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The discovery of thousands of long noncoding RNAs (lncRNAs) in mammals raises a question

about their functionality. It has been shown that some of them are involved in post-tran-

scriptional regulation of other RNAs and form inter-molecular duplexes with their targets.

Sequence alignment tools have been used for transcriptome-wide prediction of RNA–RNA
interactions. However, such approaches have poor prediction accuracy since they ignore RNA's

secondary structure. Application of the thermodynamics-based algorithms to long transcripts is

not computationally feasible on a large scale. Here, we describe a new computational pipeline
ASSA that combines sequence alignment and thermodynamics-based tools for e±cient pre-

diction of RNA–RNA interactions between long transcripts. To measure the hybridization

strength, the sum energy of all the putative duplexes is computed. The main novelty imple-

mented in ASSA is the ability to quickly estimate the statistical signi¯cance of the observed
interaction energies. Most of the functional hybridizations between long RNAs were classi¯ed as

statistically signi¯cant. ASSA outperformed 11 other tools in terms of the Area Under the Curve

on two out of four test sets. Additionally, our results emphasized a unique property of the Alu

**Corresponding author.

Journal of Bioinformatics and Computational Biology
Vol. 16, No. 1 (2018) 1840001 (27 pages)

#.c World Scienti¯c Publishing Europe Ltd.

DOI: 10.1142/S0219720018400012

1840001-1

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
01

/3
0/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0219720018400012


repeats with respect to the RNA–RNA interactions in the human transcriptome. ASSA is
available at https://sourceforge.net/projects/assa/

Keywords: RNA–RNA interactions; natural antisense transcripts (NATs); long noncoding
RNAs (lncRNAs); post-transcriptional regulation; hybridization energy, statistical signi¯cance.

1. Introduction

Due to the single strand nature of an RNA molecule, its nucleotides are capable of

base pairing with the complementary nucleotides. Usually, the hybridization occurs

between di®erent regions of the same transcript producing the secondary structure.

However, a part of one RNA molecule can bind to a complementary part of another

transcript forming inter-molecular duplex. Such RNA–RNA pairing is called anti-

sense interaction and the corresponding RNAs are known as natural antisense

transcripts or NATs.1

Long noncoding RNAs (lncRNAs) are a large and diverse class of transcripts with

a length of more than 200 nucleotides that do not encode proteins. The discovery of

thousands of lncRNAs expressed in the mammalian cells raises a question about their

functionality.2,3 The fact that the transcription of lncRNAs is regulated,4 indirectly

supports their functionality. Due to the functional diversity,5 the role and/or the

molecular mechanism of only a few hundred lncRNAs have been determined to date.

Particularly, it has been shown that some of them function post-transcriptionally via

formation of inter-molecular RNA–RNA duplexes.6–8

Several experimental methods have recently been developed to identify inter-

molecular RNA–RNA duplexes on a large scale (SPLASH,9 PARIS,10 LIGR-seq,11

MARIO,12 RIA-seq13). Nevertheless, due to the limited availability of the experi-

mental data there is still a need for a computational prediction of antisense inter-

actions. Existing thermodynamics-based tools14–16 compute the free energy of the

inter-molecular duplexes (�G) to estimate the strength of the RNA–RNA binding.

Although these algorithms are e®ective in working with relatively short RNAs (such

as bacterial sRNAs) on a small scale, the computational complexity does not allow to

directly use them for genome- or transcriptome-wide searches. To overcome this

limitation, a number of large-scale computational studies have utilized sequence

alignment tools (such as BLASTn17 or LASTAL18) to predict mammalian

NATs.19–22 However, these approaches do not account for RNA secondary structure

which is crucial for the RNA binding.

Here we present a new computational pipeline called \AntiSense Search

Approach" (ASSA) that combines sequence alignment and thermodynamics-based

tools for e±cient prediction of the RNA–RNA interactions between long transcripts.

It reduces the running time by fast identi¯cation of the putative antisense sites using

the sequence alignment tool LASTAL. The detected sites along with the °anking

sequences form the putative duplexes. The inter-molecular hybridization energy of

every duplex is calculated by the thermodynamics-based tool RNAup and the

SumEnergy of all the putative duplexes between two RNAs is computed.
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Clearly, the value of the SumEnergy depends on several factors including the

transcript lengths (longer transcripts produce more putative duplexes) and GC-

content (G::C base pairing is stronger than A::T). This makes it di±cult to compare

RNA–RNA interaction energies computed for transcript pairs with di®erent prop-

erties. To tackle this problem, the statistical signi¯cance (\Theoretical P -value") of

every SumEnergy value is estimated in ASSA with respect to the lengths and GC-

contents of both the interacting transcripts. For this purpose, we developed a

mathematical model that predicts the expected background distribution of SumE-

nergys based on the properties of the input sequences. This model ensured that the

interaction energies computed for random sequences were not statistically signi¯cant

while most of the functional hybridizations between mammalian RNAs produced

strong P -values. Moreover, sorting predictions by P -value instead of SumEnergy

improved ASSA accuracy and allowed it to outperform other bioinformatics tools on

two test sets containing random sequences.

A similar idea of combining the sequence alignment and thermodynamics-based

tools has been used in several recent algorithms.23,24 However, these approaches do

not estimate the statistical signi¯cance of the interaction energies and, therefore,

may be biased to predict stronger interactions between longer transcripts or RNAs

with higher GC content.

2. Methods

2.1. The ASSA pipeline development

2.1.1. Predicting antisense sites by the LAST package

First, the lastdb tool is used to index all the queries by executing the command \lastdb

DB" and passing all the query sequences via STDIN. Next, a search for antisense sites is

performed by submitting the reversed target sequences via STDIN to \lastal -s 0 -m

9999999 -P 1 -p MATRIX.txt -a 12 -b 6 -e 30 DB", where -s 0 is the search strand

(0=reverse), -m 9999999 – the maximum initial matches per query position (the

restrictions are removed by using a very large threshold value); -P 1 – number

of parallel threads (the value is updated according to the ASSA launch options);

-a 12 – gap opening penalty; -b 6 – gap extension cost; -e 30 – threshold value for

alignment scores (can be changed through an ASSA option) and MATRIX.txt is

the custom substitution matrix adopted from Szczesniak et al.22 (Supplementary

Table 1).

In ASSA, we relaxed the gap open/extension penalties suggested by Szczesniak

et al.22 from �20/�8 to �12/�6, respectively. With these settings, complementary

Alu-elements located in di®erent transcripts produced a single local LASTAL

alignment.

It should be noted that some of the LASTAL local alignments overlap either on

one of the sequences (the query or the target) or on both of them. The latter cases are

resolved by keeping the alignment with the larger score only.
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2.1.2. Comparison of thermodynamics-based tools

We considered the following 12 thermodynamics-based tools for calculation of the

hybridization energies of the putative duplexes produced by ASSA: AccessFold,15

Bifold,25 DuplexFold,25 GUUGle,26 IRIS,27 IntaRNA-2,28 LncTar,16 RactIP,29

RIsearch,30 RNAduplex,31 RNAPlex,14 RNAup.32

To identify the best tool, we prepared a test set by generating 360 sequence pairs

(simulated duplexes) of two types. These sequences were intended to represent two

situations with respect to the local secondary structures that might be present at the

antisense sites identi¯ed by LASTAL.

Duplexes of the ¯rst type (\true duplexes") did not have strong complementarity

to the nearby (°anking) regions on the either side. Consequently, the RNA regions

corresponding to an antisense site did not form intra-molecular interactions and

were accessible for inter-molecular base pairing. To simulate this situation, we

prepared sequence pairs with di®erent lengths and percent complementarity of the

antisense sites (all the sequences had GC content = 50%). Each sequence in a pair

consisted of a site of length SL in the middle and two random °anking sequences of

length FL each (see Fig. 1). Additionally, the complementarity between the two

sites in the simulated duplex was INTER CMPL percent. In this construct, the

simulated site in the middle corresponded to a LASTAL local alignment. To sim-

ulate a variety of possible LASTAL hits, di®erent values for SL, FL and

INTER CMPL were used. Sequence pairs with three di®erent combinations of the

site/°ank lengths (SL/FL = 10/10, 20/50 or 40/50) were generated (the corre-

sponding total sequence lengths were 30, 120 and 140, respectively). Additionally,

three di®erent percents of complementarity were used (INTER CMPL = 100%, 90%

or 80%). A total of 20 sequence pairs were simulated for every combination of SL,

Fig. 1. Two types of the simulated duplexes and the expected predictions for them produced by a sequence

alignment or a thermodynamics-based tool.

I. Antonov et al.

1840001-4

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
01

/3
0/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



FL and INTER CMPL making the total number of \true duplexes" in the test set

equal to 180 (¼ 20� 3� 3).

We refer to the second type of the simulated duplexes in the test set as \two

hairpins". In addition to some level of inter-molecular complementarity, they also

had perfect (100%) intra-molecular complementarity. It should be noted that a loop

of length LL separated the two complementary regions located on the same sequence

(see Fig. 1). We generated nine di®erent variations of the \two hairpins" duplexes by

using three combinations of the SL/LL values (10/5, 20/20 and 40/20 – the corre-

sponding sequence lengths were 25, 60 and 100) and three di®erent complementarity

values (INTER CMPL = 80%, 70% or 60%). In total, 180 \two hairpins" duplexes

were simulated for the test set by preparing 20 sequence pairs for every combination

of the SL, LL and INTER CMPL values.

On one hand, a sequence alignment tool (such as LASTAL) is expected to identify

complementarity between sequences of both types. This is why both classes of the

simulated duplexes are likely to be among the putative duplexes analyzed by ASSA.

On the other hand, due to the presence of 100% intra-molecular complementarity in

the \two hairpins" sequences, a thermodynamics-based tool is expected to fold them

into two separate RNA molecules. Therefore, a secondary structure aware algorithm

is likely to predict strong inter-molecular interaction for the \true duplexes" only (see

Fig. 1). So, our goal was to ¯nd the thermodynamics-based tool able to distinguish

the \true duplexes" from the \two hairpins" types most accurately.

A \good" tool should predict existence of inter-molecular binding for the \true

duplexes" (label=1) and no binding for the \two hairpins" (label=0) sequence pairs.

However, thermodynamics-based tools do not produce such a binary classi¯cation.

Instead, they compute inter-molecular hybridization energy (�G). Thus, the pre-

dicted duplex types were determined by computing tool-speci¯c empirical P -values

for all the simulated duplexes.

To do this, 100 \random" duplexes were generated from each simulated duplex by

mono-nucleotide shu®ling of one of the sequences (the other sequence in the pair did

not change). Each tool was applied to the original as well as to 100 \random"

duplexes producing 101 interaction energies. The empirical P -value was computed as

follows:

Empirical P -valueð�Goriginal ¼ xj�Grand;T Þ ¼
Numð�Grand � xjT Þ

Numð�GrandÞ
; ð1Þ

where x is the inter-molecular hybridization energy (�Goriginal) outputted by the tool

T for the original duplex; �Grand ¼ f�Grand 1; . . . ;�Grand Ng is a set of interaction

energies predicted by the tool T for all the corresponding random duplexes;

Numð�Grand � xjT Þ is the number of random duplexes with the hybridization en-

ergy less or equal to x (i.e. the same or stronger interaction is observed for random

sequences) and Numð�GrandÞ is the total number of random sequences (N ¼ 100 in

our settings). It should be noted that inter-molecular hybridization energy is a

negative value and the smaller it is the stronger the predicted interaction.
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Empirical P -value less than 0.05 indicated that a tool predicted the existence of

inter-molecular binding (i.e. label = 1). On the other hand, a simulated duplex with

empirical P -value greater or equal to 0.05 corresponded to the case where no binding

was predicted (i.e. label = 0). By comparing the predicted labels with the known

duplex types (\true duplexes" or \two hairpins"), the numbers of True Positive

(TP), False Positive (FP), True Negative (TN) and False Negative (FN) predictions

were determined. Finally, the Matthews correlation coe±cient (MCC) was computed

for each tool:

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp : ð2Þ

2.1.3. Interaction energy calculation by RNAup

The following command is used in ASSA to compute the hybridization energy for

each putative duplex: \RNAup -o -b -w L", where -o indicates not to produce an

output ¯le and report the predicted free energy via STDOUT, -b takes into account

the probability of unpaired regions in both RNAs and -w speci¯es the maximum

length of the region of interaction. Sequence pairs of each putative duplex are

concatenated by the `&' character and passed to RNAup via STDIN. It should be

noted that the value of the -w parameter has a great e®ect on the RNAup execution

time (the larger the value, the longer the execution time). Our analysis of the 100

human lncRNA–mRNA pairs indicated that the majority of the identi¯ed antisense

sites (i.e. LASTAL local alignments) were shorter than 50 bp (see Supplementary

Fig. 1). Therefore, in ASSA, the value of the -w option is de¯ned as

minð50; antisense site lengthÞ). To speed up the calculation of the hybridization

energies for the long (> 50) antisense sites, the RNAup is applied to the site

sequences only (i.e. °anks are not added) with the -w set to 50. The produced

energies are then scaled up by multiplying to the ratio \antisense site length=50".

The RNAup run is the most time consuming step of the pipeline. Further speed up

of this step can be achieved by using the –num threads ASSA option that allows to

compute the free energies of all the putative duplexes independently in parallel.

Besides the interaction energies, RNAup also outputs the coordinates of the

predicted inter-molecular base pairing. Importantly, ASSA only considers hybrid-

ization energies from the sequence pairs where the location of the RNAup duplex

overlaps the original antisense site on both sequences. If the LASTAL and RNAup

predictions do not overlap, the �G of the putative duplex is set to 0.

2.1.4. Estimation of theoretical P-values

To study the dependence between the properties of the random sequences and the

distribution of SumEnergys, a training set was prepared. First, groups of random

sequences were generated. Each group consisted of 10 sequences with the same length

and GC content. Seven di®erent lengths (50, 100, 300, 1000, 2000, 4000 and 8000 nt)

and seven di®erent GC contents (30%, 40%, 42%, 50%, 56%, 60% and 70%) were
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considered. Two groups (\queries" and \targets") were generated for every Length/

GC content combination. In total, 49 query and 49 target groups were prepared. It

should be noted that short sequences (length = 50 and 100 nt) were included in the

training set in order to obtain a universal model that can be used to estimate the

statistical signi¯cance of the interactions between sequences in a wide range of

lengths.

Next, ASSA was applied to search queries versus targets. To reduce the number of

ASSA runs, the input group pairs were selected so that the queries were never longer

than the targets (i.e. L1 � L2). In total, 1372 ð¼ 7� 7� 7� ð7þ 1Þ=2) ASSA runs

were performed and each run produced 100 SumEnergy values (10 queries vs 10

targets).

Initially, the RNA–RNA interaction prediction was done with the relatively low

LASTAL score threshold equal to 30 (or 36 for long sequences with high GC con-

tent). To study the in°uence of this ASSA parameter on the distribution of

SumEnergys, the produced ¯les were post-processed by increasing the score threshold

and re-calculating all the SumEnergy values. In total, this allowed to produce 20,532

sets of SumEnergys that corresponded to di®erent sequence features as well as a wide

range of LASTAL score thresholds (from 30 to 105). It should be noted that some

random sequence pairs produced SumEnergys equal to 0 – e.g. when no putative

duplexes were identi¯ed because the sequences were too short or the score threshold

was too strict.

To select the probability distribution function (PDF) which ¯ts the produced

data better, we focused on the 3411 sets where all the 100 SumEnergys were negative

(i.e. none of them was equal to zero). Three candidate distributions (Gamma, Nor-

mal and Log-Normal) were considered. Since the Gamma and Log-Normal PDFs are

only de¯ned for values greater than zero, their parameters were identi¯ed from the

�1� SumEnergy values using the fitdistr() function from the MASS33 R library.

The Kolmogorov–Smirnov test P -values were calculated for all the 3411 sets with

respect to each of these three PDFs. The Gamma distribution produced the least

number of small (< 0:05) KS P -values (for 0.21% of the sets only) and was selected to

model the distribution of the SumEnergys produced by random sequences.

The Gamma distribution can be parameterized in terms of a shape parameter (�)

and a rate parameter (�) – both are positive numbers. To account for the fraction of

random sequence pairs that produced SumEnergy ¼ 0, we utilized the \hurdle

model",34,35 which in our case is a mixture of Bernoulli and Gamma distributions.

The basic idea is that a Bernoulli probability (P ¼ P ðSumEnergy 6¼ 0Þ) governs the
binary outcome of whether or not the SumEnergy equals to zero. If SumEnergy is not

zero, the hurdle is crossed, and the Gamma distribution governs the remaining

(nonzero) part of the distribution. The 20,532 empirical SumEnergy distributions

were used to train three linear regressions (see Supplementary Table 2). The

obtained models are used in ASSA to predict the expected background distribution

based on the features of the input sequences and the LASTAL score threshold for

Theoretical P -value calculation (see Supplementary text for more details).
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2.2. Transcriptome-wide all-vs-all search and repeat masking

Information about the genes expressed in the K562 cell line was taken from the

FANTOM52 database (sample id \CNhs12334.10824-111C5"). All the genes with

nonzero expression values were considered. For the alternatively spliced genes, the

longest isoform was selected only.

The \all-vs-all" BLASTn17 search was performed in the antisense mode (-strand

minus) with the seed length equal to 15 (-word size 15) and without a threshold on

the E-value (-evalue 999999). Thus, an antisense interaction was recorded between

any two transcripts which had at least one perfectly complementary duplex longer or

equal to 15 bp. The number of the antisense partners for each RNA was de¯ned as

the number of unique transcripts that produced at least one BLASTn local align-

ment with the query.

We ran the RepeatMasker in a quick mode (the -qq option) to mask the human-

speci¯c repeats (-species human) in all the sequences. Additionally, the -alu option

was used to restrict masking to the Alu repeats only.

2.3. Test sets to compare the RNA–RNA interaction prediction

tools on a large scale

The performance of di®erent RNA–RNA prediction tools was evaluated based on

their ability to detect experimentally identi¯ed targets of the lncRNA TINCR13 and

mRNA ACTB.9 Among thousands of TINCR antisense partners, we randomly se-

lected 100 transcripts with the length between 200 nt and 4000 nt (to reduce exe-

cution time of some RNA–RNA prediction tools) and without Alu-repeats (in order

to focus on the short-trans interactions). For the ACTB, all the 82 targets identi¯ed

in the HeLa cells were taken.

To estimate the ability of the computational tools to identify the true targets

among a large set of sequences, two types of test sets were prepared. The TINCR and

ACTB test sets of the ¯rst type (\mix with human transcripts") consisted of all the

selected true targets and a number of randomly selected human transcripts with

similar length and GC content. It should be noted that the false targets were selected

among the transcripts of the genes expressed in the corresponding cell types. To

identify such genes in keratinocytes, (where the TINCR pull down has been per-

formed) the reads from the input RNA-seq sample (run ID SRR539976 from the

NCBI GEO entry GSM986009) were mapped to the human genome (hg38) and the

7314 NCBI genes with at least 100 mapped reads were identi¯ed. In case of ACTB,

we considered the 1967 highly expressed genes with at least one interaction identi¯ed

by Aw et al.9 in HeLa cells. Nine \false targets" were selected for every \true target"

(see Supplementary Fig. 2) to simulate the assumed situation in cell where a long

RNA interacts with a limited number of other RNAs. To prepare the test sets of the

second type (\mix with shu®led sequences") every selected true target transcript was

used to generate nine di-nucleotide shu®led sequences using the uShu®le tool.36
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Therefore, each of the two TINCR test sets consisted of 1000 sequences with 100

of them being the true targets, while the ACTB test sets included 82 true and 738

false targets. Each tool was used to compute the interaction energy between the

query transcript (NR 027064 for TINCR or NM 001101 for ACTB) and sequence

from a test set. Predictions of the tools were used to rank all the sequences in each

test set and to build a ROC curve by using the ROCR37 R-package.

3. Results

3.1. Types of inter-molecular RNA–RNA interactions

Antisense interactions are usually classi¯ed into two groups – cis and trans. The

interactions of the ¯rst type occur between the products of the overlapping genes

that are transcribed in opposite directions. The resulting RNAs have one or several

(due to splicing) relatively long sites with perfect complementarity. All other

interactions are classi¯ed as trans (\not-cis") since they are formed between tran-

scripts produced from genes located in di®erent genomic regions.

Analysis of the published cases of the biologically active duplexes formed between

long RNAs (i.e. mRNA–mRNA, lncRNA–mRNA or lncRNA–lncRNA) in mammals

prompted us to expand the classical \cis-trans" classi¯cation of the natural antisense

transcripts. It should be noted that some RNAs produced from non-overlapping

genes are also able to form long (> 100 bp) highly complementary inter-molecular

duplexes. To better discriminate between di®erent classes of trans-interactions, we

divided the trans-category into three sub-categories – pseudo-cis, Alu-based and

short-trans interactinos.

The \pseudo-cis" sub-type of the trans RNA–RNA binding occurs when one of

the overlapping genes has an expressed copy (a paralog) at another genomic locus.

The gene copy harbors a sequence highly complementary to a part of the other gene

in the original overlap and, thus, can form trans-antisense duplexes with it. This

scenario has been observed in the case of expressed pseudogenes.38 Moreover, it has

been shown that such pseudogene related duplexes can be recognized by RNAi

machinery and produce functional siRNAs in mouse oocytes.39 Inversion of a geno-

mic region during gene duplication is another possible scenario for such NATs

formation.40

Sequence repeats of several classes occupy a signi¯cant portion of the human

genome. Up to 350 bp long with relatively high percent identity (> 70%) Alu-repeats

belong to the short interspersed nuclear elements (SINEs) class. They are frequently

present in lncRNAs or in the 3'UTRs of human mRNAs either in the direct or in the

reverse-complement orientation. It has been shown that a pair of transcripts with

Alu repeats in opposite directions are able to interact with each other and trigger

Staufen Mediated Decay (SMD)41,42 and/or regulate mRNA translation.43

To evaluate the fraction of the Alu-based interactions on a transcriptome scale,

\all-vs-all" BLASTn search was performed for the 10,664 genes expressed in the

ASSA: Fast identi¯cation of statistically signi¯cant interactions between long RNAs
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K562 cell line (see Methods). We observed linear dependance of the number of

predicted antisense partners on the query transcript length. Surprisingly, the ana-

lyzed RNAs formed three distinct clusters (see Fig. 2(a)). To check whether the

origin of these clusters was related to the Alu repeats, we applied the RepeatMasker

software44 to the the 10,664 sequences and identi¯ed 2212 Alu-containing tran-

scripts. Next, all the RNAs were classi¯ed into three categories according to the

presence and direction of Alu repeats that matched well with the three clusters

Fig. 2. Alu-based hybridization is the main type of the repeat-based antisense interactions between human
transcripts. Dependence between the query transcript length and the number of antisense partners is

shown for three types of masking: (a) no masking, (b) masking of the Alu-repeats only and (c) masking of

all the repeats (as identi¯ed by the RepeatMasker). Each dot on the graph corresponds to one transcript

used as search query. The 8452 transcripts without Alu repeats are blue; the 1807 transcripts with all
Alu(s) in one orientation are red; the 405 transcripts with at least one Alu repeat in the direct orientation

and at least one Alu repeat in the reverse orientation are green.
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(see Fig. 2(a)). Indeed, the transcripts with two or more Alu-repeats in di®erent

directions are able to form inter-molecular duplexes with any other Alu-containing

transcript. RNAs with Alu(s) in one orientation can only hybridize with the tran-

scripts containing complementary repeat sequence. Clearly, transcripts without

Alu's have the lowest antisense potential since they can not participate in the Alu-

based interactions.

To further con¯rm the observed role of the Alu repeats, we masked them in all the

2212 sequences and repeated the \all-vs-all" search (for the 10,664 transcripts). With

this modi¯cation, all the RNAs followed the same trend of increasing the number of

possible antisense partners with the sequence length (Fig. 2(b)). This indicated that

the two transcript clusters with the higher number of RNA–RNA interactions (the

red and green dots in Fig. 2(a)) appeared due to the presence of Alu repeats in the

corresponding sequences. Furthermore, we masked repeats of all types (7.8% of

the total sequence length) and performed the \all-vs-all" search once again. No

signi¯cant change was observed this time (compare (B) and (C) in Fig. 2) suggesting

that the ability to signi¯cantly increase the number of possible antisense targets of a

transcript is the unique feature of the Alu elements. Thus, we concluded that Alu-

based base pairing plays the major role in the repeat-associated interactions in the

human transcriptome.

It should be noted that a number of large scale computational studies19–21 have

masked repeats of all types in the transcript sequences prior to the antisense search to

avoid the prediction of the large number of repeat-based interactions. Our results

indicated that the same e®ect can be achieved by masking the Alu repeats only while

preserving other potentially informative parts of the sequences. This approach was

used in the present study where applicable.

Finally, apparent long sites with high complementarity have not been found in a

number of trans-antisense interactions.8,45 This makes it di±cult to identify the exact

regions of inter-molecular hybridization between the corresponding RNAs. The

authors of the corresponding papers have hypothesized that in such cases the observed

bindings may be based on several relatively short and not-perfectly complementary

duplexes. We refer to this sub-type of trans binding as \short-trans-interactions".

3.2. The ASSA algorithm

Among the four introduced types of inter-molecular RNA–RNA hybridization, three

(cis, pseudo-cis and Alu-based) are based on relatively long, highly complementary

duplexes. Thus, even sequence alignment algorithms that do not take secondary

structure into account can detect interactions of these types.19,46,47

However, the short-trans category is di®erent. The presence of multiple small

duplexes distributed along the sequences makes it di±cult to localize the exact

interacting regions both experimentally and computationally. In addition, a number

of spurious short sites with imperfect complementarity can be predicted by the

alignment tools.

ASSA: Fast identi¯cation of statistically signi¯cant interactions between long RNAs
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On the other hand, thermodynamics algorithms discriminate between RNA

regions that are parts of stable secondary structures (i.e. involved in intra-molecular

interactions) and the unpaired sites accessible for inter-molecular base pairing. Thus,

the computed free energies re°ect both the accessibility and the length/comple-

mentarity of the speci¯c transcript regions. This is why interaction energy calcula-

tion is expected to improve the prediction accuracy of the short-trans

interactions.23,24 It is unpractical to apply the traditional thermodynamics tools to

the long transcripts (such as mammalian mRNAs or lncRNAs) because the execution

time grows quickly with the lengths of the input sequences.14,15,28 At the same time,

recent experimental data9–13 have indicated that the short-trans base-pairing may be

the most abundant interaction type in the human transcriptome.

Thus, the two main challenges in predicting short-trans hybridizations between

long (> 200 nt) RNAs on a large scale are (i) the execution time of existing

thermodynamics-based algorithms and (ii) the identi¯cation of the statistically sig-

ni¯cant interactions among all the transcript pairs. Here we present a new compu-

tational pipeline, called ASSA (\AntiSense Search Approach"), developed in

attempt to address both of these problems. It should be noted that ASSA is able to

identify interactions of all types, but our main goal was to make a progress in the

most challenging direction–prediction of the short-trans binding.

Brie°y, ASSA performs the following main steps (see Fig. 3) to predict interaction

between each pair of input transcripts: (i) identify antisense sites by the local se-

quence alignment algorithm LASTAL18; (ii) extract sequence regions corresponding

to the predicted antisense sites and compute hybridization energies of the putative

duplexes; (iii) compute the RNA–RNA interaction energy by summing the hybrid-

ization energies of all the putative duplexes and (iv) estimate the statistical signi¯-

cance (\theoretical p-value") of the obtained SumEnergy. These steps are discussed

in more details below.

Fig. 3. The main steps of the ASSA pipeline.
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3.2.1. Predicting antisense sites by LASTAL

ASSA takes two sets of nucleotide sequences as input (the query and the target

transcripts). On the ¯rst step, the local sequence alignment tools from the LAST

package18 are used to identify the regions of local complementarity for each sequence

pair by searching all the queries versus all the targets (see Methods). In this work, we

refer to each produced local alignment as the \antisense site". This approach is

adopted from another large scale study of the RNA–RNA bindings between human

transcripts.22 The advantage of using LASTAL over other aligners (such as

BLASTn17) for predicting antisense interactions is that it allows to use a custom

substitution matrix with appropriate scores for the RNA-speci¯c hybridization rules

(i.e. G:C, A:U and G:U base pairs-see Methods).

ASSA antisense sites are selected based on the local alignment scores rather than

the alignment length and/or percent complementarity (a similar approach is used in

the RIblast algorithm24). The threshold on the LASTAL alignment scores is one

of the pipeline parameters.

On the next ASSA step, a thermodynamics-based algorithm is used to compute

the hybridization energies of the \putative duplexes" which are de¯ned as RNA

regions consisting of the antisense sites together with the °anking sequences on both

sides. Several thermodynamics-based algorithms can be used for this purpose. To

choose the tool which suits the ASSA pipeline best, we compared their performances

on a simulated dataset.

3.2.2. Choosing a thermodynamics-based tool to compute hybridization energies

We considered 12 thermodynamics-based tools as candidates to be used in the ASSA

pipeline for calculation of hybridization energies of the putative duplexes. The per-

formances of these algorithms were compared on a test set consisting of 360 short

sequence pairs that resembled the putative duplexes in ASSA. Both sequences in a

pair had the same length ranging from 25 to 140 nt.

There were two types of simulated duplexes in the test set. The ¯rst one (\true

duplexes") corresponded to the cases of true inter-molecular hybridizations that were

not interfered by the local secondary structures. In these duplexes, the middle part of

each sequence represented a putative antisense site (a gapless LASTAL local

alignment) of a particular length and percent complementarity °anked by the ran-

dom sequences on both sides. The second type of the simulated duplexes (\two

hairpins") represented the situation where the regions of both RNA molecules cor-

responding to an antisense site interact with the °anking regions to form local sec-

ondary structures. Importantly, the percent of complementarity of intra-molecular

hybridization was greater than that of the inter-molecular binding (see Methods for

details). The test set consisted of 180 simulated duplexes of each type.

Each tool was used to predict the type of every duplex. The prediction accuracy of

an algorithm was determined by comparing the predicted and the true duplex types.

According to the obtained Matthews correlation coe±cients, RNAup32 produced the

ASSA: Fast identi¯cation of statistically signi¯cant interactions between long RNAs
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most accurate labeling of the simulated duplexes (see Supplementary Fig. 3). Thus,

this tool was incorporated in the ASSA pipeline.

3.2.3. Preparing putative duplexes and calculating SumEnergies

Execution time of the thermodynamics-based algorithms does not allow to directly

use them for analysis of long transcripts on a large scale. The interaction energy is

e±ciently computed in ASSA by applying RNAup to the speci¯c sequence chunks

(\putative duplexes") rather than the full-length transcripts. A putative duplex is

generated by extracting regions of two transcripts that correspond to an antisense

site together with the °anking sequences on both sides (see Methods).

Adding °anks to an antisense site allows RNAup to compute the inter-molecular

hybridization energy with respect to the local RNA secondary structure. The °ank

length in°uences both the accuracy and the execution time of the ASSA pipeline. On

one hand, longer °anks allow to take more elements of the RNA secondary structure

into account. On the other hand, the RNAup takes more time to process longer

sequences. By default, the length of each °ank is equal to the length of the corre-

sponding LASTAL alignment. This approach can be considered as a tradeo® be-

tween the time and accuracy.

In ASSA, the interaction strength between two transcripts is measured by the

sum of the hybridization energies of all the putative duplexes (SumEnergy). It

has been shown that SumEnergy outperforms MinEnergy in predicting binding

between human transcripts.23 It should be noted that both the duplex �G and the

RNA–RNA SumEnergy are negative values and the smaller they are the stronger the

corresponding hybridization will be.

Notably, any RNA–RNA prediction tool (including ASSA) outputs some value of

the interaction energy even for random sequences. We observed that the distribution

of the SumEnergy values computed by ASSA depended on the features of random

sequences (lengths and GC contents) as well as on the LASTAL score threshold (see

Fig. 4). We were interested in identifying the mammalian transcript pairs with the

SumEnergy values smaller (stronger interactions) than the ones produced by random

sequences with the same lengths and GC contents. Thus, on the next ASSA step, the

statistical signi¯cance (P -value) of each SumEnergy is estimated by comparing the

observed value with the distribution produced by the corresponding random

sequences.

3.2.4. Estimating the statistical signi¯cance of the SumEnergy

The ability to quickly estimate the statistical signi¯cance (\Theoretical P -value") of

the interaction energies taking into account the lengths and GC contents of the

corresponding transcripts is the main novelty of the ASSA pipeline.

Any p-value is computed by comparing the observed value with the distribution of

the values generated by the \null" model (the background distribution). In ASSA, the

observed value is the SumEnergy calculated for a particular transcript pair. Random

I. Antonov et al.
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(e) SumEnergy � score

Fig. 4. Dependence of the SumEnergy distribution on (a–d) the features of the input sequences (L1, L2,
GCaver, GCdi®) and (e) the LASTAL score threshold. Each distribution is based on the SumEnergy

values obtained for 100 pairs of random sequences with the parameters indicated in the chart titles. The

values of the parameter indicted as \X" are on the X-axis of the corresponding chart.
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sequences are frequently used in bioinformatics as the \null" model. Thus, a back-

ground distribution can be generated by applying ASSA with the same parameters to

a number of random sequences generated by shu®ling the nucleotides in the original

transcripts. The \Empirical P -value" can then be directly calculated from the

obtained empirical background distribution (see Eq. (1) in Methods).

The problem with this approach is that it requires a lot of simulations to estimate

small p-values. For example, the SumEnergy computed by ASSA for lncRNA-ATB

and IL1148 was �386:59 kcal/mole. To estimate the statistical signi¯cance of this

value each sequence was mono-nucleotide shu®led 30 times and all-versus-all ASSA

search was performed producing an empirical background distribution consisting of

900 SumEnergy values (Fig. 5(a)). The smallest value observed for random sequences

was �220:56 kcal/mole. Thus, with this number of simulations, the Empirical

P -value was equal to zero which meant that the actual P -value was less than

1=900 ¼ 0:0011 and a larger background dataset was needed to get a better estimate.

A common approach to obtain estimates for small P -values without generating

enormous amount of random sequences is to approximate the empirical background

distribution with a function and use it to compute the statistical signi¯cance of the

observed value. The SumEnergy distribution produced by ASSA for random

sequences can be approximated by a mixture of the Bernoulli and Gamma dis-

tributions (the hurdle model34,35) ��� see Methods. We applied this approach to the

interaction between lncRNA-ATB and IL11 and obtained the \Empirical hurdle

model P -value" ¼ 8:3� 10�7 (see Fig. 5(b)).

As was mentioned above, the distribution of the SumEnergy values depends on

several factors – the transcript lengths (longer transcripts produce more putative

duplexes) and GC-contents (G::C base-pairing is stronger than the A::T) as well as

the LASTAL search threshold (Fig. 4). Thus, sequence-speci¯c background dis-

tributions should be generated for calculation of the Empirical P -values (with or

without the use of the hurdle model). It is computationally challenging to use this

measure for estimating statistical signi¯cance of the numerous SumEnergy values

obtained in large-scale searches.

To tackle this problem, we analyzed the dependence between the distribution

parameters and the features (length and GC content) of the random sequences as

well as the LASTAL score threshold. In short, ASSA was applied to a number of

random sequences with various lengths and GC-contents. Three parameters of the

hurdle model (P , mean and variance) were computed for each distribution of the

SumEnergy values. The generated dataset was used to train three linear regression

models to predict each of the hurdle model parameters based on ¯ve features (log

(L1), log(L2)), GCaver, GCdi® and score–see Methods for more details). The de-

rived formulas are used to predict the expected background distribution and com-

pute the \Theoretical hurdle model P -value" (or simply \Theoretical P -value") for

every transcript pair analyzed by ASSA (Fig. 5(c)).

The goal of the developed mathematical model is to quickly and reliably estimate

the statistical signi¯cance of an observed SumEnergy value. This implies that the

I. Antonov et al.
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Theoretical and the Empirical P -values should be similar for the same transcript

pairs. To check the correspondence between these two measures 10 lncRNAs and

10 mRNAs without Alu repeats and with the lengths between 200 and 4000 nt were

randomly selected from the human transcriptome. Both the Theoretical and the

Empirical hurdle model P -values were computed for all the 100 lncRNA–mRNA

pairs using two di®erent LASTAL score thresholds. In both cases, the Pearson

Empirical P−value = 0.0e+00

−1*SumEnergy
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Fig. 5. Three types of P -values computed for the short-trans interaction between the lncRNA-ATB

(ENST00000493038) and IL11 (NM 000641.3). With the LASTAL score threshold set to 36, the SumE-

nergy outputted by ASSA was �386:59 kcal/mole (indicated by the thick bar above each X-axis). Note
that distributions of the �1� SumEnergy are plotted on the graphs. (a) The \Empirical P -value" was

calculated based on the distribution of the SumEnergies obtained for 900 random sequence pairs generated

by mono-nucleotide shu®ling of the original transcripts. (b) The MLE-estimates of the hurdle model
parameters (P = 1.0, shape = 6.467, rate = 0.0686) were obtained from the empirical distribution and the

\Empirical hurdle model P -value" was computed. (c) The \Theoretical P -value" was also computed using

the hurdle model, but the parameter values (P = 0.94, shape = 6.567, rate = 0.0786) were predicted based

on the sequence features (L1 = 2381 nt, L2 = 2446 nt, GCaver = 50.28%, GCdi® = 12%) without using the
empirical distribution.
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correlation coe±cient between the log's of the P -values was greater than 90%

(Supplementary Fig. 4) indicating that the Theoretical P -values can be considered as

a reasonable approximation of the Empirical hurdle model P -values.

It should be noted that ASSA output also includes the FDR-corrected Theoretical

P -values to account for the database size and multiple testing.

3.2.5. Choosing the default value for the LASTAL score threshold

The in°uence of theLASTAL score threshold on the ASSAperformance was evaluated

on four validation sets, not overlapping with the test sets. The score values between 30

and 50 were considered. It should be noted that ASSA execution time also depends on

the value of this threshold asmore putative duplexes are predicted byLASTALwhen a

weak threshold (a small score) is used. Our analysis demonstrated that the score

threshold 36 produced one of the best average AUC values and reduced the ASSA

execution time (see Supplementary Fig. 5). Therefore, this value was selected as the

default in ASSA and it is used throughout this work (if not stated otherwise).

3.3. Properties of ASSA P-values computed for random sequences

One important property of every P -value is that it is uniformly distributed between

0 and 1 when computed for the objects from the \null-model".49,50 In case of ASSA,

the \null-model" is a pair of random sequences. To check whether this property holds

for Theoretical P -values, the 10 lncRNAs and 10 mRNAs were mono-nucleotide

shu®led and the Theoretical and the Empirical hurdle model P -values were computed

for the 100 random sequence pairs. As anticipated at the level of p-value < 0:05, four

random sequences pairs out of 100 had Empirical P -value < 0:05. Moreover, the

Kolmogorov-Smirnov test for the uniform distribution applied to the 100 Empirical

observations produced P -value 0.065 con¯rming that the distribution of this measure

is indeed close to uniform (see Supplementary Fig. 6(a)). On the other hand, the

obtained 100 Theoretical P -values were not exactly uniformly distributed (there were

10 sequence pairs with the Theoretical P -value < 0:05 and the corresponding

Kolmogorov–Smirnov P -value was 0.032 ��� see Supplementary Fig. 6(b)). Still, the

correlation between the Theoretical and the Empirical hurdle model P -values was

83% (Supplementary Fig. 6(c)). This analysis demonstrated that ASSA have a ten-

dency to predict P -values that are slightly stronger than the corresponding true

estimates. This may be explained by the fact that the Maximum Likelihood approach

(used for Empirical hurdle models) provides better estimates of the Gamma distri-

bution parameters than the method of moments used in ASSA. Nevertheless, given

the high correlation with the Empirical hurdle model P -values (Supplementary Fig. 4

and Supplementary Fig. 6(c)), Theoretical P -values may still be useful to identify the

statistically signi¯cant RNA–RNA interactions in a large scale search.

As mentioned above, one of the problems with the interaction energy is that it

depends on the lengths and GC contents of the input sequences (Fig. 4). Theoretical

P -values computed by ASSA not only estimate the statistical signi¯cance of the
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observed SumEnergys, but also provide automatic normalization to the features of

the input sequences. Indeed, every P -value is computed with respect to the back-

ground distribution that takes into account the lengths and the GC contents of both

transcripts in a pair. To check whether Theoretical P -values are indeed normalized

to the sequence properties, two types of random sequence sets were generated. Each

set consisted of 100 random sequence pairs. The four sets of the ¯rst type had

di®erent lengths (from 1000 to 4000 nt), but the GC content of all the sequences was

the same (50%). On the other hand, the sets of the second type had di®erent GC

contents (from 35% to 65%), but the length was the same (3000 nt). Theoretical

P -values were computed for all sequence pairs. There was almost no dependance

between ASSA P -values and the features of the random sequences (see Supple-

mentary Figs. 7(a) and 7(b)). It should be noted that the SumEnergys computed by

RIblast24 for the same sequences demonstrated strong dependence on both the length
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Fig. 6. Performance of di®erent RNA–RNA prediction tools on four test sets.
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and the GC content (see Supplementary Fig. 7(c) and 7(d)). For example, the me-

dian RIblast SumEnergys for 3kb sequences with GC contents 35% and 65% were

�67 and �694 kcal/mole, respectively (the corresponding ASSA P -values were 0.479

and 0.703).

Overall, the results obtained for random sequences demonstrated that the The-

oretical P -values are highly correlated with the Empirical P -values and provide

automatic normalization to the sequence properties. The main advantage of this

measure is the ability to compute it quickly without generating random sequences.

Thus, ASSA P -values can be considered as the ¯rst approximation of the statistical

signi¯cance of the RNA–RNA interaction energy.

3.4. ASSA predictions for functional NATs

In order to evaluate ASSA performance on real RNA sequences, we applied it to the

34 mammalian natural antisense transcripts (NATs) collected from the literature –

11 cis, 4 pseudo-cis, 10 Alu-based and nine short-trans cases (see Supplementary

Table 3). ASSA P -values computed for cis, pseudo-cis and Alu-based interactions

were very strong due to the existence of long (>100 bp) duplexes with high percent of

complementarity.

By contrast, only ¯ve out of nine short-trans interactions had Theoretical

P -values < 0:05. The inability of ASSA to classify some of the short-trans cases as

statistically signi¯cant could be an artifact of the method of moments used in ASSA

to predict the parameters of the background distribution. To ¯nd out whether the

inter-molecular hybridizations between the corresponding transcript pairs are sta-

tistically signi¯cant, the same distribution parameters were obtained by the Maxi-

mum Likelihood Estimation approach and the Empirical hurdle model P -values were

obtained from the SumEnergys computed by ASSA or RIblast for the shu®led ver-

sions of the same sequences. In all four cases, ASSA Empirical P -values agreed with

the Theoretical estimates (the Empirical P -value 0.043 is assumed to be not sta-

tistically signi¯cant – see Supplementary Figs. 8(a)–8(d). Once again, this result

con¯rmed the good correspondence between the Theoretical and the Empirical

ASSA P -values. Interestingly, two out of the four cases were statistically signi¯cant

according to the interaction energies computed by RIblast (see Supplementary

Figs. 8(e)–8(h). This indicates that ASSA may not be sensitive enough to detect

some of the short-trans interactions. Additional analysis is needed to pinpoint the

parts of the pipeline that should be improved to handle such cases.

According to the obtained results, Theoretical P -values computed by ASSA are

suitable to predict all types of antisense interactions between long RNAs. However,

the identi¯cation of the short-trans interactions remains the most challenging task.

3.5. Comparison of ASSA with other tools

We compared the ability of ASSA to identify short-trans RNA–RNA interactions

on a large scale with the following tools that were used for this purpose in other
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studies – BLASTn,17 DuplexFold,25 GUUGle,26 IRIS,27 LASTAL,18 LncTar,16

RIBlast,24 RIsearch2,51 RNAduplex,31 RNAPlex14 and RRP23. To evaluate the

ability of the tools to predict the short-trans interactions, we used the experimentally

identi¯ed targets of the lncRNA TINCR13 and mRNA ACTB9. It has been shown

that at least some of the identi¯ed transcripts are associated with these RNAs

through direct short-trans antisense duplexes.

To exclude the possibility of Alu-based interactions with TINCR (that has an Alu

repeat), the Alu-free transcripts were used for the TINCR test sets. The ACTB

mRNA does not have Alu repeats. In total, four test sets were prepared (see Meth-

ods). Each tool was used to rank the sequences from every test set according to the

predicted hybridization strength with the query (TINCR or ACTB). The ASSA

output sorted by the Theoretical P -values outperformed all the tools in terms of the

Area Under the Curve (AUC) and partial AUC (pAUC) on both test sets of the \mix

with shu®led sequences" type (see Figs. 6(a) and 6(c), Supplementary Figs. 9 and 10

and Supplementary Table 4). The AUC values produced by ASSA were above 80%

which improved the performance of the second best tool by more than 10%.

The performance of all the tools decreased on the two test sets of the \mix with

human transcripts" type (see Figs. 6(b) and 6(d). For the TINCR and ACTB

interactions, the most accurate algorithms produced AUC values around 54%

(BLASTn and RIblast) and 63.6% (RNAplex-a), respectively.

Our analysis demonstrated that ASSA was able to accurately identify true

interactions of long RNAs (TINCR or ACTB) in the mix of human transcripts with

shu®led sequences. At the same time, other tools performed better on the test

sets consisting of human transcripts only but the produced accuracies were relatively

low. Thus, there is a room for further improvement of the RNA–RNA prediction

tools.

4. Discussion

The goal of our work was to improve the accuracy and the speed of prediction of

inter-molecular interactions between long transcripts (i.e. lncRNAs and mRNAs).

For this purpose, we developed a new computational pipeline ASSA. To speed up the

time-consuming traditional thermodymanics tools, we obtained a set of local align-

ments (by the sequence aligner LASTAL) that allowed to restrict the calculation of

the interaction energies (by the RNAup algorithm) to a limited number of relatively

short parts of the input transcripts. The main novelty implemented in ASSA was a

mathematical model that allowed to quickly estimate the background distribution

and compute the statistical signi¯cance (Theoretical P -value) of the observed RNA–

RNA hybridization energy. Sorting the predicted interactions by the P -value rather

than the SumEnergy allowed ASSA to outperform other tools on two out of the four

test sets. It should be noted that ASSA is one of the fastest tools that takes RNA

secondary structure into account. This makes it a good candidate to perform tran-

scriptome-wide searches.
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Roughly speaking, ASSA can be viewed as a three stage algorithm ��� the

LASTAL and RNAup runs followed by the calculation of P -values. The prediction

accuracy is improved gradually in the pipeline since every step takes additional piece

of information into account. First, the interactions are predicted by LASTAL

without considering RNA secondary structures and estimating the statistical sig-

ni¯cance. This step is similar to the approach used by Szczesniak et al.22 and the

\LASTAL (SumScore)" performance provides an estimate of its prediction accuracy

(the average AUC value over the four test sets was 55.7% ��� see Supplementary

Table 4). Next, RNAup takes secondary structure into account by computing inter-

molecular hybridization energy. In terms of ROC statistics, this improves the ac-

curacy by 3.5% (the average AUC value of the \ASSA (SumScore)" approach was

59.3%). Notably, at this step, ASSA is similar to the RIblast algorithm which pro-

duces similar average AUC value (60%). Finally, calculation of P -values with respect

to the sequence features allowed to sort all the predictions in the most accurate way

providing an additional 8.4% increase in the accuracy which made the average AUC

value produced by ASSA equal to 67.7%.

In our study, we also suggested an improvement to the classical cis/trans clas-

si¯cation of the antisense interactions. Based on the origin of the regions involved in

inter-molecular hybridizations, three subtypes of the trans-interactions were intro-

duced: pseudo-cis, Alu-based and short-trans interactions. Importantly, we demon-

strated that among all types of sequence repeats in the human genome, Alu repeats

have a striking in°uence on the ability of a transcript to base pair with other RNAs

and, therefore, participate in post-transcriptional gene regulation.41,42

Inter-molecular RNA–RNA hybridizations may form yet another layer in the

gene regulatory network. It should be noted that the bioinformatics prediction of a

RNA–RNA interaction is not su±cient to make conclusions about its functionality or

even realization in the cell. There are other factors that should be taken into account,

including the cellular localization of the RNAs as well as the presence of speci¯c RNA

binding proteins. Probably, these reasons contributed to the poor performance of all

the tools on the \mix with human transcripts" test sets. Thus, the search for new

biologically active NATs is a more complex task than prediction of antisense part-

ners. Nevertheless, we believe that further improvement of the RNA–RNA interac-

tion detection methods (both computational and experimental) is a necessary step in

this direction.

5. Conclusions

. A new computational pipeline ASSA was developed for identi¯cation of inter-

molecular hybridizations between long RNAs.

. ASSA provides statistical signi¯cance estimate for every predicted RNA–RNA

interaction computed by a custom mathematical model.

. A special role of the Alu-based interactions in the human transcriptome was em-

phasized.
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