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LEARNING INTRANSITIVITY: 
FROM INTRANSITIVE GEOMETRICAL OBJECTS 

TO ‟RHIZOMATIC” INTRANSITIVITY

Alexander Poddiakov
National Research University Higher School of Economics, Moscow, Russia

A new class of intransitive objects — geometrical and mathematical constructions forming 
intransitive cycles A > B > C > A — are presented. In contrast to the famous intransitive 
dice, lotteries, etc., they show deterministic (not probabilistic) intransitive relations. The 
simplest ones visualize intransitivity that can be understood at a qualitative level and does 
not require quantitative reasoning. They can be used as manipulatives for learning in-
transitivity. Classification of the types of situations in which the transitivity axiom does 
and does not work is presented. Four levels of complexity of intransitivity are introduced, 
from simple combinatorial intransitivity to a “rhizomatic” one. A possible version of the 
main educational message for students in teaching and learning transitivity-intransitivity 
is presented.

INTRODUCTION

In decision making, many researchers consider the transitivity axiom (if A > B and 
B > C then A > C, where “>” means “is preferable to”) as a key component of rational 
thinking. The authors of the Comprehensive Assessment of Rational Thinking (CART) 
declare that if “you have violated the transitivity axiom, … you are not instrumentally 
rational. The content of A, B, and C do not matter to the axiom” (Five Minutes with 
Keith E. Stanovich, Richard F. West, and Maggie E. Toplak, 2016). “Any claim of empir-
ical violations of transitivity by individual decision makers requires evidence beyond 
a reasonable doubt”, according to Regenwetter et al. [2011]. These statements are con-
trary to numerous studies in an adjacent area — math research of various intransitive 
objects and the intransitive cycles between them. The intransitive cycle of superiority 
is characterized by such binary relations between A, B, and C that A is superior to B, 
B is superior to C, and C is superior to A (i.e., A > B > C > A, in contrast to transitive 
relations A > B > C). Various sets of intransitive objects (intransitive dice, lotteries, 
playing cards, etc.) have been invented and many studies of intransitive cycles emerg-
ing between such objects have been conducted (see e.g., [Conrey et al., 2016; Gardner, 
1970; 1974; Grime, 2017; Pegg, 2005; Trybuła, 1961]). They show that, contrary to the 
CART authors’ opinion, the content of A, B, and C does matter (some A, B, and C are in 
transitive relations of superiority, some others are in intransitive ones, and it depends 
on their content). While choosing between intransitive dice, one should prefer dice A 
to dice B in the pair A-B, B to C in pair B-C, and C to A in pair A-C. Currently, numer-
ous educational videos can be found via Internet searches for the terms intransitive 
dice and non-transitive dice (e.g., [Lawler, 2017]). Various problems ranging in com-



179PME and Yandex Russian Conference 2019

A. Poddiakov

plexity are designed to promote intransitivity understanding in students of various 
ages and educational levels (from secondary to higher school settings) in different 
areas including not only math but also biology, sociology, etc. [Beardon, 1999/2011; 
Scheinerman, 2012; Stewart, 2010; Strogatz, 2015]. One should agree with T. Roberts, 
who writes:

Transitivity and intransitivity are fascinating concepts that relate both to mathematics and to 
the real world we live in. A couple of lessons devoted to this topic are almost certain to interest 
and engage students of almost any age, as they seek to discover which relationships are transi-
tive, and which are not, and further to try to discover any general rules that might distinguish 
between the two [Roberts, 2004].

The only clarification that can be made is that a couple of lessons may be enough for 
students’ primary engagement in the topic, but hardly enough for its detailed anal-
ysis — see, for example, the analysis of intransitive dice by Fields medalist T. Gower 
[2017] in the pages of his Polymath project. If P. C. Fishburn’s [1991] analogy between 
an advanced understanding of intransitivity and non-Euclidean geometry is right (we 
agree with it), the levels of complexity of the issue can very high. Yet the initial levels, 
even related to exact reasoning, can be (unexpectedly) simple. Let us consider this in 
more detail.

All of the intransitive math objects presented in math studies and in problems for 
students deal with numbers, mostly with probabilities which are not evident and 
must be counted. In this article we present geometrical and mechanical construc-
tions in intransitive relations of superiority. From a mathematical view, it is a new 
class of intransitive objects. From an educational view, they can be considered in 
the framework of the Vygotskian theory of cultural tools (e.g., [Erickson, 1999]) in-
cluding manipulatives. “Manipulatives are tools students use to support meaningful 
learning” and to “construct new insights” [Cramer, Wyberg, 2009]. Our manipula-
tives, intransitive geometrical and mechanical constructions, show deterministic 
(not probabilistic) intransitive relations in an evident way. The objects vary in com-
plexity from very simple to advanced. The simplest ones demonstrate such intransi-
tivity that can be understood at a qualitative level and does not require quantitative 
reasoning.

A note on terminology: in the math literature, the terms “intransitive” and “non-tran-
sitive” (e.g., “intransitive dice” and “non-transitive dice”) are used as synonyms in spite 
of some difference between the logical terms “intransitive relation” and “non-transi-
tive relation”. In this article we will use the term “intransitive” as explicitly related to 
the concept of intransitive cycles.

DESCRIPTION OF INTRANSITIVE GEOMETRICAL 
AND MECHANICAL CONSTRUCTIONS

All of the objects are designed as Condorcet-like compositions, in correspondence with 
the structure of the Condorcet paradox (or the voting paradox; [Beardon, 1999/2011]). 
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Our geometrical interpretation of the paradox is that we use chains of geometrical 
elements ordered like elements in the Condorcet paradox (originally, voters’ prefer-
ences, but it does not matter here): ABC, BCA, CAB. One can see that the first element 
of any set moves to the last position in the next set and moves all the other elements 
one position to the left without changing the sequence.

As an example, let us consider such counter-intuitive objects as intransitive double 
gears (or friction wheels). The notation of elements will be the following: X is a larger 
gear (a larger wheel), Y is a smaller gear (a smaller wheel), and Z is an empty part of a 
shaft (without any gear or wheel on it).

Then, in correspondence with the Condorcet paradox:

• the first double-gear (A) will have the element sequence X, Y, Z;

• the second double-gear (B) will have the element sequence Z, X, Y; and

• the third double-gear (C) will have the element sequence Y, Z, X.

Figure 1(c) shows that, if joined in pairs, A’s rotational speed is higher than B’s in the 
pair A-B; the rotational speed of B is higher than that of C in the pair B-C; but the 
rotational speed of C is higher than the rotational speed of A in pair A-C [Poddiakov, 
2010; Poddiakov, Valsiner, 2013].

The same principle of design is applied to other objects. Let us consider three ge-
ometrical blocks modeling tractors with different shapes of towing couplers (see 
Fig. 1d). Tractor A has a triangle lug at the front to be coupled as a trailer by another 
tractor, and a square hole from behind to couple another tractor as a trailer. Tractor 
B has a square lug at the front to be coupled as a trailer by another tractor, and a 
circle hole from behind to couple another tractor as a trailer. Tractor C has a circle 
lug at the front to be coupled as a trailer by another tractor, and a triangle hole from 
behind to couple another tractor as a trailer. A driver stands near the tractors. Which 
tractor should the driver choose as a leading one to sit in it if s/he has an aim to 
bring:

• — couple A-B;

• — couple B-C;

• — couple A-C

to a destination point?

One can see that the driver should choose A in couple A-B, B in couple B-C, and C in 
couple A-C. This model of intransitive relations does not require quantitative com-
parisons, counting, an understanding of probability, or other operations required to 
understand more complex intransitive objects like intransitive dice or playing cards. 
Distinction and comparison of geometrical shapes is all that is necessary here (besides 
an understanding of the task statement).
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Fig. 1. Examples of intransitive geometrical Condorcet-like compositions: 
(a) toy Monkeys feeding one another; 

(b) stylized plastic Mobile Assault Towers marking one another with inserted felt-tip pens; 
(c) Intransitive Double Gears with intransitive speeds of rotation; 

(d) stylized Tractors with intransitive towing couplers; 
(e) Intransitive Double Levers (with the same rotation force applied to the shaft, Lever A

will overpower Lever B, Lever B will overpower Lever C and Lever C will overpower Lever A); 
(f) stylized Combs with Intransitive Ramps (Comb A can serve as a ramp for Comb B

and lift it but not vice versa, Comb B can lift Comb C but not vice versa, 
and Comb C can lift Comb A but not vice versa).

a

b

d

e

A          B B         C C         A

A               B B              C C                A

A             B B              C C                A

A         B         C         

C         

C         

B         

B         

A         

A         

f

DISCUSSION

In spite of a rich tradition of math studies of various intransitive objects, there is no 
appropriate tradition of studies of understanding (misunderstanding) intransitive ob-
jects in cognitive and educational psychology. Owing to the brilliant Piagetian works 
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in the area of cognitive and developmental psychology, the main trend is related to 
studies of abilities to make transitive inferences (if A > B and B > C then A > C) about 
transitive options (e.g., lengths of sticks) [Andrews, Halford 1998; Andrews, Hewitt-
Stubbs, 2015; Camarena et al., 2018; Mou, Province, Luo, 2014; Shultz, Vogel, 2004]. 
Naturally, for such options violations of transitivity are a fallacy. Before math studies 
of intransitivity, this approach could have seemed universal. Even opponents of Piag-
et like Trabasso [Bryant, Trabasso, 1971] questioned not the status of transitivity as 
a normative rule and its violations as fallacies, but only age and conditions in which, 
for example, children already demonstrate that they can master transitivity and not 
violate it. Yet how can people understand mathematical intransitive objects? How are 
they solving intransitivity problems designed by math educators? More generally: how 
are abilities to reveal non-evident intransitive relations and to make inferences about 
objective intransitivity (e.g., about intransitivity of intransitive dice, athletes’ teams, 
game strategies, etc.) developing in different domains (or as a general complex)? How 
are these abilities related to abilities to make “classical” transitive inferences? These 
questions have not yet been answered.

A possible theoretical framework which can include both 1) beliefs about the transitiv-
ity of superiority as an axiom with a ban on its violations and 2) beliefs about intransi-
tivity as an objective property of complex (systems) interactions between multi-vari-
able objects involves the distinction of four types of situations [Poddiakov, 2010].

(1) Relations of superiority between objects are objectively transitive (e.g., in case of 
three sticks), and a problem solver makes correct conclusions about their transitivity.

(2) Relations are objectively transitive, but a problem solver wrongly considers them 
as intransitive. Most studies are conducted in this paradigm. 

(3) Relations of superiority between objects are objectively intransitive (e.g., rela-
tions between three or more sets, each of which contains three or more sticks having 
lengths equal to numbers on sides of intransitive dice, are intransitive — in contrast to 
the situation of a comparison of just three sticks), and a problem solver makes correct 
conclusions about their intransitivity.

(4) Relations of superiority between objects are objectively intransitive, but a prob-
lem solver wrongly considers them as transitive (e.g., because of taking the transitiv-
ity axiom for granted).

Here one can roughly distinguish between four levels of complexity of intransitive 
relations of superiority. This classification is not exhaustive and serves to mark some 
reference points.

(a) Simple combinatorial intransitivity between non-interacting objects (e.g., in in-
transitive dice sets, intransitive sets of sticks, etc.). Each object can be exactly de-
scribed by a few parameters (like numbers on the sides of dice). The parameters are 
additive, without interactions: the sticks’ intransitive sets do not interact with one 
another, only the sticks’ lengths are compared, and comparisons are possible even 
without immediate touching. Information about the objects is complete.



183PME and Yandex Russian Conference 2019

A. Poddiakov

(b) Interactive intransitivity without qualitative transformations of the objects par-
ticipating in the intransitive relations. Information about the objects and their inter-
actions is complete. An example is the intransitivity between interacting geometrical 
and mechanical objects described above. The intransitive gears are rotating at dif-
ferent speeds as a result of the intransitive interactions, but there are no qualitative 
transformations of the gears. 

(c) Interactive intransitivity with qualitative transformations of the objects partic-
ipating in the intransitive relations. Information about the objects and their inter-
actions is complete. This intransitivity can be observed between pieces’ positions in 
strategy games like chess. Position A for White is preferable to Position B for Black 
(i.e., when offered a choice, one should choose A), Position B for Black is preferable to 
Position C for White, which is preferable to Position D (Black) — but the latter is pref-
erable to Position A (White) [Poddiakov, 2017]. The positions qualitatively transform 
after each move.

(d) Interactive “rhizomatic” (multiple, intertwining) intransitivity of superiority in 
real complex systems. A body of biological studies is devoted to the complex intransi-
tive competitions of various species and individuals in ecological niches; for a review 
see Permogorskiy [2015]. Such competition transforms participants. Information 
about the participants, their features and interactions is incomplete for the partici-
pants and for observers (researchers) because of complexity and the multiplicity of 
interactions and permanent changes of the participants themselves and their strat-
egies.

CONCLUSION

Let us get back to the statement that “if you have violated the transitivity axiom, you 
are not instrumentally rational, and the content of A, B, and C do not matter” in an 
educational context. The main message for students in teaching and learning tran-
sitivity-intransitivity can be more multi-dimensional and not so straightforward. In 
complex and multi-variable situations, intransitive choices are perfectly rational be-
cause the choice options are in intransitive relations of superiority (like intransitive 
dice). That is, transitive choices of intransitive options are a fallacy. Here any attempts 
of linear, transitive ordering of options lead to a loss. By contrast, in situations of ob-
jective transitivity, any intransitive cycle of choices of options ends in a loss, and one 
must solve problems related to the building of linear hierarchies. Various educational 
tools can be used to support students’ understanding of these different types of situa-
tions. The aim of our future research will be testing opportunities that use of some of 
the objects described above to support intransitivity understanding.
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