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Abstract

Positive recurrence of one-dimensional diffusion with switching with an additive Wiener process
and with one recurrent and one transient regime is established under suitable conditions on the
drift in both regimes and on the intensities of switching.
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1. Introduction

On a probability space (92, F,(F;),P) with a one-dimensional (F;)-adapted Wiener process
W = (Wy)¢>0 on it, a one-dimensional SDE with switching is considered,

dXt=b(Xt7Zt) dt+dW;, t>0, Xo=uz, Zy=z,

where Z; is a continuous-time Markov process on a finite state space S = {0,1} with (positive)
intensities of respective transitions Ag1 =: g, & A\1p =: A1; the process Z is assumed to be indepen-
dent of W and adapted to the filtration (F%). In the first instant we assume throughout the paper
that these intensities are constants; this may be relaxed. Under the regime Z = 0 the process X
is assumed positive recurrent, while under the regime Z = 1 its modulus may increase “in square
mean” with the rate comparable to the decrease rate under the regime Z = 0. This intuitive
wording will be specified in the assumptions. Denote

b(x,0) =b_(z), b(z,1)=by(x).

The problem addressed in this note is to find sufficient conditions for the positive recurrence
(and, hence, for convergence to the stationary regime) for solutions of SDEs with switching in
the case where not for all values of the modulating process the SDE is recurrent, and where it
is recurrent, this property is “not very strong”. Earlier such a problem was tackled in [3] in
the exponential recurrent case; its method apparently does not work for the weaker polynomial
recurrence. A new approach is offered. Other SDEs with switching were considered in [1, 5, 6, 7],
see also the references therein. Neither of these works address exactly the problem which is attacked
in this paper: some of them tackled an exponential recurrence, some other just a recurrence versus
a transience.
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2. Main result: positive recurrence

Since the drift b is Borel measurable in x and bounded, a strong solution of the system exists
and is pathwise unique, see [9]. Also, conditions sufficient for positive recurrence and convergence
for one of the frozen values of Z will be assumed. As it was said, Z takes just two possible values
0 and 1, with constant intensities of transitions between them. Under the state Z = 0 the process
X is assumed to be positive recurrent (see [8]), while for Z = 1 the opposite — i.e., transient — with
a comparable rate, see below. The goal is to establish the overall positive recurrence, under certain
additional combined assumptions on the intensities of Z and on the drift of X in both regimes.

We will use a “Lyapunov function” z2, but the reader should have in mind that, in fact, it serves
as a “fair” Lyapunov function — that is, decreases on average while away from some neighbourhood
of the origin — only under the regime Z = 0. So, it could be called a partial Lyapunov function.
However, under the regime Z = 1 the same function helps evaluate and keep under control the
averaged increase of the value of the second moment of the process.

Theorem 1. Let the drift b be bounded and let there exist r—,ry, M > 0 such that
wo_ () < —r_, aby(z) <4ry, Viz[> M, (1)

and M@ +1) 1
T+

o >1 & wpli=0ET oo 2

" I WC T R @
Then the process is positive recurrent; in particular, there exists C > 0 such that for all M; large
enough and all x € R

]EzTMl < C(zQ + 1)7 (3)
where
Tan = 1nf(t >0 | Xy < My).

Moreover, the process (Xt, Z¢) has a unique invariant measure, and for each nonrandom initial
condition x, z there is a convergence to this measure in total variation when t — co.

Note that the constant C' here in (3) is computable. The meaning of the assumption on r1
in (2) is that the process should spend more time in the “negative” regime than in the “positive”
one, with a correction due to the bounds r; and r_; the condition 2r_ > 1 is necessary for the
approach: it serves for the existence of the invariant measure. In fact, for the claim of the theorem
it suffices to assume

1 )\0(27’+ + l)

2ro>1 & kK <1

M2 1) ’

although, it would change the constant C' in the right hand side of the bound (3). However, with
the bound 1/2 instead of 1 the calculus — severely truncated in this short presentation — seems
more explicit, so we have assumed (2). Let M; > M let us define the sequence of stopping times

To:=inf(t>0:2Z, =0),
and further
0<To<hi<Tha<...,
where each T}, is the next moment of switch of Z, and denote
T:=1inf(T, > 0: |Xq,| < M),
where the choice of M will be specified later. Note that a7, < 7, so it suffices to evaluate E,7.
In what follows it will be chosen € > 0 such that 2Xg(2r4 +1+€) = Ai(2r— — 1 —¢) (see (2)).
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3. Sketch of the proof
Let > M for definiteness: the case x < —M is fully similar.

Lemma 1. Let the assumptions of the theorem hold true. For any § > 0 there exists M such that

Ty To
sup E (/ 1( inf |X |§]V[)dt\Z0=0>+ sup [, (/ 1( inf |X |§]V[)dt\Z0=1> <4 (4
NS TRV EC= STV N EC=

Proof. Let X,f7 i = 0,1 denote the solution of the equation
dX}!=b(X},i)dt +dW;, t>0, X§=u.

Let Zy = 0, then Ty = 0. Due to uniqueness, the processes X and X© coincide a.s. on [0, 73], and
due to the independence of Z and W, and, hence, of Z and X9, we have

Ty T
i < M)dt|Zy=0) = i 0 <
E, (/0 l(ogfgt | Xs| < M)dt| Zy 0) ]EI/O I(Og;fgt | XJ| < M)dt
e 0 * 0
=K, i < = ’ i <
EL/O 1(t < Tl)l(ogfgt | X¢| < M)dt /0 E, 1(t < Tl)IF’(ngSt | X¢| < M)dt
o0
— _ i 0 <
/0 exp( )\gt)]P(ngSt\Xs\ < M)dt.
So, it suffices to take ¢ such that
o0
/ e M0%ds < §/4,
t
and then, by virtue of the boundedness of b, to choose M; > M such that for this value of ¢
. O <
tIP’I(Olsr;fSt | XS] < M) <d/4.
The bound for the second term in (4) follows by using the process X' and the intensity A\;. QED

Lemma 2. Let the assumptions of the theorem hold true. If My is large enough, then for any
‘Z ‘ > M

(Ea(XhnrlZ0 = 0)+ 0 (2 — 1) = ) V (Ba(XhrlZ0 = 1) = A (2 +1) +6) <o (5)
Proof. Recall that Ty = 0 under the condition Zy = 0. By Ito’s formula
dX? — 2XdW; = 2X;b(Xy)dt + dt < (—2r_ + 1)dt,

where the latter inequality holds on the set (|X;| > M) due to the assumptions (1). Further (here

Ib]| = sup,, |b(x)]), since 1(|X¢| > M) =1 — 1(|X;| < M), we obtain
Ty AT T\ AT "TIAT
/ 2X,b(X,)dt = / 2Xb(X)1(1Xe| > M)dt + / 2X,b(X)1(|X,| < M)dt
0 0 0
TiAT TiIAT
< —2r,/ 1(|1X| > ]VI)dt—‘r/ 2M ||b]|1(| X, | < M)dt
0 0

TiAT TINAT
= —2r,/ 1dt+/ @M |b]| + 2r_)1(1X,| < M)dt
0 0

TiAT Ty AT
< 727"_/ 1dt + (2M||b]| + 2r_)/ 1(|1 X < M)dt.
0 0
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Thus, always for > M (recall that > M, so the condition |z| > M; coincides with z > M),
Ti AT TiAT TiINAT
IEI/ 2Xb(X,)dt < —zr,E/ 1dt + (2M || +27L)E1/ 1(Xe| < M)dt
0 0 0

T\ AT Ty AT
= 727"_]}2/ 1dt + (2M|[b]| + 27"_)]Ew/ 11X, < M)t
0 0

Ty

TINT
< —2L]E/ 1dt + (2M b +2r,)]Ez/ 11X, < M)dt
0 0

TiAT
< —2LIE/ 1dt + (2M][b]| + 2r_)6.
0
For our fixed € > 0 let us choose § = Ay 'e/(2M ||| +2r_). Then, since & > M implies Ty AT = T},
Ty
Eo X3 pr — 2% < (29 — 1)Ew/ dt+Xgte = -Xgt((2r- — 1) — ).
0

Hence, the first part of the bound (5) follows. The second one can be proved similarly. QED

Lemma 3. Let the assumptions of the theorem hold true. Then, if My is large enough,

Eo(XfyprlZ0 = 0) < Bo(XF a1 Z0 = 0) + AT (24 +1) +€)), (6)
Eo (X prlZ0 = 1) < Bo(XF 0,120 = 1) = Ao (24 — 1) — €)). M

Proof. Let Zy = 0; recall that it implies Ty = 0. If 7 < T7, then (6) is trivial. Let 7 > 7. Similarly
to the above, but using now the solution X} of the equation

dX} =b(X}, 1) dt +dW,, t>T1, Xi, =Xn
instead of X, by choosing M large enough, due to the assumptions (1) we guarantee the bound

U(|X7y| > M1)(Exp, XFynr — Xy 2r) < 1(1X7y > M)(Exy, (T2 = T1)((2r4 + 1) + )

= +1( X7 | > M)A H(2rg + 1) + ).
It was used that || A |Xq,| > M, implies Th < 7. In particular, it follows that for |z| > M;

(Exp, Xfynr — Xfinr) < L(IXT| > M1)(Bxy, (T — T1)(@2r4 +1) +€))

= +1(X7| > M) (24 +1) + ),
because [ X7, | < M implies 7 < T and ]EXTIX%Z/\T — X2 .. =0. So, still for |z > M,
B, (Exgy Xhnr — Xhn) < Eol(IXn] > M)OTH(@rs + 1) 4+ 0) < AT (2 + 1) +0).

The inequality (6) follows. For Zy = 1 we have Tp > 0, and the bound (7) follows similarly. QED
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In fact, the bound (6) is analogous to the second part of (5), while (7) to the first part of (5).
Let us return to the theorem. Bounds similar to (5) and (6)—(7) can be established for all T, with
values n odd and even, respectively. Summing up, and using Fatou’s lemma, we evaluate each
positive summand from above via the modulus of the respective preceding negative term using the
assumption (2), which leads to the estimate

(2ry + 1+ )7 < 22
for Zy = 0. In the case of Zy =1 we get
(2ry + 1+ B, <2’ +C

with C:Afl((2r++1+e), since in the latter case the first summand is positive. In both cases the
bound (3) follows. This implies existence of the invariant measure, see [2, Theorem 6.1], [4, Section
4.4]. Convergence to it holds due to the coupling method. Thus, this measure is unique. QED

4. Conclusion

The novelty is the analysis of positive recurrence for the process with two regimes, only in one of
which is positive recurrent, while the other is transient. The method is based on stopping times
where the component Z switches, and on Lyapunov functions as auxiliary tools. The approach
to convergence and mixing based on stopping times was offered in the papers by the author in a
general context; now it is applied to a new class of “partially recurrent” processes. The method is
applicable in dimensions d > 1 with variable diffusion and likely also with variable intensities of Z
depending on the component X.
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