of the fibration p : M → B.

A pair (M,F ) is called a suspended foliation and is denoted by Sus (N,B, ρ). The group

of diffeomorphisms Ψ := ρ(G) of a manifold N is the global holonomy group of the suspended

foliation (M,F ).

3.2. Proof of Theorem 1.1. Let N be any q-dimensional simply connected manifold, and

let Ψ be an arbitrary at most countable subgroup of the group of diffeomorphisms Diff(N) having

a finite family of generators {ψ1, . . . , ψm}. We denote by S2
m the two-dimensional sphere with m

handles. The fundamental group S2
m is equal to {ai, bi, i = 1, . . . ,m | a1b1a−1

1 b−1
1 ...ambma−1

m b−1
m =

1}. We set B = S2
m and define the group homomorphism ρ : π1(B, b) → Diff(N) by defining

it on generators ρ(ai) := ψi, i = 1, . . . ,m, where ρ(bi) := idS2
m

is the identity of the group Ψ.

Then (M,F ) := Sus (N,S2
m, ρ) is a two-dimensional suspended foliation of codimension q. It is

covered by the trivial fibration R
2 ×N → N and has the global holonomy group Ψ.

We assume that Ψ ⊂ Diff(N) has a countable family of generators {ψi|i ∈ N}. LetB := R
2\A

be the plane without the discrete subset A = {(i, 0) ∈ R2|i ∈ N}, and let b = (1, 1) ∈ B. Then
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G = π1(B, b) = {gi | i ∈ N} is a free group with a countable family of generators. The equalities

ρ∞(gi) := ψi, i ∈ N, defines a group epimorphism ρ∞ : π1(B, b) → Ψ. The suspended foliation

(M,F ) := Sus (N,B, ρ∞) has codimension q and is covered by the trivial fibration R
2×N → N .

The global holonomy group of the foliation (M,F ) is equal to Ψ. �

4 Transverse Equivalence of Foliations Covered by Fibrations

We say that two foliations are transversally equivalent if they are transversally equivalent in

the sense of Definition 1.1.

Proposition 4.1. The transverse equivalence of foliations in the sense of Definition 1.1 is

an equivalence relation.

Proof. It is obvious that the reflexivity and symmetry properties are satisfied.

Let (M,F) and submersions p : M → M, p1 : M → M1 realize the transverse equivalence of

foliations (M,F ) and (M1, F1), whereas (M1,F1) and submersions r : M1 → M1, r1 : M → M2

realize the transverse equivalence of foliations (M1, F1) and (M2, F2). Let M2 = {(y, z) ∈ M ×
M1 | p1(y) = r(z)}. We define s : M2 → M and t : M2 → M1 by setting s(y, z) := y and

t(y, z) := z for all (y, z) ∈ M2. We set q := p ◦ s and q1 := r1 ◦ t. Then q : M2 → M and

q1 : M2 → M2 are surjective submersions with connected fibers; moreover, F2 = {q−1(L)|L ∈
F} = {q−1

1 (L′)|L′ ∈ F2} is a foliation over M2, i.e., the relations (1.1) in Definition 1.1 hold and

the following diagram is commutative:

M2

s

����
��

��
�� t

����
��

��
��

M

p

����
��

��
�� p1

���
��

��
��

� M1

r

����
��

��
�� r1

����
��

��
��

M M1 M2

(4.1)

We note that M2 = p1
∗
M1 is the preimage of the Serre fibration r : M1 → M1 under the

submersion p1 : M → M1; moreover, p1 : M → M1 is also a Serre fibration. By the first assertion

of Lemma 2.1, the canonical projections s : M2 → M and t : M2 → M1 are Serre fibrations.

Thus, the projections q : M2 → M and q1 : M2 → M1 are Serre fibrations because they are

the superpositions of Serre fibrations. Consequently, the foliations (M,F ) and (M2, F2) are

transversally equivalent in the sense of Definition 1.1.

5 Proof of Theorem 1.2

Throughout the section, i = 1, 2. Let (Mi, Fi) be a foliation covered by a fibration ri : ˜Mi →
Ni, where ki : ˜Mi → Mi is the universal covering map. We assume that the foliations (M1, F1)

and (M2, F2) are transversally equivalent. By Definition 1.1, there exists a foliation (M,F) that,

together with submersions p1 : M → M1 and p2 : M → M2, realize the transverse equivalence of

(M1, F1) and (M2, F2); moreover, p1 and p2 are Serre fibrations.

We consider the preimage ki
∗
M, i = 1, 2, of the Serre fibration pi : M → Mi under the

submersion ki : ˜Mi → Mi. Denote by τi : ki
∗
M → M and qi : ki

∗
M → ˜Mi the canonical
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submersions. By the first assertion of Lemma 2.1, they satisfy the equality pi ◦ τi = ki ◦ qi;

moreover, qi : ki
∗
M → ˜Mi is a Serre fibration and τi : ki

∗
M → M is a covering map.

We denote by τ : ˜M → M the universal covering map for the manifold M. By universality,

there exists a covering map δi : ˜M → ki
∗
M such that τ = τi ◦ δi. The map fi = qi ◦ δi : ˜M → ˜Mi,

being the superposition of Serre fibrations, is a Serre fibration and satisfies the equality ki ◦fi =
pi ◦ τ . Consequently, the induced foliation ( ˜M, ˜F), ˜F = τ∗F, together with the projections

fi : ˜M → ˜Mi, realizes the transverse equivalence of simple foliations (˜M1, ˜F1) and (˜M2, ˜F2).

We denote by N the space of leaves of the foliation ( ˜M, ˜F). Let r : ˜M → N be the quotient

map on the leaf space. Then we can define the map di : N → Ni : [L] �→ [fi(L)] which is a

homeomorphism such that di ◦ r = ri ◦ fi. Consequently, the following diagram is commutative:

N1
d1←−−−− N

d2−−−−→ N2
�

⏐

⏐

r1

�

⏐

⏐
r

�

⏐

⏐

r2

˜M1
f1←−−−− ˜M

f2−−−−→ ˜M2
⏐

⏐

�
k1

⏐

⏐

�
τ

⏐

⏐

�
k2

M1
p1←−−−− M

p2−−−−→ M2.

(5.1)

In the same way as in [9, Lemma 2.6], one can prove that the commutativity of the diagram

(5.1) implies that d := d2 ◦ d−1
1 : N1 → N2 is a diffeomorphism. On N , we introduce a smooth

structure relative to which di : N → Ni is a diffeomorphism and the quotient map r : ˜M → N

is a submersion. As in Lemma 2.3, we verify that r is a Serre fibration.

Thus, the foliation (M,F) realizing the transverse equivalence of foliations covered by a

fibration is a foliation itself.

Let Γ and Γi be the groups of desk transformations of the covering maps τ and ki corre-

sponding to fixed points v ∈ ˜M and vi = fi(v) ∈ ˜Mi. The continuous map pi : M → Mi induces

a homomorphism of the fundamental groups pi∗ : π1(M, y) → π1(Mi, yi), where y = τ(v),

yi = pi(y). We identify the corresponding isomorphisms of groups: Γ with π1(M, y) and Γi

with π1(Mi, yi). Moreover, νi := pi∗ : Γ → Γi is a group homomorphism. We emphasize that

γi = νi(γ) if and only if fi ◦ γ = γi ◦ fi.
Let us check that νi : Γ → Γi is an epimorphism. Let ϕ ∈ Γi. We recall that the inclusion

ϕ ∈ Γi is equivalent to the conditions ϕ ∈ Diff(˜Mi) and ki ◦ ϕ = ϕ. We define ϕ̃ : ki
∗
M → ki

∗
M

by setting ϕ̃((y, z)) = (y, ϕ(z)) for any (y, z) ∈ ki
∗
M. Since pi(y) = ki(ϕ(z)) = ki(z) for all

(y, z) ∈ ki
∗
M, the map ϕ̃ is indeed defined. It is easy to see that ϕ̃ is a diffeomorphism of

the manifold ki
∗
M; moreover, τi ◦ ϕ̃ = τi, where τi : ki

∗
M → M : (y, z) �→ y is the canonical

projection. This means that ϕ̃ is the desk transformation of the covering map τi : ki
∗
M → M.

Since τ = τi◦δi : ˜M → ki
∗
M is the universal covering map with the group of desk transformations

Γ, there exists γ ∈ Γ lying over ϕ̃ with respect to δi, i.e., satisfying the equality δi ◦ γ = ϕ̃ ◦ δi.
The following chain of equalities holds:

fi ◦ γ = (qi ◦ δi) ◦ γ = qi ◦ (δi ◦ γ) = qi ◦ (ϕ̃ ◦ δi) = (qi ◦ ϕ̃) ◦ δi
= (ϕ ◦ qi) ◦ δi = ϕ ◦ (qi ◦ δi) = ϕ ◦ fi

which implies that γ lies over ϕ relative to the submersion fi : ˜M → ki
∗
M. Therefore, νi(γ) = ϕ,

which completes the proof.
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We note that the groups of desk transformations Γ and Γi preserve simple induced foliations

( ˜M, ˜F) and (˜Mi, ˜Fi) respectively. Therefore, they induce the group of diffeomorphisms Ψ and

Ψi of manifolds of leaves N and Ni of the above foliations. Let μ : Γ → Ψ and μi : Γi → Ψi be

the corresponding group epimorphism.

For any γ ∈ Ker (μ) we have γ(˜L) = ˜L for all ˜L ∈ ˜F. Let γi = νi(γ), which is equivalent to

fi ◦ γ = γi ◦ fi. For an arbitrary leaf ˜L ∈ ˜Fi there is a leaf ˜L ∈ ˜F such that ˜L = fi(˜L). By the

chain of equalities

γi(˜L) = γi(fi(˜L)) = (γi ◦ fi)(˜L) = (fi ◦ γ)(˜L) = fi(γ(˜L)) = fi(˜L) = ˜L,

every leaf ˜L of the foliation ˜Fi is invariant under the diffeomorphism γi. Therefore, γi ∈ Ker (μi).

Thus, the kernels of epimorphisms μ and μi satisfy the inclusion νi(Ker (μ)) ⊂ Ker (μi). Hence

we defined the group epimorphism θi : Ψ → Ψi for which the following diagram is commutative:

Γ
νi−−−−→ Γi

μ

⏐

⏐

�

⏐

⏐

�

μi

Ψ
θi−−−−→ Ψi.

(5.2)

To show that θi : Ψ → Ψi is a group isomorphism, we consider arbitrary elements ψ ∈ Ker (θi)

and γ ∈ μ−1(ψ). We assume that γ /∈ Ker (μ). Then there is a leaf ˜L of the foliation ( ˜M, ˜F) such

that γ(˜L) = ˜L
′ 	= ˜L. Since the diagram (5.1) is commutative, we have ˜L = fi(˜L) 	= fi(˜L

′) =
˜L′. Hence γi = νi(γ) /∈ Ker (μi), which contradicts the commutativity of the diagram (5.2).

Consequently, γ ∈ Ker (μ) and ψ is the identity of the group Ψ. Thus, θ = θ2 ◦ θ−1
i : Ψ1 → Ψ2 is

a group isomorphism. Furthermore, the commutativity of the diagram (5.1) and the definition

of the groups Ψ and Ψi imply the equality d◦ϕ1 = θ(ϕ1)◦d for any ϕ1 ∈ Ψ1. Consequently, the

pairs (N1,Ψ1) and (N2,Ψ2) are isomorphic in the category of pairs P defined in Section 1. By

definition, Ψi is the global holonomy group of the foliation (Mi, Fi), i.e., β(Mi, Fi) = (Ni,Ψi).

Thus, we defined the map B : ˜F → ˜P : [(M,F )] �→ [β(M,F )] = [(N,Ψ)] for all (M,F ) ∈ F,

associating the class of transversally equivalent foliations [(M,F )] covered by fibrations with the

class of equivalent pairs [(N,Ψ)], where Ψ is the global holonomy group of the foliation (M,F )

acting on the simply connected manifold N .

We prove that B : ˜F → ˜P is an injection. We assume that B([(M1, F1)]) = B([(M2, F2)]).

Then [(N1,Ψ1)] = [(N2,Ψ2)], where Ψi is the global holonomy group of the foliation (Mi, Fi)

acting on the simply connected manifold Ni. By the condition [(N1,Ψ1)] = [(N2,Ψ2)], there

exists a group isomorphism θ : Ψ1 → Ψ2 and a diffeomorphism d : N1 → N2 such that d ◦ ψ1 =

θ(ψ1) ◦ d for all ψ1 ∈ Ψ1. For the sake of simplicity we identify the manifolds N1 and N2 by the

diffeomorphism d. Moreover, the group Ψ1 is identified with the group Ψ2. By the identification,

we write N and Ψ instead of Ni and Ψi. Since (Mi, Fi) is a foliation covered by a fibration,

Proposition 2.1 implies the existence of a regular covering map si : ̂Mi → Mi such that

1) the induced foliation (̂Mi, ̂Fi), ̂Fi = s∗iFi, is formed by the fibers of a smooth Serre fibration

ri : ̂Mi → N over the simply connected base N ,

2) the group of desk transformations Γi of the covering map si : ̂Mi → Mi by means

ri : ̂Mi → N induces on N the group of diffeomorphisms Ψ, called the global holonomy group of

this foliation; moreover, the natural projection μi : Γi → Ψ is a group isomorphism.

Let ̂M := {(x1, x2) ∈ ̂M1× ̂M2 | r1(x1) = r2(x2)} be the preimage of the fibration r2 : ̂M2 →
N relative to r1 : ̂M1 → N , and let hi : ̂M → ̂Mi be its canonical projections. By Lemma 2.1, hi
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is the projection of a Serre fibration. There is a submersion r = ri ◦hi : ̂M → N with connected

fibers. The fibres of this submersion form a simple foliation ( ̂M, ̂F) which, together with the

projections hi, form an isomorphism between simple foliations (̂M1, ̂F1) and (̂M2, ̂F2).

From the definition of the group Ψ it follows that ri ◦ γi = μi(γi) ◦ ri = ψ ◦ ri for ψ = μi(γi).

Therefore, ri(xi) = c ∈ N implies ri(γi(xi)) = ψ(ri(xi)) = ψ(c), where xi ∈ ̂Ni. Consequently,

for γi = μi(ψ) the equality

ψ(x1, x2) := (γ1(x1), γ2(x2)) ∀ψ ∈ Ψ, ∀(x1, x2) ∈ M,

defines the action of the group Ψ on ̂M. Since Ψ acts on ̂M by means of the group of desk

transformations Γi, this action is free and properly discontinuous. Therefore, the quotient

manifold M := ̂M/Ψ is defined and the quotient map h : ̂M → M is a regular covering with the

group of desk transformations, isomorphic to the group Ψ. We note that there are submersions

pi : M → Mi : Ψ · (x1, x2) �→ Γi · (xi), (x1, x2) ∈ M, sending the orbit Ψ · (x1, x2) to the orbit

Γi · (xi) and satisfying the commutative diagram

N

̂M1

s1

��

r1

����������
̂M

h

��

r

��

h1		 h2 


̂M2

r2

����������

s2

��
M1 M

p1		 p2 

 M2

(5.3)

As was shown above, ri(xi) = c implies ri(γi(xi)) = ψ(c). Therefore, for any (x1, x2) ∈ ̂L =

r−1(c) we have r(ψ(x1, x2) = r(γ1(x1), γ2(x2)) = ri(γi(xi)) = ψ(c), i.e., ψ(r−1(c)) = r−1(ψ(c))

for any c ∈ N . Thus, the action of the group Ψ on ̂M preserves the foliation ( ̂M, ̂F). Therefore,

the projection h : ̂M → M induces the foliation (M,F). Using the commutativity of the diagram

(5.3), it is easy to verify that

F = {p−1
1 (L) | L ∈ F1} = {p−1

2 (L′) | L′ ∈ F2}.

Since h, hi, and si are Serre fibrations, from the commutativity of the diagram (5.3) it follows

that pi : M → Mi is also a Serre fibration.

Thus, the foliation (M,F) with submersions pi realize the transverse equivalence of (M1, F1)

and (M2, F2). Consequently, B : ˜F → ˜P is injective.

By Theorem 1.1, for any pair (N,Ψ), where N is an arbitrary simply connected manifold and

Ψ is an at most countable group of diffeomorphisms of the manifold N , there exists a foliation

(M,F ) covered by a fibration for which Ψ is the global holonomy group, i.e., β(M,F ) = (N,Ψ).

Therefore, for any [(N,Ψ)] ∈ ˜P there exists a class of transversally equivalent foliations [(M,F )]

such that B[(M,F )] = [(N,Ψ)], i.e., B is surjective. Thus, B : ˜F → ˜P is a bijection. �

6 Transverse Equivalence of Complete Conformal Foliations

6.1. Conformal manifolds. Let (N1, g1) and (N2, g2) be Riemannian manifolds, where g1
and g2 are Riemannian metrics. A diffeomorphism f : N1 → N2 is conformal if there exists

a smooth function λ on N1 such that f∗g2 = λg1. If idN is a conformal diffeomorphism of
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Riemannian manifolds (N, g1) and (N, g2), then the Riemannian metrics g1 and g2 on N are

said to be conformally equivalent. The class [g] of conformally equivalent Riemannian metrics

on N is called the conformal structure on N , and the pair (N, [g]) is referred to as a conformal

manifold. Thus, on any Riemannian manifold (N, g), the conformal structure [g] is uniquely

defined. A conformal diffeomorphism f from a Riemannian manifold (N, g) onto itself is called

a conformal transformation.

6.2. Conformal foliations. Let a smooth foliation (M,F ) of codimension q be given by an

N -cocycle ζ = {Ui, fi, {γij}}i,j∈J (cf., for example, [14]). This means that we a given

1) a (possibly, disconnected) smooth q-dimensional manifold N ,

2) a locally finite open cover {Ui | i ∈ J} of M with respect to compact subsets Ui,

3) submersions with connected fibers fi : Ui → Vi on Vi ⊂ N ,

4) for Ui ∩ Uj 	= ∅ the diffeomorphism γij : fj(Ui ∩ Uj) → fi(Ui ∩ Uj) of open subsets of the

manifold N satisfying the equality fi = γij ◦ fj on Ui ∩ Uj .

If Ui ∩ Uj ∩ Uk 	= ∅, then γik = γij ◦ γjk; moreover, γii = id |Ui .

Every maximal, with respect to inclusion, N -cocycle ̂ζ possessing the above-listed properties

defines a new topology on M with the base consisting of the fibers of all submersions fi. This

topology is called the leaf topology and is denoted by τF . The linear connected components of

the topological space (M, τF ) form a partition of M, denoted by F = {Lα | α ∈ A} and called

the foliation with leaves Lα given by the N -cocycle ̂ζ. Since any N -cocycle is contained in a

unique maximal N -cocycle, to determine the foliation (M,F ) it suffice to define some N -cocycle

ζ with the above properties.

A smooth foliation (M,F ) of codimension q is conformal if it is defined by an N -cocylce

ζ = {Ui, fi, {γij}}i,j∈J and the manifold N is equipped with a Riemannian metric g such that

all {γij} are local conformal diffeomorphisms of the Riemannian submanifolds induced on the

corresponding open subsets of the Riemannian manifold (N, g).

6.3. Proof of Theorem 1.3. As was proved in [7, Theorem 5], for any complete non-

Riemannian conformal foliation (M,F ) of codimension q > 2 there exists a regular covering

map f : ̂M → M such that the induced foliation (̂M, ̂F ), ̂F = f∗F , is formed by the fibers of

a locally trivial fibration r : ̂M → N . Moreover, either N = E
q or N = S

q. Since any locally

trivial fibration is a Serre fibration, the foliation (M,F ) is covered by a fibration in the sense

of Definition 2.3. Therefore, (M,F ) ∈ FC. Furthermore, the global holonomy group Ψ of the

foliation (M,F ) is a countable essential subgroup of the Lie group Conf (Sq) if (M,F ) is not

transversally similar or Ψ is a countable essential subgroup of the Lie group Sim(Eq) in the

opposite case. Consequently, (N,Ψ) ∈ PC.

We consider an arbitrary pair of transversally equivalent foliations (Mi, Fi) ∈ FC, i = 1, 2.

Let β(Mi, Fi) = (Ni,Ψi). By Theorem 1.2, there exists a group isomorphism θ : Ψ1 → Ψ2 and a

diffeomorphism of manifolds d : N1 → N2 which are connected by the relation d ◦ψ1 = θ(ψ1) ◦ d
for all ψ1 ∈ Ψ1. Therefore, if N1 = S

q, then it is necessary N2 = S
q. Let g be the standard

Riemannian metric on the sphere S
q, and let [g] be the class of conformally equivalent metrics

which contains g. Since Ψi, i = 1, 2, is the group of automorphisms of the conformal structure

(Sq, [g]), we see that Ψ1 is the essential group of automorphisms of the conformal structure

(Sq, [d∗g]). As is known [15], among Riemannian manifolds of dimension q > 2, only the standard

sphere S
q and the Euclidean space E

q have the essential group of conformal transformations.

Therefore, it is necessary [g] = [d∗g]. Consequently, d is a conformal diffeomorphism of the
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sphere S
q. Thus, it is necessary that Ψ1 and Ψ2 be conjugate subgroups of the Lie group

Conf (Sq).

If N1 = E
q, then it is necessary N2 = E

q. In this case, as above, it is proved that Ψ1 and Ψ2

are conjugate subgroups of the Lie group Sim(Eq).

Thus, in both cases, the pairs (N1,Ψ1) and (N2,Ψ2) are isomorphic in the category PC.

From [7, Theorems 3 and 7] (cf. also Theorem 1.1) it follows that any countable essential

subgroup Ψ of the Lie groups Conf (Sq) and Sim(Eq) is realized as the global holonomy group

of a complete conformal foliation of codimension q.

Therefore, by Theorem 1.2, BC = B|FC
: ˜FC → ˜PC is a bijection from the set of classes of

transversally equivalent conformal foliations ˜FC to the set ˜PC of classes of equivalence of their

global holonomy groups. �

6.4. Proof of Theorem 1.4. By [10, Theorem 7], the structure Lie algebra of a foliation

(M,F ) with transverse rigid geometry covered by the locally trivial fibration over the simply

connected base N , is isomorphic to the Lie algebra of the Lie group Ψ, equal to the closure of the

global holonomy group Ψ of this foliation in the Lie group of all automorphisms of the transverse

rigid geometry on the manifold N . Since the conformal foliation (M,F ) of codimension q > 2 is

Cartan and is modeled on the effective Cartan geometry, (M,F ) can be regarded as a complete

foliation with transverse rigid geometry in the sense of [10]. As was noted in the proof of Theorem

1.3, the conformal foliation (M,F ) is covered by a locally trivial fibration. Consequently, the

required assertions follow from [10, Theorem 7]. �

7 Examples

Example 7.1. We consider the universal covering map f : R1 × R
1 → R

1 × S
1 : (x, y) �→

(x, e2πyi), where (x, y) ∈ R
1 × R

1, of the cylinder C = R
1 × S

1 by the plane. Let pC : C → R
1

be the canonical projection on the first factor. We consider a manifold M = C \ {a}, where
a = f((0, 0)), and a submersion p = pC |M : M → R

1. We denote by (M,F ) the simple foliation

formed by the fibers of the submersion p. We emphasize that this submersion is not a Serre

fibration. In the opposite case, the exact homotopic sequence for the fibration p : M → R
1

implies an isomorphism between the fundamental group of any fibre and the group of integers

Z, which contradicts the contractibility of p−1(0).

Let ̂M = R
2 \A, where A = {(0,m) | m ∈ Z}. We note that k := f

̂M
: ̂M → M is a regular

covering map for M with the group of desk transformations isomorphic to the group of integers

Z. We denote by pr2 : R1 × R
1 → R

1 : (x, y) �→ y the canonical projection on the first factor.

The induced foliation (̂M, ̂F ), where ̂F = k∗F , is formed by the connected components of the

fibers of a submersion pr2|
̂M

: ̂M → N , where N is a non-Hausdorff line containing a countable

family of inseparable points instead of zero.

Thus, the lift of a simple foliation to a covering space is not, generally speaking, a simple

foliation. Therefore, the requirement that a simple foliation (M,F ) is formed by the fibers of a

Serre fibration is essential in Lemma 2.3.

Example 7.2. For k � 6 and m � 3 we consider the group Γkm = 〈si, i = 1, . . . , k |
smi = 1, [si, si+1] = 1〉. As was shown in [16], if sinπ/k < 1/

√
m, then there exists an exact

representation αkm : Γkm → Conf (S2m−2); moreover, Ψkm = αkm(Γkm) is a Fuchsian group (i.e.,

a discrete subgroup of Conf (S2m−2) with finitely many generators) with the limit set Λ(Ψkm)
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homeomorphic to a Menger curve. Moreover, ψi = α(si) are generators of the group Ψkm.

Since sinπ/k < π/k for all k � 6, for π/k < 1/
√
m ⇔ k > π

√
m the initial inequality

is satisfied. Let k(m) = [π
√
m] denote the integer part of π

√
m. Then for any fixed natural

number m � 3 there exists a countable family of Fuchsian groups Ψkm, k > k(m), such that

Λ(Ψkm) is homeomorphic to a Menger curve. For example, k(3) = 5, k(4) = 6, k(5) = k(6) = 7,

k(7) = k(8) = 8, k(9) = k(10) = 9.

As above, let S2
k be the two-dimensional sphere with k handles. The fundamental group of S2

k

is {ai, bi, i = 1, . . . , k | a1b1a−1
1 b−1

1 . . . akbka
−1
k b−1

k = 1}. We set B = S2
k and define a group homo-

morphism ρkm : π1(B, b) → Diff(S2m−2) by setting ρkm(ai) := ψi, i = 1, . . . , k, on the generators,

where ρkm(bi) := idS2
k
is the identity of the group Ψ. Then (Mkm, Fkm) := Sus (S2m−2, S2

m, ρkm)

is a two-dimensional suspended foliation of codimension 2m− 2. The universal covering map for

Mkm has the form fkm : R2 × S
2m−2 → Mkm, and the fibration induced on the universal cover

is formed by the fibers of the canonical projection rm : R2 × S
2m−2 → S

2m−2. The foliation

(Mkm, Fkm) has the global attractor Mkm = f(r−1
m (Λ(Ψkm))).

We recall that the minimal set M of a foliation is said to be exotic if it has no interior

points and the intersection M ∩ T for any local transversal T is not totally disconnected. Since

the Menger curve is a connected one-dimensional fractal, by Theorem 1.5 any foliation of class

[(Mkm, Fkm)] has an attractor that is an exotic minimal set whose transversal structure locally

coincides with the structure of the Menger curve Λ(Ψkm).
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