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Abstract. Electroencephalography (EEG) is a well-established non-inva-
sive technique to measure the brain activity, albeit with a limited spa-
tial resolution. Variations in electric conductivity between different tis-
sues distort the electric fields generated by cortical sources, resulting in
smeared potential measurements on the scalp. One needs to solve an
ill-posed inverse problem to recover the original neural activity. In this
article, we present a generic method of recovering the cortical potentials
from the EEG measurement by introducing a new inverse-problem solver
based on deep Convolutional Neural Networks (CNN) in paired (U-Net)
and unpaired (DualGAN) configurations. The solvers were trained on
synthetic EEG-ECoG pairs that were generated using a head conduc-
tivity model computed using the Finite Element Method (FEM). These
solvers are the first of their kind, that provide robust translation of EEG
data to the cortex surface using deep learning. Providing a fast and ac-
curate interpretation of the tracked EEG signal, our approach promises
a boost to the spatial resolution of the future EEG devices.

Keywords: ECoG · inverse problem · EEG super-resolution · CNN ·
FEM · brain modelling · neuroimaging

1 Introduction

Electroencephalography (EEG) is a common method of non-invasive registration
of the brain activity. It has high temporal resolution and has low operational
cost. These aspects make the adoption of EEG widespread, including the areas of
neurophysiological and cognitive research, non-invasive Brain-Computer Inter-
face (BCI) devices, clinical studies, and diagnostics. However, there are multiple
technical limitations to modern EEG technology, with a poor spatial resolution
being the major one [20, 28]. The low spatial resolution of EEG is primarily
caused by the significant difference of conductivity between the skull and the
other tissues. Generally speaking, the conductivity of all tissues composing the
head should be taken into account.

In this work, we will consider how to recover the signal from the brain surface
given measurements on the scalp, using the most recent arsenal of techniques
from the classical and the deep learning disciplines. We proceed with a formal
problem statement and with a review of the state-of-the-art.
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1.1 Statement of the problem

Let the head be represented by the computational domain Ω ⊂ R3 bounded by a
piecewise-smooth boundary ∂Ω. Within the domain, the electric potential p(x)
satisfies the following expression [6]:

∇ · (σ(x)∇p(x)) = ∇ · J(x) in Ω, n(x) · ∇p(x) = 0 on ∂Ω (1)

where σ(x) is the conductivity distribution over the head volume, J(x) repre-
sents the volumetric distribution of a primary current source that produces the
signal, and n(x) is the vector normal to the surface ∂Ω at the point x ∈ ∂Ω.
The conductivity σ is assumed to be known. We also introduce the area of mea-
surements on the scalp Γ ⊂ ∂Ω, and the cortex C ⊂ Ω. Based on equations (1),
we can formulate three main mathematical problems (see Fig. 1A for visualizing
the concept):
Forward problem (FP): compute the scalp voltages p(x), x ∈ ∂Ω, given cur-
rent dipoles or density J(x).
Inverse problem 1 (IP1): given known electric voltages p(x), x ∈ Γ on the
area of measurements Γ , compute current density J(x),x ∈ C on the cortex.
Inverse problem 2 (IP2): given known electric voltages p(x),x ∈ Γ on the
area of measurements Γ , compute the electric voltage p(x),x ∈ C on the cortex.

1.2 State-of-the-art.

The majority of algorithms proposed in the EEG community are dedicated to IP1
and formulated in the framework of Tikhonov regularization, including the MNE
and LORETA families, etc. (see [12, 24, 23] for a review). The main limitation
of these methods is their low spatial resolution due to the head model geometry
and the high demand for computational resources (especially, if MRI-based head
models are used). There are algorithms for solving IP2 [4, 10, 15] but their spatial
resolution is insufficient.

Recent studies propose neural networks as alternative method of the inverse
problem solution [14, 29]. Convolutional neural networks (CNN) are capable of
providing both an approximation of the physical model and a sufficient regular-
ization, leading to more accurate inverse-problem solution, stable with respect
to noisy inputs. U-Net can serve as an efficient integrator of various numeri-
cal modelling solutions to improve the accuracy [19]. An Autoencoder-based
CNN was also proposed for EEG super-resolution as a non-linear interpolation
method [17]. Finally, the most popular trend today is to use the temporal in-
formation as an additional constraint and to apply Markov models, or their
approximations, in a recurrent network configuration (e.g. LSTM) [18, 13, 5].

In this work, we aspire to solve IP2 using deep CNNs. We present a generic
methodology for recovering cortical potentials (referred here as extended ECoG)
from the EEG measurement using a new CNN-based inverse-problem solver
based on the U-Net or the DualGAN architectures (Fig. 1). Paired examples of
EEG-ECoG synthetic data were generated via forward problem solving Eq. (1).
Thus, we reformulate the problem as an image-to-image translation task and
find a way to reconstruct accurate mapping of the cortical potentials to recover
the original brain activity beyond the spatial resolution of EEG.
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Fig. 1. A. Concept of cortical activity registration (left, head image reproduced from
[7]) and its physical model implemented in FEM (right). The IP stands for ”Inverse
problem”. B. Schematic representation of Forward and Inverse problems solving.

2 Methods

Head Model and Data Generation. A realistic 3-D head model was used
to prepare a synthetic dataset (Fig. 1, A). An anatomical head model was con-
structed from the sample subject data of the MNE package [11]. We extracted
triangulated surfaces of the cortex, skull and skin and smoothed them using the
iso2mesh toolbox [26]. The volume conductor was meshed into 261,565 tetrahe-
drons with 42,684 vertices. The conductivity of the cortex surface, the skin, and
the skull were assumed to be 0.33 S/m, 0.33 S/m, and 0.01 S/m, respectively [9].

Source current dipoles were positioned in the centers of the boundary trian-
gles of the cortex mesh. For simplicity, we considered only the upper part of the
cortex in order to provide an 2-D representation of the data, resulting in 400
possible locations of the source current dipoles (the number of active dipoles
was, however, restricted for each simulation to n dipoles, as described in section
3). Cortical potential sensors were located in the same manner, leading to 400
measurement probes of the cortex potential (see yellow dots in Fig. 1A,left).
Scalp potential sensors (i.e., channels of an EEG device) were uniformly located
on the outer scalp surface. We tested different number of EEG channels: 128,
64, or 32.

Our simulation run went as follows. First, a random initialization of n current
dipoles with the current values in the range 0.1-0.9 µA [22] was done. Then, we
carried out a calculation of EEG and ECoG data as a numerical solution to the
FP (1), discretized with the Finite Element Method (FEM) [2]. The resulting
system was solved with preconditioned conjugate gradient method [8]. Thus,
EEG and the ECoG pairs were modelled. We converted them into 256×256
float32 images to provide precise topographic representation of the measured
activity. Min-max contrast normalization was applied to the image intensities.
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Thus, each computed output is a pair of the top-view image of the scalp potential
distribution and the top view image of the cortical potential distribution.
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Fig. 2. U-Net-solver for imaging cortical potential from the EEG data. The EEG and
the ECoG images are modelled via solution to the FP, defined in text.

Evaluation details. Using the head model, a dataset of synthetic EEG-ECoG
pairs was generated. It was split into 5000 train, 400 validation, and 600 test
pairs. Both the data generation and the training of the neural network were per-
formed on the [Anonimized] supercomputer using Tesla V100-SXM2 GPUs [1].

To train the topographic translation from EEG to ECoG domain, we did
minimal modifications to U-Net [27] (see Fig. 2) to adapt it to the paired image-
to-image translation task. The U-Net network was optimized to minimize the
Binary Cross Entropy (BCE) loss function between the recovered ECoG image
and the corresponding ground truth (GT) ECoG image. The training was per-
formed with the ADAM optimizer, sigmoid activation function, the batch size
of 4, and the learning rate of 10−4.

Additionally, we tested DualGAN architecture [30, 25] as an inverse solver,
aiming at creating an architecture to handle realistic unpaired EEG-ECoG data
samples available in clinical practice, e.g. [3]. Its first generator was trained to
translate ECoG images to EEG; and the second generator translated the images
from EEG to ECoG domain.

3 Experiments

We tested the effectiveness and robustness of the proposed U-Net-solver by vary-
ing the complexity of the pattern of cortical activity. For this purpose, the pro-
posed model was trained on four datasets with different number of active dipoles.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.06.15.151480doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.151480
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep Learning for Non-Invasive Cortical Potential Imaging 5

We started from a subset where the corresponding ECoG and the EEG image
representations were generated from a superposition of one, two, or three source
current dipoles. Then, we gradually increased the model’s complexity to 5-10,
10-25, and 25-45 active dipoles, respectively (see Fig. 3, top row).

2.1 ± 1.5 5.7 ± 1.8 8.5 ± 2.0 10.1  ± 2.0

1-3 dipoles 5-10 dipoles 10-25 dipoles 25-45 dipoles

registered
EEG

cortical
activity
pattern

predicted
ECoG
potential

ECoG
potential
(GT)

relative
error [%]

Fig. 3. The U-Net-solver results for cortical potential imaging as a function of a random
number of randomly located source dipoles (columns from left to right correspond to
the increased number of sources).

As can be seen in the Fig. 3, the U-Net-solver is capable of recovering the
original cortical potential distribution pattern given the indiscernible EEG data
input. The relative error between the ground truth cortical potential distribution
and the one obtained via the U-Net-solver is lower than 10%. The error does not
increased dramatically as the complexity of the original cortical activity pattern
is varied.

We noted that the relative error dynamics can be explained by the number
of dipoles and by the variability of this parameter within the training set. In
other words, when 1 to 3 dipoles are active simultaneously, the majority of the
training examples is separable and the reconstruction of the sources lacks any
ambiguity, but when the number of active dipoles rises to 10 to 25 dipoles, the
separation of the source dipoles on the ground truth images is less pronounced.
This additional ambiguity limits the overfitting of the solver.

To study the generalization performance of the U-Net-solver all trained mod-
els were reciprocally tested on all test sets. The experiments were done for the
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128-channel EEG. We also tested the ability of the solver to process the EEG
data, obtained from more commonly used EEG configurations: 64 and 32 chan-
nels. For this experiment, pattern of only 5-10 dipoles were considered, and the
result is shown in Fig. 4(inset table).

Conventional metrics, such as MAE and SSIM, were calculated for ECoG
topomaps. Background pixels were excluded. All cells in the tables of Fig. 4
are color-coded using empirical threshold: cells with relatively high performance
(MAE<20 c.u. and SSIM>95%) are highlighted in green; cells with relatively
moderate performance (MAE<30 c.u. or SSIM>95%) are highlighted in yellow;
the other cells are highlighted in red.

EEG-128 
T R A I N

1-4 dipoles 5-10 dipoles 10-25 dipoles 25-45 dipoles

T 
E 

S 
T

1-4
dipoles

MAE [ˣ10³] 3.7 ± 2.6 6.8 ± 2.8 11.1 ± 3.8 31.9 ± 28.2
SSIM [%] 99.6 ± 0.5 99.3 ± 0.5 98.5 ± 0.8 92.9 ± 7.5

5-10
dipoles

MAE [ˣ10³] 15.5 ± 6.4 13.3 ± 4.2 16.9 ± 4.4 23.7 ± 5.8
SSIM [%] 97.3 ± 1.5 97.8 ± 1.1 97.3 ± 1.1 96.4 ± 1.1

10-25
dipoles

MAE [ˣ10³] 31.8 ± 10.8 24.6 ± 8.2 23.0 ± 5.5 26.8 ± 5.4
SSIM [%] 94.2 ± 2.4 95.4 ± 1.9 95.6 ± 1.5 95.2 ± 1.4

25-45 
dipoles

MAE [ˣ10³] 49.3 ± 13.9 38.0 ± 11.9 29.7 ± 7.6 28.9 ± 5.3
SSIM [%] 91.3 ± 2.5 93.2 ± 2.3 94.3 ± 1.8 94.5 ± 1.4
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MAE [ˣ10³] 15.4 + 4.6 18.1 + 5.4
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Fig. 4. Performance of the U-Net-solver as a function of a number of active dipoles
and a number of EEG channels. Cells, where both the train and the test data were
generated with the same number of dipoles and the same number of channels, are
marked in bold. Histograms on the bottom show MAE distribution for the data used
as the test sample; the models were trained with 5-10 (left) and 10-25 (right) dipoles.

We observe that the U-Net-solver trained on 10-25 dipoles yields similar er-
rors for pairs containing 1-3 or 5-10 dipoles and thus is capable of generalizing
the input data. Therefore it effectively resolves the EEG signal even if the con-
figuration differs from the source pattern which the solver was trained on. The
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trade-off between the solver’s accuracy and its ability to generalize is demon-
strated in the histograms (Fig. 4, bottom panel).

The solver has a better ability to process unseen data when it was trained on a
dataset with more variability. However, it does not hold for the model trained on
more complex data examples: e.g., ECoG patterns from a superposition of 25-45
dipoles are reconstructed more coarsely and the pre-trained solver fails to resolve
the simpler data examples. This is possibly caused by the loss of information
incurred by inaccurately representing the complex cortical patterns as 2D images
instead of 3D volumes. In contrast, the U-Net-solver effectively deals with EEG
data in any available data configuration. The reduction of information in the
input data recorded with 32 or 64 EEG channels (instead of 128 full channel
set) does not significantly alter the efficiency of the U-Net-solver, as seen in the
extended column 2 of the table in Fig. 4.

4 Discussion

Baseline comparison. Since to our best knowledge ours is the first DL-based
approach, we compared our U-Net-solver to the numerical solution of the Cauchy
problem by the method of quasi-reversibility [15], using identical inputs for both
solvers (see Fig. 5A).

Ground Truth DualGAN-solver Cauchy numerical
solution U-Net-solver

relative error [%] 25.9 ц 6.3 12.5 ц 4.53 6.1 ц 0.9
MAE [ॱ10Ϲ] 55.6 ц 3.8 35.7 ц 1.8 13.2 ц 1.6
SSIM [%] 71.2 ц 0.6 90.45 ц 4.2 97.7 ц 0.7
PSNR [dB] 20.9 ц 4.3 25.2 ц 3.0 30.9 ц 1.2

SNR=10% SNR=15% SNR=20% SNR=25% SNR=30%
MAE [ॱ10Ϲ] 17.7 ц 5.8 21.3 ц 6.4 24.7 ц 7.3 27.4 ц 7.4 28.4 ц 7.4
SSIM [%] 96.6 ц 1.6 95.6 ц 1.8 94.4 ц 2.1 93.3 ц 2.3 92.2 ц 2.5
PSNR [dB] 29.5 ц 2.8 27.8 ц 2.4 26.6 ц2.3 25.8 ц 2.1 25.3 ц 2.0

B

A
A

Fig. 5. A. Comparison of our U-Net-solver to the SOTA method (numerical solution
of the Cauchy problem by quasireversibility [15]) and to the DualGAN-solver. B. To
estimate the stability of U-Net-solver we gradually increased the noise and estimated
the error and the image quality scores.

Specifically, the same set of 128 EEG-channel data with 5% Gaussian noise
was taken as input images for the U-Net-solver, the DualGAN-solver, and the
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numerical solution to the Cauchy problem. The statistics calculated on 25 test
samples (5-10 dipoles superposition) is shown in the table insets of Fig. 5A.

Once fully trained, our deep learning models exhibit better suitability for the
future cortical potential imagers than the numerical method [15]. Their inherent
numerical stability shows better results quantitatively (see the scores in Fig. 5)
and qualitatively (notice blur patterns in the images). Unlike direct numerical
solutions to the ill-posed problem, our models require no explicit regularization
to stabilize the approximating functions, avoiding the buildup of error, that is
frequent to a particular numerical method. The choice of regularization coeffi-
cients constitutes a separate engineering problem that we eliminate herein. Our
solvers rely on neural networks that provide implicit regularization of the solu-
tion and, ultimately, yield superior accuracy with reduced regularization noise.
We also observe that the quality of the solution decreases linearly as the data
noise is increased (Fig. 5B), suggesting that our solution is stable with respect
to SNR.

Although the U-Net-solver is found to be a better model for reconstruct-
ing unseen ECoG patterns, it requires paired EEG-ECoG datasets. DualGAN
model, to the contrary, could be trained in an unpaired manner (Fig. 5A), which
increases the amount of readily available data. Preliminary experiments have
shown promising results as to the appearence of ECoG topomaps obtained with
DualGAN. However, quantitative evaluation demonstrated that the DualGAN
architecture cannot be used ”as is”. The modification of DualGAN for the opti-
mization of MAE, SSIM and PSNR will be the subject of future research. An-
other area of further research is the extension of our approach to the translation
between corresponding 3-D volumes [21], thus avoiding the loss of information
caused by the in-plane projections of the measurements. Such synthetic models
can help to pre-train actual clinical translation models embedded into imaging
systems, similarly to modern virtual brain models (see, e.g., [16] and references
therein).

5 Conclusions

We proposed a new approach to brain activity reconstruction by reformulating
it into an image-to-image translation framework. We demonstrated successful
2-D topographical mapping of the EEG data to the cortical potentials. CNNs
fine-tuned to directly approximate the inverse-operator, achieved a remarkably
low error of reconstruction and high image quality scores, effectively promis-
ing a boost to the spatial resolution of the EEG signal. The CNN-based solver
demonstrated high stability with respect to noise and to the number of mea-
surements (EEG channels). Due to the flexibility of the solver, it can provide
approximations to the solution regardless of the geometries of the scalp and
the cortex, mitigating possible anatomical differences in patients. Furthermore,
the U-Net-solver approach provides accurate primary current dipole localization
either with discrete or with distributed source current activity (see Supplemen-
tary materials). Our framework can be put at use in areas where high-resolution
and high-speed EEG data interpretation is sought after, e.g., in the non-invasive
brain-computer interface devices or in localization of epileptogenic foci.
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