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Abstract1

Objective: Feedback latency was shown to be a critical parameter in a range of applications that imply learning. The2

therapeutic effects of neurofeedback (NFB) remain controversial. We hypothesized that often encountered unreliable3

results of NFB intervention could be associated with large feedback latency values that are often uncontrolled and may4

preclude the efficient learning.5

Approach: We engaged our subjects into a parietal alpha power unpregulating paradigm faciliated by visual neurofeed-6

back based on the invidually extracted envelope of the alpha-rhythm at P4 electrode. NFB was displayed either as7

soon as EEG envelope was processed, or with an extra 250 or 500-ms delay. The feedback training consisted of 158

two-minute long blocks interleaved with 15s pauses. We have also recorded two minute long baselines immediately9

before and after the training.10

Main results: The time course of NFB-induced changes in the alpha rhythm power clearly depended on NFB latency, as11

shown with the adaptive Neyman test. NFB had a strong effect on the alpha-spindle incidence rate, but not on their12

duration or amplitude. The sustained changes in alpha activity measured after the completion of NFB training were13

negatively correlated to latency, with the maximum change for the shortest tested latency and no change for the longest.14

Significance: Here we for the first time show that visual NFB of parietal electroencephalographic (EEG) alpha-activity15

is efficient only when delivered to human subjects at short latency, which guarantees that NFB arrives when an alpha16

spindle is still ongoing. Such a considerable effect of NFB latency on the alpha-activity temporal structure could explain17

some of the previous inconsistent results, where latency was neither controlled nor documented. Clinical practitioners18

and manufacturers of NFB equipment should add latency to their specifications while enabling latency monitoring and19

supporting short-latency operations.20

Introduction21

In this study, we implemented a neurofeedback (NFB) task, where participants self-controlled their parietal elec-22

troencephalographic (EEG) alpha rhythm, and investigated how setting NFB latency to different values affected EEG23

patterns.24
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NFB is a closed-loop paradigm, where subjects are presented with an indicator of their own brain activity, which they25

learn to change in a certain desired way [27], [28], [57], [59], [64]. In a typical NFB experiment, neural activity is26

recorded, converted into features of interest, processed to generate an output signal, and delivered to the subject as27

a sensory stimulus, typically visual or auditory. Training with NFB results in plastic changes in the neural circuits28

involved. This type of learning fits the definition of operant conditioning, where the behavioral responses are derived29

directly from neural activity, and indicators of successful performance presenting to the subjects serve as rewards that30

reinforce the wanted behavior [57]. Historically, the first implementations of NFB were based on EEG recordings [27],31

[28], followed by more recent demonstrations based on such recording methods as magnetoencephalography (MEG)32

[42], [4], functional magnetic resonance imaging (fMRI) [63], [69], functional near-infrared spectroscopy (fNIRS) [30],33

and depth electrodes [72].34

Practical interest to NFB approach is driven by the expectation that it could become a powerful therapy that improves35

brain processing in subjects suffering from neurological disorders [64]. Since, at least theoretically, NFB could target36

neural circuits very specifically, this method could supplement or even replace the traditional pharmacological [67],37

[3], [74], [33] and cognitive-enhancement [73], [10] therapies. However, despite the high expectations and numerous38

studies on NFB-based therapies, this approach remains controversial because of the high variability of its outcomes and39

the lack of improvement in a considerable number of cases [2], [64]. The difficulties in the development of efficient40

NFB-based therapies are rooted in the insufficient understanding of the physiological effects of NFB [26], issues related41

to ergonomics, and problems in signal processing [24].42

Here we looked into the issue that has not been sufficiently addressed by previous research on NFB: the proper setting43

of NFB latency, that is the time interval from the occurrence of a neural activity till the delivery of the feedback of that44

activity to the subject. NFB latency specifies the reinforcement schedule [57] and as such it should significantly affect45

the outcome of operant conditioning [53], [48].46

Temporal specificity is of essential importance for neural processing [25], and feedback latency plays a pivotal role47

in a range of closed-loop systems, including nonlinear dynamical systems [70] and biological systems with a delay48

[35], [6]. Moreover, human psychophysics studies have demonstrated that feedback latency significantly influences49

sensory, motor, and cognitive processing. Thus, visual perception and performance are impaired when human subjects50

observe images on the displays with lags and slow frame rate [9]. Additionally, delaying visual feedback diminishes the51

accuracy of drawing [19], and accuracy of slow but not fast reaching movements toward a target is impaired if the light52

is suddenly turned off [29]. In a virtual environment, feedback latency affects the sense of presence, particularly when53

the environment is stressful [37]. Furthermore, the sense of agency, that is the perception of being in control of own54

movements, deteriorates with an increase of the visual feedback delay [18]. Similarly, the telepresence level, when55

using a surgical robot, decreases with increasing feedback delay [54].56

The effects of feedback latency have been recognized in the literature on NFB and brain-computer interfaces (BCIs).57

Oblak et al. [41] simulated fMRI signals in visual cortex and had human subjects develop cognitive strategies to58

utilize NFB produced from the simulated data. They observed a better performance for continuous NFB than for59

intermittent NFB. Additionally, NFB delay significantly affected the performance with continuous NFB. Furthermore,60

they developed a computational model of automatic NFB learning. This modeling showed that when NFB was blurred61

and arrived with a delay, the performance was better with intermittent feedback compared to continuous feedback. The62

authors suggested that NFB settings should be optimized to match the experimental paradigm and learning mechanism63

(cognitive versus automatic). Evans et al. [16] implemented a motor imagery-based BCI where the control signal was64

derived from sensorimotor mu or beta rhythms. They showed that introduction of a feedback delay resulted in a reduced65

sense of agency, that is subjects did not perceive the BCI output as the result of their voluntary intentions.66

In the present study, we implemented a NFB derived from the parietal alpha rhythm and for the first time systematically67

investigated the effect of NFB latency on the changes in EEG patterns. There is a vast literature on brain rhythms [7]68

and on NFB paradigms for controlling the rhythms in different brain areas [73], [20], [62]. Brain rhythms typically wax69

and wane, which makes it important to understand their temporal structure when setting NFB parameters. In addition to70

the temporal dimension, space [34] and frequency [22], [66] are the dimensions that carry specific information that71

could be utilized to generate NFB. The following reasons motivated our choice of alpha rhythm as the source of NFB.72

First, alpha rhythm is one of the most prominent and most responsive to training brain rhythms [40], [1], [14], [21],73

[23], [65]. According to the existing literature and our own results [45], parietal alpha rhythm is easy to isolate (in74

contrast to the sensorimotor rhythm, for example) and easy to train with NFB practically in all subjects. Moreover,75

NFB that is based on the parietal alpha rhythms has been suggested as an approach to gaining a range of functional76

improvements, including improvements in cognition [65], [1], [21], attention [4], [43], [44], [8], working memory [11],77

[71], mood [46], [15], [47], and relaxation [5].78

NFB latency results from the signal processing pipelines that comprises several stages, see Figure 1 B. The overall79

latency is the time from the occurrence of a neuronal event being tracked till the instance when the subject receives an80
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NFB replica of this event. This time includes a data collection interval (tens of milliseconds), interval of filtering and81

instantaneous power estimation (hundreds of milliseconds), and feedback generation interval (tens of milliseconds). In82

the currently used NFB systems, latency falls within the range from 300 to 1000 ms. This duration can be decreased83

by means of optimizing data acquisition and signal processing steps. To this end, we recently developed NFB-Lab84

software [61] that supports a novel causal complex-valued finite impulse response (cFIR) approach for simultaneous85

narrow-band filtering and extracting the instantaneous power of an EEG rhythm [60]. This method allowed us to achieve86

high accuracy of narrow-band power estimation with the lag as short as 100 ms. In this implementation, communication87

with the EEG recording system was enabled by the Lab Streaming Layer protocol [31], followed by prefiltering, and88

visual stimulus delivery which all together incurred approximately a 144-ms average lag. Thus, the overall latency was89

244 ms in our system. We refer to this delay as system’s base latency.90

At present to the best of our knowledge there are no published studies that would keep an explicit track of the overall91

feedback latency. Very rarely (basically never) researchers describe all latency sources in their experiments. In rare92

cases when latency is mentioned it dominantly reflects the hardware and acquisition software data transmission delays93

and does not include fundamental delays associated with extraction of the feedback parameter, e.g. brain rhythms. In94

this study, we used the NFB Lab software and the cFIR approach to examine NFB mechanisms for several overall95

latency values in the 244–744 ms range. We found that the delayed NFB impeded both transient changes in EEG96

patterns that occurred during training and the changes sustained after the training was completed.97

Methods98

Participants and settings99

Forty healthy right-handed subjects (13 males and 27 females; aged 24.58 ± 5.3 years, mean ± SD) participated in the100

experiments. The study was conducted in accordance with the ethical standards of the 1964 Declaration of Helsinki. All101

participants provided written informed consent prior to the experiments. The ethics research committee of the National102

Research University, The Higher School of Economics approved the experimental protocol of this study.103

The NFB signal was derived from the P4 channel (corresponding to the right parietal region). An alpha envelope was104

visualized as a circle with a pulsating outline. The subjects had to smooth that outline by increasing their P4 alpha-band105

power.106

All participants were instructed to refrain from using any conscious strategy. This assured that learning to control the107

parietal alpha rhythm was automatic [32], that is the mode where the latency of a continuous NFB has the strongest108

effects [41].109

Subjects sat in a comfortable chair at a distance of 80 cm from an LCD monitor with a 24-cm diagonal and a 60-Hz110

refresh rate. These settings remained constant throughout the entire experiment.111

EEG signals were recorded using 32 AgCl electrodes positioned according to the 10-20-system. Each EEG channel was112

sampled at 500 Hz using an NVX-136 amplifier (Medical Computer Systems Ltd), and bandpass-filtered in the 0.5 - 70113

Hz band. These preprocessing filters incurred an overall delay of no more than 10 ms for the EEG bandwidth of interest114

(8–12 Hz). Digital common ear reference was derived from the electrodes placed on both ears. The impedance for each115

electrode was kept below 10 KOhm.116

Experimental protocol and measurements117

The participants were split into four equal groups, each with different NFB settings: (1) NFB with no delay added to the118

system’s base latency of 244 ms (FB0), (2) NFB with a 250-ms delay added (FB250), (3) NFB with a 500-ms delay119

added (FB500), (4) mock NFB where the feedback was generated from EEG data taken from a different participant120

(FBmock). Due to a technical problem associated with an intermittently suspended EEG-software communication, we121

could not use the records of 5 subjects (2 from FB0 group, 2 from FBMock group, and 1 from FB500 group); these data122

were excluded. When choosing the statistical methods, we took into consideration these unequal sample sizes. The123

details of the statistical analysis can be found in the section Results and Comparing learning curves.124

The experimental sequence is shown in Figure 1 A. Prior to NFB sessions, we recorded resting-state EEG and used125

these data to set the spatial filters for the suppression of eye-movement artifacts and determine the frequency of alpha126

rhythm in individual subjects (for more details, see EEG data processing). Next, just prior to NFB training, we recorded127

a 2-min baseline with eyes open. Then, NFB training started that comprised fifteen two-minute blocks of NFB separated128

by 15-s resting periods. Immediately following the NFB training, we recorded the 2-minute post-training baseline.129
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Figure 1: Schematics of the experiment and signal processing. A: Experimental design, where resting-state EEG
activity is recorded first, followed by NFB sessions. At the end, the post-training baseline is recorded. B: Signal
processing pipeline, where multichannel EEG signals are processed by a spatial filter to remove artifacts, converted into
a narrow-band signal, time shifted with an artificial delay, and converted into a visual feedback.

Composition of subject groups130

When composing the subject groups, we had to deal with the differences in alpha-rhythm patterns in individual subjects.131

These individual features were evident in the resting-state data. It was previously shown that resting-state alpha132

amplitude is predictive of a subject’s subsequent improvement in NFB control with training [68]. This effect could133

contribute to the heterogeneity of subjects across groups (FB0, FB250, FB500, FBmock) in our study. For instance, a134

subject with a weak alpha rhythm would not be able to improve in NFB control in any condition, but his/her assignment135

to a particular group could produce a false group-related result. To control for this effect, we implemented a stratified136

sampling procedure [51], [49], [55], [52] that equalized resting-state alpha amplitude across groups. We measured137

signal to noise ratio (SNR) for the alpha amplitude while participants rested with open eyes, and categorized them as138

having high alpha (SNR >4,4; Mean (2,89) +SD (1,51)), low alpha (SNR <1,38; Mean (2,89) - SD(1,51)), or medium139

alpha (1,38 <SNR <4,4). Each subject was assigned to a NFB group with the procedure where the NFB group was140

randomly selected, but if the SNR category (high, low or medium alpha) was already filled for that group with the141

entries from the other subjects, random selection repeated [51] (for more details, see "Signal to noise ratio" section142

below). Wilcoxon rank-sum test showed no statistical difference between the SNR across the four experimental groups143

(Appendix, Figure 9 B).144

EEG data processing145

Independent component analysis146

As shown in Figure 1 A, the experiments started with the recording where a subject first looked at the fixation cross for147

one minute and then closed the eyes for one more minute. We then used these data to build a spatial filter based on the148

independent component analysis (ICA) to remove the artifacts caused by eye movements and blinking. This approach149

decomposed the EEG signals into independent components, including the ones containing the artifacts. Ocular artifact150

components were detected as those with the largest value of mutual information of their time-series and the signals in151

Fp1 and Fp2 channels, which are closest to the eyes. A spatial filter matrix was then constructed for the subsequent152

online application during the NFB sessions.153
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Individualized bandpass filter154

Bandpass filters for extracting alpha activity were built separately for each individual. The signal was taken from155

channel P4. To detect alpha activity, we started with the frequency interval from 8 to 12 Hz, and then adjusted the156

interval and filter parameters for each individual subject.We followed the approach described in [38]. Namely, we157

determined the central frequency Fc of the alpha-band by matching the power spectral density (PSD) profiles of data158

recorded during eyes-open and eyes-closed conditions by visual inspection and then set the interval to [Fc − 2, Fc + 2].159

However, when the peak in this range was not well defined or several local peaks were present we visually inspected the160

PSD and fitted a 4 Hz box-car to cover the bump in the PSD and therefore we did not explicitely determined Fc in these161

cases.162

Signal to noise ratio163

The SNR was calculated before the main session from the two-minute baseline as the ratio of the average power spectral164

density (PSD) magnitude within the individually determined target frequency range [Fc − 2, Fc + 2] to the mean165

magnitude of PSD within the two flanker sub-bands [39]: [Fc− 4, Fc− 2) and (Fc + 2, Fc + 4]. This approach allowed166

us to measure the extent to which the alpha oscillation is pronounced in the power spectral density. The participants167

with SNR less or equal to 1 were not included into the pool of subjects. The participants with SNR greater than 1168

were assigned to one of the experimental groups with a stratified sampling procedure (see "Composition of subject169

group" section above). While the flanker band based SNR is not an ideal measure and may fail in cases where there is a170

significant amount of activity concentrated around the band of interest, the analysis of differential spectrum between the171

eyes-closed and eyes-open conditions [38] can help us in these cases.172

Envelope extraction173

Alpha-rhythm envelope was extracted with the cFIR approach [60]. In this method, the raw EEG signal is transformed174

into a narrowband analytic signal, a complex-valued function whose absolute value corresponds to an instantaneous175

amplitude (or envelope) of the rhythm. The cFIR method explicitly defines NFB latency and obtains a more accurate176

envelope estimate for a specified latency compared to the other approaches to quantification of narrowband components177

in the EEG data, [60]. This speed-accuracy trade-off can be appreciated from the accuracy vs. processing delay curves178

presented in Figure 2 A for the cFIR and the commonly used approach based on narrow-band filtering followed by179

signal rectification. In the present study, we set the cFIR delay parameter to 100 ms (the point marked by a cross in180

Figure 2 A). This setting corresponds to the correlation coefficient of 0.85 ± 0.1 between the actual and the on-line181

reconstructed envelopes.182

Figure 2: Schematics of the overall latency measurement. A. Speed-accuracy tradeoff for envelope extraction with cFIR
(red) and Rect (blue) methods. cFIR outperforms Rect for all latency values. The cFIR setting used in this study (latency
of 100 ms) is marked by a cross. B: Syncing of the "brain time" (top) and "PC time" (bottom) using a photosensor. EEG
signals (brain events) are registered by the computer with an EEG to PC lag. The computer sends a signal to the screen,
which is measured by the photosensor and is then sent back to the computer through an auxiliary EEG channel with the
same EEG to PC lag. The overall latency is the time from a brain event of interest (instantaneous alpha-band amplitude)
till the corresponding photosensor event, with both measurements referred to the PC time axis. C: Zero-latency alpha
amplitude, y0(t) (red) and the real-time NFB captured by the photosensor, p(t) (blue). D: Crosscorrelation function
betweeen y0(t) and p(t) as a function of the time lag. The time of the crosscorrelation peak corresponds to the overall
NFB latency.
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Latency measurement183

To monitor the system’s total latency in accordance with the recommendations of the CRED-nf checklist [50], we used184

a direct latency measurement aided with a photosensor attached to the corner of the screen [61]. Figure 2 B explains185

this method for syncing the "brain time" (top) – the actual time of the occurrence of neural events, with the "PC time" –186

the time when these events are registered on the computer.187

EEG signals were sampled by an EEG device and sent to the PC, where they were timestamped with an EEG to PC188

transmission delay. The EEG data were processed and converted into a feedback stimulus to be shown on the screen.189

The time of the screen event was detected by the photo-sensor whose output was fed to one of the EEGgraph channels190

and transmitted back to the computer with the same delay as for the EEG to PC transfer. Therefore, the lag between the191

neural event (in our case, instantaneous alpha amplitude extracted from EEG with zero latency in an offline analysis)192

and the corresponding photosensor event was measured in reference to the PC time axis: it corresponded to the overall193

NFB latency.194

We implemented this method by dedicating a small square in the upper-right screen corner to the photosensor signal.195

The square brightness corresponded to the NFB signal presented on the main portion of the screen, and the square itself196

was covered by the photosensor and therefore invisible to the participants. The square brightness, measured by the197

photosensor, was fed to an auxiliary channel of the EEG device and recorded together with the EEG data. The overall198

latency was estimated by comparing the photosensor signal, p(t), with the zero-latency NFB signal calculated offline,199

y0(t) (Figure 2 C). The lag between these two signals was calculated as the timing of the peak in their cross-correlation200

function (Figure 2 D). With this approach, amplitude and time, (Rmax, τmax), of the cross-correlation peak were201

computed for the entire duration of the experiment and used as the measurements of NFB average accuracy and latency.202

To test the effects of changing the overall latency, we either used the nominal 244-ms latency (FB0) or artificially added203

an extra delay of 250 ms (FB250) or 500 ms (FB500).Mock feedback (FBMock) was used as a control condition.204

Detection of alpha bursts205

EEG rhythmic activity is non-stationary and consists of a succession of transient burst events. Changes in mean206

magnitude of alpha activity may be caused by variations in burst duration, burst amplitude, and the incidence rate207

of such bursts. In our previous study with a relatively short and fixed NFB latency of 360 ms [45], we observed208

NFB-evoked changes in the incidence rate of alpha spindles but not in their amplitude and duration. Accordingly, alpha209

spindles can be considered as discrete structural units whose characteristics could change as the result of NFB training.210

A similar view was expressed in [58], where the functional role was highlighted of discrete beta-spindles for motor211

control in several species. In our research alpha spindles were extracted with simple thresholding from the envelope of212

the alpha-band filtered P4 time course, see Figure 3. By the analysis design, the characteristics of burst depended on213

the selected threshold. For example, if a high threshold value was used, only the most prominent episodes of alpha214

activity were qualified as bursts (Figure 3 A), while with a lower threshold value, the same bursts appeared to have of a215

longer duration. Additionally, less prominent alpha episodes were also counted (Figure 3 B). Furthermore, with a low216

threshold, adjacent bursts could merge into a single one, thereby increasing the duration of bursts and reducing their217

count.218

Figure 3: Detection of alpha bursts with different threshold values. Burst amplitude and duration characteristics. The
curve represents alpha envelope. A: A single, narrow burst is selected with a high threshold B: The selected burst
widens and an additional burst is detected with a lower threshold.
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As a reasonable solution, we selected the threshold value that corresponded to the minimum mean mutual information219

(MI) between the three distinct pairs of morphological parameters: incidence rate vs. burst amplitude, incidence rate vs.220

burst duration, and burst amplitude vs. burst duration. This analysis leads us to select the threshold factor of µ = 2.5.221

The actual threshold was then found by multiplying this factor by the median value of the time series.222

Blinding223

The experiments were designed to have minimal interaction between the experimenter and subject after the subject was224

assigned to a NFB-latency group. This was assured by running the randomized stratification procedure after setting the225

individual filters. The group assignment was generated by the computer and saved in the subject’s folder based on the226

recordings of the first two 1-minute baselines; no interaction between the subject and experimenter occurred at that227

point.228

When processing the data and generating the results, we analyzed the data for all subjects and all groups with a single229

script that applied the same processing pipeline to all entries. Next, the results of this stereotypical processing were230

grouped using the group assignment variable and the appropriate statistical comparison was performed automatically.231

The data and analysis scripts can be found at https://github.com/nikolaims/delayed_nfb232

Results233

NFB latency affects learning curve profiles234

We first explored the changes in P4 alpha-band magnitude as a function of training block sequential index. In this235

study, we defined magnitude as the mean value of the alpha envelope computed over the specific block of data. This236

value is proportional to the mean value of the power spectral density (PSD) within the individually determined 4 Hz237

wide alpha band. The shapes of these curves are different depending on NFB latency , which points to latency-specific238

training dynamics. Figure 4 shows the across-subject means of alpha-band magnitude computed for 15 training blocks;239

separate curves correspond to different NFB delays. In order to minimize inter-subject variability, each subject’s data240

were normalized by dividing by the mean magnitude for all training blocks. With this normalization, a "flat" curve241

stabilized around the level of 1 would indicate an absence of training effect. If NFB training results in alpha power242

increase, the across-subject mean values form a curve with an overall positive slope. Figure 4 shows that NFB training243

resulted in a noticeable gradual enhancement of the alpha rhythm magnitude for all tested latency values, and only a244

small enhancement occurred for the mock NFB.245

We first quantified the changes in alpha magnitude using a classical linear regression model. The confidence intervals246

(CIs) for the linear correlation coefficient ρ are displayed on top of each panel in Figure 4. In the FBMock condition, the247

learning curve is noticeably flatter compared to the NFB conditions; however, in all four groups including FBMock, we248

found a significantly positive correlation between mean alpha rhythm magnitude within a block and block’s sequential249

number. The 95 % confidence interval on ρ in FBMock condition does not overlap with the CIs for FB250 and FB500250

conditions. The CIs for the linear correlation coefficient in FB0 and FBMock conditions overlap very slightly, primarily251

because of the prominent decline that occurred during the last three blocks in the FB0 condition.252

Comparing learning curves: morphology and dynamics253

For a more detailed quantification of the learning curves, we performed the adaptive Neyman test (AN-test) proposed254

in [17]. This test considers the projections of the differences in t-statistics onto a set of orthogonal basis functions255

and assesses the significance of the projection coefficients. This approach takes into account the fact that the observed256

samples belong to a smooth curve. We applied this test but used Legendre orthogonal polynomials instead of Fourier257

basis as proposed in the original paper. This was done because the shapes of these individual basis functions allowed for258

a more parsimonious description of the typical NFB learning dynamics. In Figure 5 A the first column shows the results259

of applying the AN-test to pairwise comparison of P4 alpha magnitude learning curves observed in the four conditions.260

The details of our implementation of this test can be found in Appendix, Comparing learning curves section.261

As with the simple linear model, we found that all NFB conditions had training dynamics that were significantly262

different from that observed in FBMock condition. Interestingly, FB0 vs. FBMock t-statistics profile is characterized263

by the S-shape indicating the later onset of positive changes and earlier saturation with the subsequent decline. The test264

was also powerful enough to detect the difference in the learning curve shapes observed in FB0 and FB500 conditions.265

As evident from Figure 5 B, FB0 was characterized by a steeper learning curve compared to the ones observed in the266

other conditions (see FB0–FBMock and FB0–FB500 profiles). While the FB0 curve had the steepest rise, it saturated267

earlier compared to the other conditions and then declined.268

7
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Figure 4: Learning curves reflecting changes in the alpha-band magnitude across 15 experimental blocks. Data for
FB0, FB250, FB500, and FBMock conditions are shown in separate panels.Thin lines correspond to individual subjects.
Thick lines represent across-subject averages. Vertical bars correspond to two standard errors. The numbers on each
plot correspond to the 95 % confidence interval for linear correlation.

As mentioned before, the changes in magnitude of alpha activity may be caused by variations in burst duration, burst269

amplitude, and the incidence rate of such bursts observed within the specific data block. Please, refer to Figure 3 where270

these quantities are illustrated. Following the methodology of our previous study [45], for all four conditions, we also271

analyzed the time course of all this spindle characteristics (for more details, see "Detection of alpha bursts" section).272

To assess the effect of NFB training on the parameters of alpha bursts, we compared three NFB groups (FB0, FB250,273

FB500) to FBMock group. The results of the AN-test for pairwise comparison for all rhythm characteristics changes274

(magnitude, number of bursts, amplitude, and duration) are shown in Figure 5 A. For all NFB conditions, the curves275

representing burst incidence rate are different from the corresponding curve for FBMock condition (p < 0.02, FDR276

corrected). As to the curves for alpha-spindle duration and amplitude no significant difference is present between the277

NFB and mock NFB conditions. This result replicates our previous observation [45] and extends it to a broader range278

of NFB latency values.279

Reassuringly, the S-shaped profiles observed in the results for burst magnitude (the first column) for FB0-FBMock280

and FB0-FB500 pairs replicate the profiles present in the incidence rate curves (the second column) and the linear281

trends observed for the other pairs are also very similar when magnitude and incidence rate data are compared. Finally,282

both magnitude and the incidence rate curves differ when FB0 and FB500 conditions are compared, and an S-shaped283

differential profile is revealed (p = 0.0237, FDR corrected). As evident from Figure 5 B that shows superimposed284

parametric profiles for the statistically significant difference, FB0 vs. FB500 and FB0 vs. FBMock shape difference285

contains a steep slope and a prominent decline at the end of the training contributed by FB0 condition.286

The threshold value used for detection of alpha spindles could significantly affect the results described above. To287

explore the robustness of our findings, we repeated the above analyses for a range of threshold factor values µ ∈ [1, 3].288

These results are summarized in Figure 6 where the FDR-corrected p-values obtained with AN-test comparing the289

corresponding pairs of conditions are color-coded. One can observe statistically significant variations in the learning290

curves for the incidence rate parameter for the majority of the explored thresholds when comparing true NFB conditions291

with mock NFB. Also, for a limited range of intermediate threshold values, significant changes are present in the shapes292

of the incidence rate learning curves for comparison of FB0 and FB500 conditions.293

For a small range of thresholds that corresponds to low values of µ we consistently observe significant changes in294

burst duration and amplitude for the three true feedback conditions with respect to FBMock. These differences are295

stronger for FB500 condition where they are present for a broader range of threshold values. Interestingly, one can see a296

somewhat complementary pictures in comparisons between the three feedback conditions and mock feedback. For the297

8
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Figure 5: A) Pairwise t-statistics and AN-test results comparing dynamics of changes in magnitude dynamics as the
first column and the three morphological characteristics of alpha activity between all pairs of conditions for threshold
factor µ = 2.5. p-values are FDR corrected. B) Superimposed parametric representations of the statistically significant
difference between the compared learning curves. The difference exists only in magnitude and the incidence rate
parameters.
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Figure 6: FDR corrected p-values for the pairwise AN-test exploring the effect of feedback latency on different
morphological characteristics of the P4 alpha rhythm. Separate tests are performed for each threshold factor µ in a range
from 1 to 3. The color indicates statistical significance based on α = 0.05 significance level. Red lines indicates results
for optimal threshold factor µ = 2.5 corresponding to the minimal mutual information between the three morphological
characteristics of the alpha-band activity

subset of low threshold values we have observed differences in training dynamics for the amplitude and duration of298

alpha bursts whereas no difference is present in the incidence rate of alpha spindles. Yet, for the other(by far larger)299

contiguous subset of threshold values a difference is present in the incidence rate but not in burst amplitude and duration300

parameters.301

The magnitude of sustained changes induced by NFB is negatively correlated with feedback latency302

Figure 7: The pre-training and post-training baselines for four conditions of the study. A: Alpha magnitude. B: Burst
incidence rate. C: Burst amplitude. D: Burst duration. The text above each graph indicates the 95% confidence interval
for the mean paired difference and uncorrected p-values. FB0 condition has a significant increase in post-training alpha
magnitude, incidence rate and a small but consistent growth in the burst amplitude parameter.
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As illustrated in Figure 1 A, we recorded 2 minutes of resting-state baseline EEG activity before and after NFB training.303

Figure 7 A shows the changes in the mean alpha power between the two baseline intervals for all subjects included in304

the four groups. Only FB0 condition shows statistical tendency for the growth in post-intervention alpha magnitude,305

p = 0.022(0.0881), FDR corrected p-value is shown in brackets. The confidence interval for the mean paired difference306

in FB0 condition lies strictly in the positive range while the CIs for the other conditions include zero. No significant307

differences in feedback induced mean power gain was found via direct pairwise comparison of the three feedback308

conditions (FB0, FB250, FB500).309

Next, we analyzed the sustained changes in the parameters of alpha spindles caused by NFB training. The results are310

summarized in panels B-D of Figure 7. In panel B, one can see an increase in spindles incidence rate in the post-training311

baseline as compared to the pre-training data: this effect is significant for FB0 and FB250 conditions. By visual312

inspection, the effect is stronger for FB0 and the CI of the difference is shifted to the right as compared to FB250313

condition. One can also see a small but consistent and significant (p < 0.01) increase of burst amplitude for FB0 but314

not the other conditions. Therefore, we can conclude that the incidence rate of alpha spindles is a good indicator of315

learning during the ongoing training, as well of the lasting effects of NFB intervention. Interestingly and importantly,316

latency affects the extent to which NFB-induced changes persist after the training.317

Figure 8: The magnitude of sustained changes in alpha rhythm parameters as a function of actual mean feedback
latency for A) alpha magnitude, B)burst incidence rate, C) burst amplitude and D) burst duration. The text on each
panel shows p-value for the hypothesis that the correlation coefficient is zero obtained with the parametric t-test and
with a randomization test (in brackets). Only gain in alpha-spindles appear to have a significant linear dependence on
feedback latency.

Most of what we have described above refers to within-group analysis or the analysis with respect to the mock318

neurofeedback condition. In order to demonstrate the effect of latency on the efficacy of NFB intervention more319

directly, we took advantage of the fact that feedback latency can be considered as a continuous variable. Accordingly,320

11



A PREPRINT - DECEMBER 10, 2020

we performed a regression analysis, where statistical significance was quantified with non-parametric randomization321

tests [13] to accommodate clearly non-Gaussian three-modal distribution of feedback latency values. The results are322

presented in Figure 8 where one can see that only changes in the incidence rate significantly depend on the NFB latency323

so that the sustained changes appear stronger for shorter latency.324

Thus, incidence rate of alpha spindles is the only parameter susceptible to NFB training, and it is the parameter325

that is affected when latency is varied, with clear improvement in training effects upon spindle incidence rate when326

latency is shortened. This result is consistent with the findings of our previous study where we investigated the effect327

of NFB training on spindle incidence rate, but did not vary latency [45]. Most important for practical applications,328

sustained changes in spindle incidence rate can be evoked only with short-latency NFB. We conclude that clinical alpha329

rhythm-based approaches should focus on shortening NFB latency and monitoring spindle incidence rate.330

Discussion331

In this study, subjects were aided with NFB so that they could increase their parietal alpha activity. We implemented an332

experimental paradigm where NFB latency was precisely controlled and manipulated programmatically. The minimal333

latency that we could achieve with our hardware and software setup was the end-to-end delay of 244 ms, of which 100334

ms corresponded to the causal estimation of the narrow-band EEG envelope [60]. We either kept this latency fixed or335

artificially imposed an extra delay. Additionally, a mock NFB condition was tested. The four experimental conditions336

(0, 250 and 500-ms added delays, and mock NFB) were run in separate groups of subjects.337

During experimental planning, we reasoned that 10 subjects needed to be tested per group, making a total of 40338

subjects. This is an appropriate sample for an exploratory/proof-of concept study, which is also consistent with the339

literature. Indeed, 10 subjects per group with test power of 0.8 would allow us to detect correlation of ρ = 0.7 between340

a parameter of interest and the training block number, which corresponds to correlation coefficient values observed in341

our previous study [45]. To explore more subtle effects, we took measures to increase the statistical power of our testing342

procedure. We employed a SNR based stratification procedure and used data normalization step to reduce inter-subject343

variability. Furthermore, we used the adaptive Neyman test and compared the learning curves which exploits their344

potential smoothness. When comparing baseline activity levels we used a paired test. Data from 5 subjects had to be345

removed because of the problems with EEG recordings (see Methods), which slightly decreased our sample compared346

to the original plan.347

Our detailed study of the latency effects extends the previous work where cortical alpha rhythm served as the source of348

NFB [40], [1], [14], [21], [23], [65], [45]. In agreement with these previous studies, our subjects were able to increase349

the average magnitude of their alpha activity during 30 minutes of NFB training, and for the shortest NFB latency this350

increase was sustained after the training. By contrast, only a small increase in alpha activity was observed with mock351

NFB.352

Consistent with our previous study [45], we observed clear changes in the incidence rate of alpha-activity bursts: as353

participants trained with NFB, these neural events became more frequent. Other changes in the structure of alpha-band354

activity, such as amplitude and duration of alpha bursts, were significantly less pronounced.355

Interestingly, this result replicates our earlier findings [45] that showed, under different experimental settings, that356

NFB affects the incidence rate of alpha-spindles rather than influencing their shape. Thus, alpha spindles could be357

considered as discrete events whose probability changes as the result of NFB training. Relevant observations have358

been made regarding the beta-band transient events whose incidence rate, but not duration or amplitude predict motor359

performance across a range of species[58]. Thus, mean power in a particular spectral band – the parameter that has been360

traditionally used as a target parameter for NFB – crucially depends on the rate of occurrence of the discrete harmonic361

events. Therefore, we envision a NFB paradigm where these discrete short-lived events are specifically targeted by362

operant conditioning which in turn requires timely feedback presentation.363

The goal of NFB training can be defined as attaining sustained changes in certain neural patterns. Therefore, the finding364

is important that only the lowest-latency NFB resulted in a sustained effect in our experiments. For this condition,365

average alpha amplitude was elevated, as evident from the comparison of baseline EEG recorded prior to NFB training366

with the EEG recorded after the training was completed (Figure 7.A). Incidence rate of alpha spindles was the major367

parameter that accounted for this change in baseline activity. Curiously, spindle rate increased not only for the shortest368

latency but also weakly for the condition where 250 ms were added to the base latency (Figure 7.B). In addition to the369

major effect of spindle rate, we observed a small but consistent and statistically significant change in the amplitude of370

alpha-spindles that occurred only for the shortest latency (Figure 7.C).371

Several insights regarding the role of NFB latency can be gained from Figure 4. For the lowest latency, the initial rise in372

alpha activity was the steepest compared to the other conditions. Following the rise, alpha activity stabilized earlier and373
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at a higher level when the latency was the shortest. Curiously, for the lowest latency, alpha activity declined over the last374

three training blocks. We used the adaptive Neyman test (AN-test) [17] useful to quantify this complex behavior. This375

test revealed an S-shaped profile for training with the lowest NFB latency whereas the dynamics for the longer latency376

were best described as linear trends that clearly differed from the trend for mock NFB. These results can be appreciated377

in Figure first column 5 that shows the time course of these changes and the splines fitted to t-statistics profiles xk,378

k = 1, . . . , 15 (see Comparing learning curves for details). Spindle incidence rate practically mirrored the time course379

of the average alpha amplitude. By contrast, the curves for spindle amplitude and duration were not significantly380

different from those observed for mock NFB. The contribution of spindle rate was quite robust as it persisted for a381

broad range of threshold values that defined spindle events.382

Moreover, the regression analysis performed on the data from 27 subjects trained on NFB with three different latencies383

showed a significant negative correlation between latency and the sustained gain in spindle incidence rate. This result384

directly demonstrates that NFB efficacy improves when latency is shortened.385

Having established that NFB latency had a strong effect on spindle rate and little effect on the other parameters of386

alpha activity, we need to find an explanation for this finding. We suggest that our results could be explained by a387

reinforcement-learning mechanism, where NFB reinforces a neural pattern that coincides with NFB arrival, that is388

Hebbian plasticity is involved that strengthens a neural circuit that generates a particular activity pattern. Accordingly,389

the shorter the latency, the higher is the likelihood that NFB would reinforce the neural pattern that triggered the NFB,390

whereas a reinforcement that arrives with a lag would have a weaker effect on original neural pattern and the original391

circuit (i.e. a temporal discounting effect). Only with minimal NFB latency, robust changes in parietal alpha activity392

could be achieved. In this shortest-delay condition, NFB was initiated by an alpha spindle and arrived when the spindle393

was still ongoing, which reinforced the spindle and made its occurrence in the future more probable. Since an alpha394

spindle is a cortical event that has a stable structure (amplitude and duration), such reinforcement mechanism affects395

primarily the rate of this event but not its shape or duration. With the longer latencies of 250-500 ms, NFB is much396

less temporally specific and consequently less effective. Indeed, with the longer latency, NFB became less specific to397

the desired state transition to the oscillatory state simply because of increased likelihood that the original spindle has398

already completed by the time NFB arrives. Notably, participants in our experiments were asked to avoid any conscious399

strategy for modulating alpha activity. Under these conditions, learning was automatic and dependent on the Hebbian400

mechanism described above.401

Feedback threshold plays an important role in operant learning in NFB [12, 50]. In this work, however, we did not use a402

reward threshold and employed a continuous feedback paradigm. The reason for this lies in our interest to explore the403

realm of the subconscious neurofeedback served with automatic learning [32], where the subject is not following any404

specific strategy. We envision that in this kind of setting a subject is attempting to couple his or her brain activity to405

the feedback stream and facilitated by low feedback latency may implicitly utilize dynamic properties of the feedback406

to tune the appropriate brain circuits. Using a threshold in this case would reduce the amount of information in the407

feedback stream. On the other hand, it is also possible that the observed effect of the reduced latency could have been408

more pronounced should we employ a threshold-based feedback paradigm with a well defined threshold-crossing time409

instance. At the same time given that the NFB induced changes in our setting occurred primarily in the form of the410

increased count of the discrete events, the feedback stream may have a natural profile characterised by well pronounced411

bursts and could have been naturally thresholded during the perception process.412

We have demonstrated that the feedback latency affects training curve shapes and the extent to which NFB induced413

changes in electrical brain activity pertain past the training. Both of these quantities were measured exclusively using414

the brain activity of our subjects. Since the ultimate goal of a NFB intervention is to correct the behavioral aspects,415

future studies should include exploration of the behavioral effects and the extent to which they are influenced by the416

feedback latency. This could be done for instance using the observation reported in [38] where individual alpha training417

was shown to enhance short term memory performance.418

Another limitation of the present study lies in the relatively low number of subjects employed. Although we took419

measures to increase the power of our tests we believe that future studies will benefit from the increased sample size. We420

have employed three fixed feedback latency values and performed correlation analysis that demonstrated a significant421

negative correlation between feedback latency and the amount of the NFB induced sustained changes in brain activity.422

Although, we employed randomization tests to account for non-normality of the distribution of the actual feedback423

latency values observed in each subject we believe that adding more points to the time axis would help us to further424

solidify the main result of this work. Using our newly developed approach [60] we now have access to overall latency425

of less than 100 ms which will help us to continue this quest into the efficacy of low-latency neurofeedback.426

Despite these limitations, this study is the first attempt to highlight the importance of keeping track of and minimizing427

latency in NFB implementations. An important corollary here is that manufacturers of NFB systems should include428

latency in their specifications. Low latency feedback may hypothetically harness the power of automatic learning by429
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directly and automatically interacting with brain-state transitions over the time-scales natural to activity of non-invasively430

observed brain-circuits.431

Overall, our findings suggest that NFB latency is a crucial parameter that needs to be minimized to achieve desired432

changes in the fine characteristics of EEG activity. While we experimented with relatively long NFB delays in this433

study, future work should examine shorter delays, particularly those on the order of 50 ms and lower. Such a low latency434

would enhance the sense of agency [16] and harness the power of automatic learning [32] by directly and specifically435

interacting with brain-state transitions. To achieve this desired latency decrease, more efficient signal processing436

pipelines are needed that use optimized hardware-software communication protocols, as well as more sophisticated437

signal processing pipelines for the extraction of oscillation parameters from brain activity [60, 36, 56].438
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Appendix441

Participants’ individual alpha rhythm band and SNR442

Figure 9: A: An example of power spectral density (PSD) of a typical subject. The area filled with red color is selected
as an individual alpha range. Corresponded flankers filled by blue color. B: Signal to noise ratio (SNR) of the alpha
rhythm across NFB groups. Datapoints represent SNR value for each subject. SNR equals the mean PSD inside the red
area on panel A divided by the mean PSD inside blue areas.

Comparing learning curves443

For every pair of FB groups, we compared learning curves between the two conditions and tested the null hypothesis444

(H0) about similarity of the learning curves. For such hypothesis testing, we used the adaptive Neyman test (AN-test)445

described in [17]. In contrast to the simple 2-sample T-test, AN-test takes into account the temporal connectivity446

between curve points. Also, in contrast to linear regression models, AN-test is not restricted to the linear learning447

curve prior and allows curves and the mean difference between the curves to be nonlinear. The steps of this test are the448

following:449

1. For each pair of conditions {i, j} and for each block number k = 1..15 compute T-statistic xk to estimate the450

difference between average learning curves:451

xk =
ȳi(t)− ȳj(t)√

n−1
i σ̂2

i (t) + n−1
j σ̂2

j (t)
(1)

, where ȳi(k), σ̂i(k) and ȳj(k), σ̂j(k), are the sample mean and sample standard deviation for the k-th training452

block in the i-th and j-th conditions, see also formula (13) in the original paper [17].453
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2. Represent vector x = (x1, ..., x15) as a linear combination of predefined basis vectors bn (n=1..15) that form454

transform matrix B. The corresponded coefficients of such decomposition can be obtained as x∗ = Bx =455

(x∗1, ..., x
∗
15). In the original paper this decomposition is obtained by Fourier transform. Here we used basis456

vectors bn that corresponded to the discrete version of Legendre polynomials. This way the basis vectors457

describe the following temporal features: b1 - constant level, b2 - linear trend, b3 - U-shaped curve, b4 -458

S-shaped curve, etc. We expected that learning curves have more natural representation as the weighted sum459

of such temporal features rather than that formed with Fourier basis.460

3. For the first m coefficients x∗1, ...x
∗
m (m = 1..15) estimate final statistics (see formula (6) [17]). Find m∗ for461

which the statistic reaches maximal value T ∗
AN . If T ∗

AN is too large than H0 can be rejected.462

To determine the p-value we used finite sample distribution of T ∗
AN based on 200 thousand Monte-Carlo simulations.463

This distribution was obtained for each degree of freedom for the T -statistic in step 1. Note that the number of degrees464

of freedom is defined here as df = n1 +n2−2 where n1 and n2 is number of subjects in the first and second conditions465

in the pair. Additionally, we used value m∗ from step 3 to recover smooth approximation x̂ of learning curves difference466

by using the inverse transform x̂ = B−1x̂∗, where x̂∗ = (x∗1, x
∗
2..., x

∗
m∗ , 0, ..., 0) is a vector of length 15 which contains467

only first m∗ non-zero coefficients.468
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