The Brownian motion on $\operatorname{Aff}(\mathbb{R})$ and quasi-local theorems

V. Konakov, S. Menozzi, and S. Molchanov

Abstract

This paper is concerned with Random walk approximations of the Brownian motion on the Affine group Aff(\mathbb{R}). We are in particular interested in the case where the innovations are discrete. In this framework, the return probabilities of the walk have fractional exponential decay in large time, as opposed to the polynomial one of the continuous object. We prove that integrating those return probabilities on a suitable neighborhood of the origin, the expected polynomial decay is restored. This is what we call a Quasi-local theorem.

1. Introduction

In his seminal paper Yor92 (see also the related survey work MY05), M. Yor studied the distribution density and the moments for the following particular exponential functional of the Brownian motion $\left(B_{s}\right)_{s \geq 0}$:

$$
\begin{equation*}
A_{t}^{\nu}=\int_{0}^{t} \exp \left(2 B_{s}+\nu s\right) d s \tag{1.1}
\end{equation*}
$$

which corresponds, up to a normalization in t^{-1}, to the quantity appearing in the Asian options in the Black and Scholes setting (see again Yor92). The general case $\nu \neq 0$ can be reduced to $\nu=0$ using the Girsanov theorem and the central object will be from now on the functional $A_{t}=\int_{0}^{t} \exp \left(2 B_{s}\right) d s$.

This functional appears in several different situations, including the study of the Brownian motion on the group $\operatorname{Aff}(\mathbb{R})$ of the affine transformations of $\mathbb{R}: x \mapsto$ $a x+b, a, b \in \mathbb{R}, a>0$. This group can be isomorphically represented in the upper triangular 2×2 matrices setting $g=\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right], a>0$. The affine group provides the simplest example of solvable Lie group. We announced several results on the Brownian motion $x_{t}:=\left(a_{t}, b_{t}\right)$ on $\operatorname{Aff}(\mathbb{R})$ in the short communication KMM11] which partly rely on the results by Yor Yor92.

The central result of KMM11 is the following Theorem.

[^0]Theorem 1.1. Let $p(t, \cdot \cdot \cdot)$ be the transition density of the Brownian motion $x_{t}=\left(a_{t}, b_{t}\right)$ on $\operatorname{Aff}(\mathbb{R})$ w.r.t. the corresponding Riemannian volume. Then, for all $g \in \operatorname{Aff}(\mathbb{R}):$

$$
\begin{equation*}
p(t, g, g)=p(t, e, e) \sim_{t \rightarrow+\infty} \sqrt{\frac{\pi}{2}} \frac{1}{t^{\frac{3}{2}}} \tag{1.2}
\end{equation*}
$$

where $e=I_{2}$ is the neutral element of $\operatorname{Aff}(\mathbb{R})$.
The note KMM11 contains similar results for other solvable Lie groups. We also refer to KMM17 for related topics. We will prove Theorem 1.1 in Section 2 ,

The most interesting fact in Theorem 1.1 is the slow decay of $p(t, g, g), t \rightarrow+\infty$, which looks contradictory to the exponential growth of $\operatorname{Aff}(\mathbb{R})$. Observe that such an exponential growth occurs for all finitely generated solvable groups that have no nilpotent subgroups of finite index, i.e. that are not virtually nilpotent, by Milnor's theorem Mil68 (see also Wol68). We will establish that the random walks on the subgroups of $\operatorname{Aff}(\mathbb{R})$ cannot directly give a good approximation of the Brownian motion $\left(x_{t}\right)_{t \geq 0}$ on $\operatorname{Aff}(\mathbb{R})$. There are several reasons for that. First, $\operatorname{Aff}(\mathbb{R})$ is non-unimodular, i.e. it cannot be approximated with increasing accuracy by discrete subgroups (lattices). Secondly, any such subgroup is typically dense and chaotically distributed in $\operatorname{Aff}(\mathbb{R})$, see the results below, in particular Proposition 3.2 and Theorem 4.2. These arguments potentially apply to much more general situations.

More precisely, if $\left(x_{n}^{\varepsilon}\right)_{n \in \mathbb{N}}$ is the Markov chain corresponding to a symmetric random walk on the subgroup $G^{\varepsilon} \subset G$ generated by the matrices $\left[\begin{array}{cc}\exp (\pm \varepsilon) & 0 \\ 0 & 1\end{array}\right]=$ $g_{1}^{+\varepsilon} ;\left[\begin{array}{cc}1 & \frac{+\varepsilon}{0} \\ 1\end{array}\right]=g_{2}^{+\varepsilon}$ with step ε^{2} in time, $\varepsilon \in \mathbb{Q}$, then for $t=n \varepsilon^{2} \in \mathbb{R}^{+}$we have that:

$$
\begin{equation*}
P^{\varepsilon}(t, g, g):=P^{\varepsilon}(n, g, g)=\mathbb{P}_{g}\left(x_{n}^{\varepsilon}=g\right) \leq \exp \left(-c n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}\right), g \in G^{\varepsilon} . \tag{1.3}
\end{equation*}
$$

Let us stress that the exponential estimation $P^{\varepsilon}(n, g, g) \leq \exp (-c n), c>0$, which one could expect due to the exponential growth of the group cannot hold. Indeed, the solvable groups are amenable and it therefore follows from Kesten Kes59] that $P^{\varepsilon}(n, g, g)$ decays at a sub-exponential rate. We will establish in Section 3 by direct elementary arguments this estimate which is a particular case of the typical asymptotics obtained for the return probabilities of random walks on general solvable groups studied e.g. by Pittet and Saloff-Coste PSC02 and Tessera Tes13. The striking point is here that the return probability has fractional exponential decay and does not behave as $\frac{c}{t^{\frac{3}{2}}}$ as one could have expected from Theorem 1.1] The cause of this phenomenon is the special nature of the subgroup G^{ε} (which is dense but again highly chaotically distributed).

Note that for the nilpotent groups, like e.g. the Heisenberg one \mathbf{H}^{3}, the corresponding local limit theorems hold, see e.g. Breuillard Bre05 (like in the case of the random walk on \mathbb{Z}^{d} see e.g. [IL71, Pet05, BR76 or [LL10]). In the nilpotent setting we refer as well to the work of Alexopoulos Ale02, where the most general local limit theorem on finitely generated groups of polynomial growth (i.e. virtually nilpotent by Gromov [Gro81]) is given.

We also mention that for absolutely continuous innovations, a local Theorem on $\operatorname{Aff}(\mathbb{R})$, with the expected rate of order $n^{-3 / 2}$, matching the diagonal decay of the heat-kernel in (1.2) for large times, was proved by Bougerol Bou83.

In this work, we will establish what we call quasi-local theorems for the previously described random walk on the discrete subgroup. Our first quasi-local theorem gives the estimation of the probability that x_{n}^{ε} belongs to a small neighborhood of the unit element $e=I$ which shrinks to e when $n \rightarrow+\infty$. We establish that the corresponding limit theorem holds with the expected convergence rate (see Section (4). It will be specified as well in Section 4.1 how this phenomenon, i.e. the dramatic difference between the fractional exponential decay of return probabilities stated in (1.3) and the polynomial one appearing when taking into account an associated neighborhood (which precisely corresponds to the large time behavior in (1.2)), already appears for a specific simple random walk on the dense locally uniformly distributed subgroup of \mathbb{R} generated by finitely many rationally independent numbers $\pm \alpha_{i}, i \in\{1, \cdots, N\}$. Roughly speaking, this dichotomy emphasizes that the paths of the random walk on the subgroup are quite dense. We will then eventually show that introducing (partially) an absolutely continuous component in the Markov chain x_{n}^{ε} on $\operatorname{Aff}(\mathbb{R})$, one can check that the densities of the finite dimensional distributions of x_{n}^{ε} converge uniformly to the corresponding densities of the diffusion on $\operatorname{Aff}(\mathbb{R})$.

2. Diffusion on $\operatorname{Aff}(\mathbb{R})$ and similar groups

We briefly recall the construction of the Brownian motion on $\operatorname{Aff}(\mathbb{R})$, see e.g. McKean [McK69], Ibéro [Ibé76] or Rogers and Williams [RW85. The Lie algebra $\mathfrak{A}(\operatorname{Aff}(\mathbb{R}))$ consists of the matrices of the form $\left[\begin{array}{ll}x & y \\ 0 & 0\end{array}\right], x, y \in \mathbb{R}$. The metric on this algebra (i.e. in each plane of the tangent bundle of $\operatorname{Aff}(\mathbb{R})$) has the form $d s^{2}=d x^{2}+d y^{2}$. The exponential mapping Exp from the algebra $\mathfrak{A}(\operatorname{Aff}(\mathbb{R}))$ to the group $\operatorname{Aff}(\mathbb{R})$ then writes:

$$
g=\operatorname{Exp}\left(\left[\begin{array}{ll}
x & y \tag{2.1}\\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right]=\sum_{k \geq 0} \frac{1}{k!}\left[\begin{array}{ll}
x & y \\
0 & 0
\end{array}\right]^{k}=\left[\begin{array}{cc}
e^{x} & e^{x} y \\
0 & 1
\end{array}\right]
$$

i.e. $x=\ln (a), y=b e^{-x}=\frac{b}{a}$ so that

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}=\frac{d a^{2}+d b^{2}}{a^{2}} \tag{2.2}
\end{equation*}
$$

i.e. the Riemannian metric on $\operatorname{Aff}(\mathbb{R})$ is given by the same formula as the hyperbolic metric on the Poincaré model of the Lobachevskii plane (i.e. upper half plane of \mathbb{C}):

$$
\mathbb{C}_{+}=\{b+i a, a>0\} .
$$

The ball of radius R in this metric has an exponentially growing volume, i.e. $\operatorname{Vol}(B(R))=2 \pi(\cosh (R)-1)$ (see e.g. Gruet Gru96).

In Section 3 we will consider the symmetric random walk on the finitely generated subgroups $G^{\varepsilon} \subset G$. We consider the simplest subgroups with two generators:

$$
g_{1}^{\varepsilon}=\left[\begin{array}{cc}
\exp (\varepsilon) & 0 \tag{2.3}\\
0 & 1
\end{array}\right], \quad g_{2}^{\varepsilon}=\left[\begin{array}{ll}
1 & \varepsilon \\
0 & 1
\end{array}\right] .
$$

The number of different words of length n with the alphabet $\left\{g_{1}^{\varepsilon}, g_{1}^{-\varepsilon}, g_{2}^{\varepsilon}, g_{2}^{-\varepsilon}\right\}$ again grows exponentially with n from Milnor Mil68 (non-niplotent or non-abelian solvable groups with finite number of generators have exponential growth).

The symmetric Brownian motion on G can be constructed as the exponential mapping in the Stratonovich sense of the Brownian motion $\left(B_{t}^{1}, B_{t}^{2}\right)$, i.e. B^{1}, B^{2} are two independent scalar Brownian motions, on $\mathfrak{A}(\operatorname{Aff}(\mathbb{R}))$:
$g_{t}=\left[\begin{array}{cc}a_{t} & b_{t} \\ 0 & 1\end{array}\right]=(\circ) \bigcap_{s=0}^{t}\left[\begin{array}{cc}\left(1+d B_{s}^{1}\right) & d B_{s}^{2} \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}\exp \left(B_{t}^{1}\right) & \int_{0}^{t} \exp \left(B_{s}^{1}\right) d B_{s}^{2} \\ 0 & 1\end{array}\right]$.
The generator of $\left(a_{t}, b_{t}\right)_{t \geq 0}$ writes for all $\varphi \in C^{2}\left(\mathbb{R}_{+} \backslash\{0\} \times \mathbb{R}, \mathbb{R}\right)$:

$$
\begin{equation*}
L \varphi(a, b)=\frac{1}{2}\left(a^{2}\left(\partial_{a}^{2}+\partial_{b}^{2}\right) \varphi+a \partial_{a} \varphi\right)(a, b)=: \Delta_{\mathrm{Aff}(\mathbb{R})} \varphi(a, b), \tag{2.5}
\end{equation*}
$$

where $\Delta_{\mathrm{Aff}(\mathbb{R})}$ stands for the Laplace-Beltrami operator on $\operatorname{Aff}(\mathbb{R})$. Observe that the diffusion matrix $a^{2} I_{2}$ is indeed the inverse of the Riemannian metric tensor $a^{-2} I_{2}$.

To find the fundamental solution of the parabolic equation $\partial_{t} p=L p$, i.e. the transition density of the Brownian motion on $\operatorname{Aff}(\mathbb{R})$, we will apply the Doob transform to the well known density of the Brownian diffusion on the hyperbolic space, see Karpelevich et al. KTS59] and Gruet Gru96 for multi-dimensional generalizations. We also refer to Bougerol Bou15 for other applications of Doob transforms on algebraic structures.

Proposition 2.1 (Transition Density of the Brownian Motion on the hyperbolic plane \mathbb{H}^{2}). The density of the diffusion with generator

$$
\mathcal{L} \varphi(a, b)=\frac{1}{2} a^{2} \Delta \varphi(a, b)
$$

w.r.t. the corresponding Riemann volume $\frac{\text { dadb }}{a^{2}}$ is given by:

$$
\begin{equation*}
p_{\mathbb{H}^{2}}(t, x, y)=\frac{\sqrt{2} \exp \left(-\frac{t}{8}\right)}{(2 \pi t)^{3 / 2}} \int_{r}^{+\infty} \frac{u \exp \left(-\frac{u^{2}}{2 t}\right)}{\sqrt{\cosh (u)-\cosh (r)}} d u \tag{2.6}
\end{equation*}
$$

where $r=d_{\mathbb{H}^{2}}(x, y)$ is the hyperbolic distance between $x=\left(a_{1}, b_{1}\right), y=\left(a_{2}, b_{2}\right) \in$ \mathbb{H}^{2}, namely:

$$
d_{\mathbb{H}^{2}}(x, y)=\operatorname{arcosh}\left(1+\frac{|x-y|^{2}}{2 a_{1} a_{2}}\right),
$$

where $|x-y|^{2}=\left|a_{1}-a_{2}\right|^{2}+\left|b_{1}-b_{2}\right|^{2}$ is the usual squared Euclidean distance in \mathbb{R}^{2}.

Now we want to use the Doob transform. The following Proposition holds, see e.g. Pinsky [Pin95].

Proposition 2.2 (Doob transform). Let M be a Riemannian manifold with metric $d s^{2}=g_{i j} d x^{i} d x^{j}$ and corresponding Laplace-Beltrami operator

$$
\Delta_{M} f(x)=\frac{1}{\sqrt{\operatorname{det}(g)}} \partial_{x_{i}}\left(g^{i j} \sqrt{\operatorname{det}(g)} \partial_{x_{j}} f\right)(x) .
$$

Let $p(t, x, y)$ be the fundamental solution of the heat equation $\partial_{t} p=\frac{1}{2} \Delta_{M} p=$ $-\frac{1}{2} \Delta_{M}^{*} p$ and $\psi(x)>0$ be the positive λ-harmonic function, i.e. it solves $\frac{1}{2} \Delta_{M} \psi=$ $\lambda \psi$. Put

$$
p_{\lambda}(t, x, y)=\exp (-\lambda t) \frac{p(t, x, y)}{\psi(x)} \psi(y)
$$

Then, $p_{\lambda}(t, x, y)$ is the transition density of a new diffusion on M with generator:

$$
L_{\lambda} f(x)=\frac{1}{2} \frac{\Delta_{M}(f \psi)(x)}{\psi(x)}-\lambda f(x)=\frac{1}{2} \Delta_{M} f(x)+\nabla_{M} f(x) \cdot \nabla \ln (\psi(x))
$$

Here ∇_{M} stands for the Riemannian gradient, and the densities are always intended to be w.r.t. the corresponding Riemannian volume $\sqrt{\operatorname{det} g} d y$.

Observe now that for $\psi(a, b)=a^{\frac{1}{2}}$, simple computations give that

$$
\frac{1}{2} \Delta_{\mathbb{H}^{2}} \psi(a, b)=\frac{a^{2}}{2}\left(a^{\frac{1}{2}}\right)^{\prime \prime}=-\frac{1}{8} \psi(a, b), \quad \lambda=-\frac{1}{8}
$$

Combining Propositions 2.1 and 2.2 and the above expression for ψ, we derive that the density of the Brownian motion on $\operatorname{Aff}(\mathbb{R})$ can be expressed as the Doobtransform of the density of the Brownian motion on \mathbb{H}^{2}.

Theorem 2.3 (Density of the Brownian motion in $\operatorname{Aff}(\mathbb{R})$ and Diagonal behavior in long time). The density $p_{\mathrm{Aff}}(t, e, \cdot)$ of the Brownian motion in $\mathrm{Aff}(\mathbb{R})$ writes for all $(t, g, h) \in \mathbb{R}_{+}^{*} \times \operatorname{Aff}(\mathbb{R})^{2}$:
$p_{\mathrm{Aff}(\mathbb{R})}(t, g, h)=\exp \left(\frac{t}{8}\right) \frac{p_{\mathbb{H}^{2}}(t, g, h)}{\psi(g)} \psi(h)=\exp \left(\frac{t}{8}\right) \frac{p_{\mathbb{H}^{2}}(t, g, h)}{a^{\frac{1}{2}}} c^{\frac{1}{2}}, g=(a, b), h=(c, d)$. with $p_{\mathbb{H}^{2}}$ as in (2.6). For $t \rightarrow+\infty$ one has for all $g \in \operatorname{Aff}(\mathbb{R})$:

$$
p_{\mathrm{Aff}(\mathbb{R})}(t, g, g) \sim \frac{1}{(2 \pi t)^{\frac{3}{2}}} \int_{0}^{+\infty} \frac{u}{\sinh \left(\frac{u}{2}\right)} d u=\sqrt{\frac{\pi}{2}} \frac{1}{t^{\frac{3}{2}}}
$$

The previous theorem has an important application in spectral theory (together with the remark that $p_{\operatorname{Aff}(\mathbb{R})}(t, g, g) \sim \frac{C}{t}$ as $t \rightarrow 0$, since $\operatorname{dim}(\operatorname{Aff}(\mathbb{R}))=2$, see e.g. Mol75].

ThEOREM 2.4. Consider on $\operatorname{Aff}(\mathbb{R})$ the Schrödinger operator with non-positive fast decreasing potential $W(g)$:

$$
H=-\Delta_{\mathrm{Aff}(\mathbb{R})}+W(g), \Delta_{\mathrm{Aff}(\mathbb{R})}=\frac{1}{2} a^{2}\left(\partial_{a}^{2}+\partial_{b}^{2}\right)+\frac{1}{2} a \partial_{a}
$$

and the spectral problem $H \psi=\lambda \psi$. Then, since operator H has at most a finite negative spectrum $\left\{\lambda_{j} \leq 0\right\}$, one has:

$$
\begin{aligned}
& N_{0}(W):=\sharp\left\{j: \lambda_{j} \leq 0\right\} \leq \\
& \quad C_{1} \int_{g \in \operatorname{Aff}(\mathbb{R}): 0 \leq|W(g)| \leq 1}|W(g)|^{\frac{3}{4}} \sigma(d g)+C_{2} \int_{g \in \operatorname{Aff}(\mathbb{R}):|W(g)|>1}|W(g)| \sigma(d g),
\end{aligned}
$$

where for $g=(a, b), \sigma(d g)=\frac{d a d b}{a^{2}}$ is the Riemannian volume element on $\mathrm{Aff}(\mathbb{R})$. Also, the constants C_{1}, C_{2} here are independent of the considered potential W and can be computed directly.

The previous Theorem is a direct consequence of the work by Molchanov and Vainberg MV08.

Eventually, we can also refer to Melzi Mel02] for a global upper bound of the density of the Brownian motion on $\operatorname{Aff}(\mathbb{R})$. This work provides a tractable control for the diagonal and off-diagonal behavior of the heat-kernel in large time.

3. Approximation of diffusion by random walks and associated return probability estimates

In this section, we are interested in the approximation of the Brownian motion on $\operatorname{Aff}(\mathbb{R})$ by a discrete random walk. Let now ε be a given small parameter. The time step of our random walk $\left(x_{n}^{\varepsilon}\right)_{n \geq 0}$ will be ε^{2} (with the usual parabolic scaling). In particular for a given time $t>0$, it makes

$$
\begin{equation*}
n^{\varepsilon}(t)=\left\lfloor\frac{t}{\varepsilon^{2}}\right\rfloor \tag{3.1}
\end{equation*}
$$

steps on the interval $[0, t]$. Set $x_{0}^{\varepsilon}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, and for all $n \geq 1$:

$$
x_{n+1}^{\varepsilon}=x_{n}^{\varepsilon} A_{\varepsilon, n+1}, A_{\varepsilon, n+1}=\left[\begin{array}{cc}
\exp \left(\varepsilon X_{n+1}\right) & \varepsilon Y_{n+1} \\
0 & 1
\end{array}\right]
$$

where the $\left(X_{i}\right)_{i \in \mathbb{N}^{*}},\left(Y_{i}\right)_{i \in \mathbb{N}^{*}}$ are independent symmetric random variables, defined on some given probability space $(\Omega, \mathcal{A}, \mathbb{P})$, sharing the moment of the standard Gaussian law up to order two. Hence, the above dynamics rewrites at time n :

$$
\begin{align*}
x_{n}^{\varepsilon} & :=\left[\begin{array}{cc}
a_{n}^{\varepsilon} & b_{n}^{\varepsilon} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
e^{\varepsilon \sum_{i=1}^{n} X_{i}} & \varepsilon\left(\sum_{i=1}^{n} Y_{i} \exp \left(\varepsilon \sum_{j=1}^{i-1} X_{i}\right)\right) \\
0 & 1
\end{array}\right] \\
& =:\left[\begin{array}{cc}
e^{\varepsilon S_{n}} & \varepsilon\left(\sum_{i=1}^{n} Y_{i} \exp \left(\varepsilon S_{i-1}\right)\right) \\
0 & 1
\end{array}\right] \tag{3.2}
\end{align*}
$$

where we use the usual convention $\sum_{j=1}^{0}=0$. We will consider here mainly two cases.

- The Bernoulli Case: both $\left(X_{i}\right)_{i \in \mathbb{N}^{*}},\left(Y_{i}\right)_{i \in \mathbb{N}^{*}}$ are independent sequences of independent Bernoulli random variables, i.e. $\mathbb{P}\left[X_{1}=1\right]=\mathbb{P}\left[X_{1}=-1\right]=\mathbb{P}\left[Y_{1}=1\right]=$ $\mathbb{P}\left[Y_{1}=-1\right]=\frac{1}{2}$. In such case, it is easy to see that the random walk stays on the subgroup G^{ε} 㘢
- The mixed case: $\left(X_{i}\right)_{i \in \mathbb{N}^{*}},\left(Y_{i}\right)_{i \in \mathbb{N}^{*}}$ are independent sequences. The $\left(X_{i}\right)_{i \in \mathbb{N}^{*}}$ are still Bernoulli random variables whereas the $\left(Y_{i}\right)_{i \in \mathbb{N}^{*}}$ have an absolutely continuous law.
For the rest of the section we focus on the Bernoulli case and the associated return probability estimates (see (1.3) and Theorem 3.1). The mixed case is developed in Section 4.3, since it can be handled rather directly from the proof of our main results in Section 4.2. In particular, we emphasize that for the mixed case, the density assumption for the $\left(Y_{i}\right)_{i \in \mathbb{N}^{*}}$ is sufficient to restore the LLT (see Theorem 4.8).

[^1]In the Bernoulli case, the idea is to express the non-diagonal element b_{n}^{ε} in (3.2) in terms of the local times $L(a, n)$ of the random walk $\left(S_{k}\right)_{k \geq 0}$ at level $a \in$ $\llbracket M_{n}^{-}, M_{n}^{+} \rrbracket^{\dagger}$, where

$$
M_{n}^{-}:=\min _{k \leq n} S_{k} \leq 0, M_{n}^{+}:=\max _{k \leq n} S_{k} \geq 0 .
$$

We also precisely define:

$$
L(n, a):=\sharp\left\{k: S_{k}=a, 0<k \leq n\right\} .
$$

With these notations, we readily derive from the definition in (3.2) the following discrete occupation time formula:

$$
\begin{equation*}
b_{n}^{\varepsilon}=\varepsilon \sum_{a=M_{n}^{-}}^{M_{n}^{+}}\left(\sum_{k \in \llbracket 1, n \rrbracket: S_{k-1}=a} Y_{k}\right) \exp (\varepsilon a) . \tag{3.3}
\end{equation*}
$$

The simplest (and yet very important) local theorem for x_{n}^{ε} concerns the asymptotic behaviour of the return probability $\pi_{2 n}=\mathbb{P}_{e}\left[x_{2 n}^{\varepsilon}=e\right]=\mathbb{P}\left[S_{2 n}=\right.$ $\left.0, \sum_{k=1}^{2 n} Y_{k} e^{\varepsilon S_{k-1}}=0\right]$.

The exact asymptotic convergence rates of $\pi_{2 n}$ can be found in PSC02 (see Theorem 3.11, i) therein). Precisely, the following result holds.

Theorem 3.1 (Asymptotics of the return probabilities on the subgroup). Assume that e^{ε} is transcendental. Then, there exists $c \geq 1$ s.t. for n large enough:

$$
c^{-1} n^{\frac{1}{3}}(\ln (n))^{\frac{2}{3}} \leq-\ln \left(\pi_{2 n}\right) \leq c n^{\frac{1}{3}}(\ln (n))^{\frac{2}{3}} .
$$

In the quoted article, the authors actually consider $\varepsilon=1$, which readily gives the transcendence property. Actually, when e^{ε} is transcendental, the group generated by g_{1}^{ε} and g_{2}^{ε} defined in (2.3) is isomorphic to $\mathbb{Z} \imath \mathbb{Z}$, where g_{1}^{ε} corresponds to the walk generator on the base \mathbb{Z} and g_{2}^{ε} to the switch generator in the lamp group \mathbb{Z}. Hence, Theorem 3.1 is again a direct consequence of Theorem 3.11, i) in PSC02. The bounds follow from some properties of the local time of the simple random walk on \mathbb{Z}. For the sake of completeness, we prefer to give below a slightly different proof of the lower bound of Theorem 3.1 which directly uses the transcendentality of e^{ε}. We also hope that our approach might extend to higher order solvable matrix groups for which the reduction to the random walk on the wreath product is less clear.

In our work, we are indeed interested in Donsker-Prokhorov type results (see Proposition 4.1 below), which will require the previous scaling of (3.1). This leads us to consider the previous transcendence condition. Namely, if e^{ε} is transcendent, and since $\left(S_{i}\right)_{i \in \mathbb{N}}$ is \mathbb{Z} valued, we will have that:

$$
\begin{aligned}
\sum_{i=1}^{2 n} Y_{i} \exp \left(\varepsilon S_{i-1}\right) & =\sum_{a \in \llbracket M_{2 n}^{-}, M_{2 n}^{+} \rrbracket} \sum_{k \in \llbracket 1,2 n \rrbracket, S_{k-1}=a} Y_{k} \exp (\varepsilon a) \\
& =0 \Longleftrightarrow \forall a \in \llbracket M_{2 n}^{-}, M_{2 n}^{+} \rrbracket, \quad \sum_{k \in \llbracket 1,2 n \rrbracket, S_{k-1}=a} Y_{k}=0 .
\end{aligned}
$$

We now mention that, from the Lindemann-Weierstrass theorem, a sufficient condition for e^{ε} to be transcendental is that ε is algebraic, which for instance happens if $\varepsilon \in \mathbb{Q}$.

[^2]We now provide a proof for this lower bound, which relies on stochastic analysis arguments associated with some controls for the local time of the simple random walk, see e.g. Rev05.

Proposition 3.2. If e^{ε} is transcendental then there exists $c \geq 1$ s.t. for n large enough:

$$
\pi_{2 n} \leq \exp \left(-c^{-1} n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}\right)
$$

In particular, the proof emphasizes that the upper bound of the return probability does not depend on ε as soon as it is algebraic.

Proof. The numbers $e^{k \varepsilon}, k \in \mathbb{Z}$ being rationally independent the probability $\pi_{2 n}$ rewrites:

$$
\begin{align*}
\pi_{2 n}=\mathbb{P}[& \cap_{a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket} L(2 n-1, a) \\
& =0 \operatorname{Mod} 2, S_{2 n} \tag{3.4}\\
& \left.=0, \forall a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket \sum_{k \in \llbracket 1, n \rrbracket: S_{k-1}=a} Y_{k}=0\right] .
\end{align*}
$$

Set now, $A:=\left\{\cap_{a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket} L(2 n-1, a)=0 \operatorname{Mod} 2, S_{2 n}=0\right\}$. We can thus write:

$$
\begin{equation*}
\pi_{2 n}=\mathbb{E}\left[\prod_{a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket} \frac{\binom{L(2 n-1, a)}{\frac{L(2 n-1, a)}{2}}}{2^{L(2 n-1, a)}} \mathbb{I}_{A}\right] \tag{3.5}
\end{equation*}
$$

Observe that, on the considered event A, for $a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket$, the local time $L(2 n-1, a)$ is even. The contribution $\frac{\binom{L(2 n-1, a)}{\frac{L(2 n-1, a)}{2}}}{2^{L(2 n-1, a)}}$ then corresponds to the probability that a symmetric Binomial law with parameter $L(2 n-1, a)$ is equal to 0 . This exactly describes the event $\sum_{k \in \llbracket 1, n \rrbracket: S_{k-1}=a} Y_{k}=0$.

Observe importantly that on A :

$$
\frac{\binom{L(2 n-1, a)}{\frac{L(2 n-1, a)}{2}}}{2^{L(2 n-1, a)}} \leq \frac{1}{2}
$$

Let us now localize w.r.t. the position of the minimum $M_{2 n-1}^{-}$and maximum $M_{2 n-1}^{+}$. Namely, we want to get rid of the large deviations for our current problem. Introduce the set $D_{\alpha}:=\left\{M_{2 n-1}^{-} \leq-\alpha\right\} \bigcup\left\{M_{2 n-1}^{+} \geq \alpha\right\}$. Observe that

$$
\begin{aligned}
T_{2 n}^{D_{\alpha}} & :=\mathbb{E}\left[\prod_{a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket} \frac{\binom{L(2 n-1, a)}{\frac{L(2 n-1, a)}{2}}}{2^{L(2 n-1, a)}} \mathbb{I}_{D_{\alpha} \cap A}\right] \leq\left(\frac{1}{2}\right)^{\alpha} 2 \mathbb{P}\left[M_{2 n-1}^{+} \geq \alpha\right] \\
& \leq 4 \exp (-\alpha \ln 2) \exp \left(-\frac{\alpha^{2}}{4 n}\right),
\end{aligned}
$$

using the Bernstein inequality for the last control. Now in order to equilibrate the contributions of these large deviations w.r.t the stated bound in Proposition 3.2 we
want to solve the equation $\frac{\alpha^{2}}{n}+\alpha \ln 2=n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}$. It is then easily checked that the positive root α_{n} of the equation is s.t. $\alpha_{n} \sim \frac{n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}}{\ln (2)}=: m_{n}$. It thus follows that there exists C_{0}^{1} s.t. for n large enough:

$$
T_{2 n}^{D_{m_{n}}} \leq \exp \left(-C_{0}^{1} m_{n}\right)
$$

On the other hand, we can as well derive the required control provided the extremas are small with the previously emphasized threshold. Namely, introducing:

$$
\begin{align*}
& T_{2 n}^{S}: \tag{3.6}\\
&=\mathbb{E}\left[\prod_{a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket} \frac{\binom{L(2 n-1, a)}{\frac{L(2 n-1, a)}{2}}}{2^{L(2 n-1, a)}} \mathbb{I}_{\left|M_{2 n-1}^{-}\right| \leq \frac{m_{n}}{\ln (n)},\left|M_{2 n-1}^{+}\right| \leq \frac{m_{n}}{\ln (n)}} \mathbb{I}_{A}\right] \\
& \leq \mathbb{P}\left[\left|M_{2 n-1}^{-}\right| \leq \frac{m_{n}}{\ln (n)}, M_{2 n-1}^{+} \leq \frac{m_{n}}{\ln (n)}, S_{2 n=0}\right] \\
& \leq \mathbb{P}\left[\forall k \in \llbracket 0,2 n \rrbracket, \frac{S_{k}}{\sqrt{n}} \in\left[-\frac{m_{n}}{\sqrt{n} \ln (n)}, \frac{m_{n}}{\sqrt{n} \ln (n)}\right]\right] .
\end{align*}
$$

To control the last inequality we use the following important Lemma concerning tube estimates for the random walk:

Lemma 3.3 (Tube Estimates for the Random Walk). There exists constants $c \leq 1, C \geq 1$ s.t.:

$$
\begin{array}{r}
\mathbb{P}\left[\forall k \in \llbracket 1,2 n \rrbracket,\left|S_{k}\right| \leq \frac{m_{n}}{\ln (n)}\right] \leq C \exp \left(-c n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}\right), \\
\sum_{a=-m_{n}}^{m_{n}} \mathbb{P}\left[L(2 n-1, a)>c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right] \leq C \exp \left(-c n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}\right) .
\end{array}
$$

The above result can be viewed as a discrete analogue of the tube estimates for the Brownian motion that can be found in IW80. The proof is postponed to the end of the Section for the sake of clarity.

From Lemma 3.3 and (3.6) we get $T_{2 n}^{S} \leq C \exp \left(-c n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}\right)$. Thus, it suffices to restrict to the study of:

$$
\begin{aligned}
T_{2 n}^{M}:= & \mathbb{E}\left[\prod_{a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket} \frac{\binom{L(2 n-1, a)}{\frac{L(2 n-1, a)}{2}}}{2^{L(2 n-1, a)}} \mathbb{I}_{\left|M_{2 n-1}^{-}\right| \leq m_{n}, M_{2 n-1}^{+} \leq m_{n}}\right. \\
& \left.\times\left(\mathbb{I}_{M_{2 n-1}^{+}>\frac{m_{n}}{\ln (n)}}+\mathbb{I}_{\left.\left|M_{2 n-1}^{-}\right|>\frac{m_{n}}{\ln (n)}\right)}\right) \mathbb{I}_{A}\right] .
\end{aligned}
$$

Fix now a $\delta \in(0,1)$ and introduce the random set:

$$
A_{\delta}:=\left\{a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket: L(2 n-1, a)>n^{\delta}\right\} .
$$

Let us now fix $c \in(0,1)$. If $\sharp A_{\delta} \geq c \frac{m_{n}}{\ln (n)}$, then:

$$
\begin{aligned}
T_{2 n}^{M, 1}:= & \mathbb{E}\left[\prod_{a=M_{2 n-1}^{-}}^{M_{2 n-1}^{+}} \frac{\binom{L(2 n-1, a)}{\frac{L(2 n-1, a)}{2}}}{2^{L(2 n-1, a)}} \mathbb{I}_{\left|M_{2 n-1}^{-}\right| \leq m_{n}, M_{2 n-1}^{+} \leq m_{n}}\right. \\
& \left.\times\left(\left.\mathbb{I}_{M_{2 n-1}^{+}>\frac{m_{n}}{\ln (n)}}+\mathbb{I}_{\mid M_{2 n-1}^{-}} \right\rvert\,>\frac{m_{n}}{\ln (n)}\right) \mathbb{I}_{\sharp A_{\delta} \geq c \frac{m_{n}}{\ln (n)}} \mathbb{I}_{A}\right] \\
\leq & C \mathbb{E}\left[\prod_{a \in A_{\delta}} \frac{1}{L(2 n-1, a)^{\frac{1}{2}}} \mathbb{I}_{\left|M_{2 n-1}^{-}\right| \leq m_{n}, M_{2 n-1}^{+} \leq m_{n}}\right. \\
\times & \left.\left(\mathbb{I}_{M_{2 n-1}^{+}>\frac{m_{n}}{\ln (n)}}+\mathbb{I}_{\left|M_{2 n-1}^{-}\right|>\frac{m_{n}}{\ln (n)}}\right) \mathbb{I}_{\sharp A_{\delta} \geq c c m_{n}} \mathbb{I}_{A}\right] \\
\leq & C\left(\frac{1}{n^{\frac{\delta}{2}(n)}}\right)^{c \frac{m_{n}}{\ln (n)}}=C \exp \left(-\frac{\delta}{2} \ln (n) \times c \frac{m_{n}}{\ln (n)}\right)=C \exp \left(-\frac{\delta}{2} c m_{n}\right),
\end{aligned}
$$

where on the event A_{δ}, we used the Stirling formula for the first inequality. It remains to handle:

$$
\begin{aligned}
T_{2 n}^{M, 2}:= & \mathbb{E}\left[\prod_{a \in \llbracket M_{2 n-1}^{-}, M_{2 n-1}^{+} \rrbracket} \frac{\binom{L(2 n-1, a)}{\frac{L(2 n-1, a)}{2}}}{2^{L(2 n-1, a)}} \mathbb{I}_{\left|M_{2 n-1}^{-}\right| \leq m_{n}, M_{2 n-1}^{+} \leq m_{n}}\right. \\
& \left.\left(\mathbb{I}_{M_{2 n-1}^{+}>\frac{m_{n}}{\ln (n)}}+\mathbb{I}_{\left|M_{2 n-1}^{-}\right|>m_{n}}\right) \mathbb{I}_{\sharp A_{\delta}<c \frac{m_{n}}{\ln (n)}} \mathbb{I}_{A}\right] .
\end{aligned}
$$

The first point to note is that, on the event $\left\{\sharp A_{\delta}<c \frac{m_{n}}{\ln (n)}\right\} \cap\left\{\left|M_{2 n-1}^{-}\right| \leq\right.$ $\left.m_{n},\left|M_{2 n-1}^{+}\right| \leq m_{n}\right\}$, necessarily the occupation measure of A_{δ} is large. Precisely, we have that defining:

$$
A_{\delta}^{C}:=\left\{a \in \llbracket-m_{n}, m_{n} \rrbracket, a \notin A_{\delta}\right\}, \sharp A_{\delta}^{C} \geq 2 m_{n}-c \frac{m_{n}}{\ln (n)} .
$$

On the other hand, the total local time generated by the points in A_{δ}^{C} is less than $2 m_{n} n^{\delta}=2 n^{\frac{1}{3}+\delta} \ln (n)^{\frac{2}{3}}<n$, for $\delta \in\left(0, \frac{2}{3}\right)$ and n large enough. Hence, the occupation time of A_{δ} is s.t.:

$$
\left|\left\{i \in \llbracket 1,2 n \rrbracket: S_{i} \in A_{\delta}\right\}\right|>n .
$$

Since we also know that on the considered event $\left\{\sharp A_{\delta}<c \frac{m_{n}}{\ln (n)}\right\}$, we derive that there necessarily exists a level $a \in A_{\delta}$ s.t.

$$
L(2 n-1, a)>\frac{n}{c \frac{m_{n}}{\ln (n)}}
$$

We obtain:

$$
\begin{aligned}
T_{2 n}^{M, 2} \leq & \mathbb{P}\left[\left|\left\{i \in \llbracket 1,2 n \rrbracket: S_{i} \in A_{\delta}\right\}\right|>n, \sharp A_{\delta}<c \frac{m_{n}}{\ln (n)},\left|M_{2 n-1}^{-}\right| \leq m_{n}, M_{2 n-1}^{+} \leq m_{n}\right] \\
\leq & \mathbb{P}\left[\exists a \in A_{\delta}, L(2 n-1, a)>c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}},\right. \\
& \left.\sharp A_{\delta}<c \frac{m_{n}}{\ln (n)},\left|M_{2 n-1}^{-}\right| \leq m_{n}, M_{2 n-1}^{+} \leq m_{n}\right] \\
\leq & \sum_{a=-m_{n}}^{m_{n}} \mathbb{P}\left[L(2 n-1, a)>c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right] \leq C \exp \left(-c n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}\right),
\end{aligned}
$$

using again Lemma 3.3 for the last inequality.
Proof of Lemma 3.3 (Tubes for the random walk). Let us begin the proof observing that since,

$$
\begin{aligned}
\mathbb{P}\left[\forall k \in \llbracket 1,2 n \rrbracket,\left|S_{k}\right|\right. & \left.\leq \frac{m_{n}}{\ln (n)}\right] \\
& \leq \mathbb{P}\left[\exists a \in \llbracket-\frac{m_{n}}{\ln (n)}, \frac{m_{n}}{\ln (n)} \rrbracket, L(2 n, a) \geq \frac{n}{\frac{m_{n}}{\ln (n)}}\right] \\
& \leq \sum_{a=-\frac{m_{n}}{\ln (n)}} \mathbb{P}\left[L(2 n, a) \geq n^{\frac{2}{3}} \ln ^{\frac{1}{3}}(n)\right],
\end{aligned}
$$

it suffices to prove the second statement of the Lemma. To this end, observe first that from Theorem 9.4 in Revesz Rev05, we get for all $a>0, k \in \mathbb{N}$:

$$
\mathbb{P}[L(2 n, a)=k]=\left\{\begin{array}{l}
\frac{1}{2^{2 n-k+1}}\binom{2 n-k+1}{(2 n+a) / 2}, \text { if } a \text { is even } \tag{3.7}\\
\frac{1}{2^{2 n-k}}\binom{2 n-k}{(2 n+a-1) / 2}, \text { if } a \text { is odd. }
\end{array}\right.
$$

By symmetry we also derive that for $a<0$, the above expression holds replacing a by $|a|$ (recall indeed that $L(2 n, a) \stackrel{(\text { law })}{=} L(2 n,-a))$. Eventually, for $a=0$, Theorem 9.3 in Rev05] yields:

$$
\begin{equation*}
\mathbb{P}[L(2 n, 0)=k]=2^{-2 n+k}\binom{2 n-k}{n} \tag{3.8}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\mathcal{P}_{m_{n}} & :=\sum_{a=-m_{n}}^{m_{n}} \mathbb{P}\left[L(2 n, a)>c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right] \\
& =\mathbb{P}\left[L(2 n, 0)>c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right] \\
& +2 \sum_{a=1}^{m_{n}} \mathbb{P}\left[L(2 n, a)>c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right] .
\end{aligned}
$$

Note as well from (3.7) that, in agreement with the intuition, $\mathbb{P}[L(2 n, 0)=k]>$ $\mathbb{P}[L(2 n, a)=k], a>0, k \in \mathbb{N}$. We therefore derive:

$$
\mathcal{P}_{m_{n}} \leq\left(1+2 m_{n}\right) \mathbb{P}\left[L(2 n, 0)>c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right] .
$$

Write now from (3.8):

$$
\begin{equation*}
\mathcal{P}_{m_{n}} \leq\left(1+2 m_{n}\right) \sum_{k=\left\lfloor c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right\rfloor}^{n} 2^{-2 n+k}\binom{2 n-k}{n} \tag{3.9}
\end{equation*}
$$

By the Stirling formula, we obtain that for $k \in \llbracket\left\lfloor c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right\rfloor, n-1 \rrbracket$,

$$
\begin{aligned}
\mathbb{P}[L(2 n, 0)=k] & =2^{-2 n+k}\binom{2 n-k}{n} \\
& \leq \frac{e}{\pi \sqrt{2 n}} \frac{\sqrt{n-\frac{k}{2}}}{\sqrt{n-k}} \exp \left((2 n-k) \ln \left(1-\frac{k}{2 n}\right)-(n-k) \ln \left(1-\frac{k}{n}\right)\right)
\end{aligned}
$$

The contribution for $k=n$ gives $\mathbb{P}[L(2 n, 0)=k]=2^{-n}$ and therefore a negligible term in the r.h.s. of (3.9). We will now split the summation in (3.9) according to $k \in \llbracket\left\lfloor c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right\rfloor, n^{1-\eta} \rrbracket$ and $k \in \llbracket n^{1-\eta}, n \rrbracket$ for $\eta>0$ small enough to be specified later on. Observing that $\mathbb{P}[L(2 n, 0)=k]$ is a decreasing function of k we obtain: (3.10)
$\mathcal{P}_{m_{n}} \leq\left(1+2 m_{n}\right)\left(\sum_{k=\left\lfloor c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right\rfloor}^{n^{1-\eta}} \mathbb{P}[L(2 n, 0)=k]+\left(n-n^{1-\eta}\right) \mathbb{P}\left[L(2 n, 0)=n^{1-\eta}\right]\right)$.
From (??) it can be deduced from usual computations that there exists $C>0$ s.t. uniformly on $k \in \llbracket\left\lfloor c^{-1} n^{\frac{2}{3}} \ln (n)^{\frac{1}{3}}\right\rfloor, n^{1-\eta} \rrbracket$, for n large enough:

$$
\mathbb{P}[L(2 n, 0)=k] \leq \frac{C}{\sqrt{n}} \exp \left(-\frac{k^{2}}{5 n}\right)
$$

Plugging this estimate in (3.10) yields:

$$
\begin{aligned}
& \mathcal{P}_{m_{n} \leq} \leq C\left(1+2 m_{n}\right)\left(\sum_{c^{-1} n^{\frac{1}{6}} \ln (n)^{\frac{1}{3}}<\frac{k}{\sqrt{n}} \leq n^{1 / 2-\eta}} \frac{1}{\sqrt{2 \pi n}} \exp \left(-\frac{1}{5}\left(\frac{k}{\sqrt{n}}\right)^{2}\right)\right. \\
&\left.\quad+\left(n^{\frac{1}{2}}-n^{\frac{1}{2}-\eta}\right) \exp \left(-\frac{n^{1-2 \eta}}{5}\right)\right) \\
& \leq C\left(1+2 m_{n}\right)\left(\frac{1}{\sqrt{2 \pi}} \int_{c^{-1} n^{\frac{1}{6}} \ln (n)^{\frac{1}{3}}}^{+\infty} \exp \left(-\frac{x^{2}}{5}\right) d x+\exp \left(-\frac{n^{1-2 \eta}}{6}\right)\right) \\
& \leq C\left(1+2 m_{n}\right)\left(\exp \left(-c^{-1} n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}\right)+\exp \left(-\frac{n^{1-2 \eta}}{6}\right)\right) \\
& \leq C \exp \left(-c^{-1} n^{\frac{1}{3}} \ln (n)^{\frac{2}{3}}\right)
\end{aligned}
$$

taking $\eta \in\left(0, \frac{1}{3}\right)$ and up to modifications of C, c for the last inequality. This completes the proof.

4. Quasi-Local Theorems

We first mention that the integral theorem (which is an obvious corollary of the functional Donsker-Prokhorov Central Limit Theorem (CLT) for the random walks) of course applies. Namely, we have the following result.

Proposition 4.1 (Donsker-Prokhorov approximation). Fix $t>0$. If $\varepsilon \rightarrow 0$, $n^{\varepsilon}(t):=\left\lfloor\frac{t}{\varepsilon^{2}}\right\rfloor \rightarrow+\infty$, then

$$
\left(a_{\left\lfloor s n^{\varepsilon}(t)\right\rfloor}^{\varepsilon}, b_{\left\lfloor s n_{\varepsilon}(t)\right\rfloor}^{\varepsilon}\right)_{s \in[0,1]} \xrightarrow[\varepsilon \rightarrow 0]{(\text { law })}(a(s t), b(s t))_{s \in[0,1]},
$$

where a and b are defined in (2.4).
On the other hand, we are going to prove that some quasi-local Theorems as well hold. By quasi-local Theorem, we mean here that we consider a suitable renormalization of a neighborhood of the origin. Our main result in that direction is the following Theorem.

Theorem 4.2. Let ϕ be a smooth test function s.t. its Fourier transform is compactly supported in $[-1,1]$ and s.t. $\int_{\mathbb{R}} \phi(x) d x=1$. Denote, for a given $\delta>0$, by $\phi_{\delta}(x):=\frac{1}{\delta} \phi\left(\frac{x}{\delta}\right)$ its rescaling. Fix $t>0$, possibly large, and define for $n \in 2 \mathbb{N}$, $\varepsilon_{n}=\left(\frac{t}{n}\right)^{\frac{1}{2}}$. Then, for $\delta_{n}:=t^{\frac{1}{2}} n^{-\frac{1}{2}+\gamma}, \gamma \in\left(0, \frac{1}{2}\right)$, we have:

$$
\begin{equation*}
\mathbb{E}\left[\mathbb{I}_{S_{n}=0} \phi_{\delta_{n}}\left(\varepsilon_{n} \sum_{j=1}^{n} Y_{j} \exp \left(\varepsilon_{n} S_{j-1}\right)\right)\right] \sim_{n} \frac{2 \varepsilon_{n}}{t^{\frac{1}{2}} \sqrt{2 \pi}} \cdot p_{2}(t, 0) . \tag{4.1}
\end{equation*}
$$

Here, we denote for $t>0$ by $p_{2}(t, \cdot)$ the density of the random variable $\tilde{b}_{t}:=$ $\int_{0}^{t} e^{\tilde{B}_{s}^{1}} d B_{s}^{2}$ where $\left(\tilde{B}_{s}^{1}\right)_{s \in[0, t]}$ is a usual Brownian Bridge independent of the Brownian motion B^{2}. The subscript 2 in $p_{2}(t, \cdot)$, is here to recall the considered random variable is associated with the second component of the Brownian motion on the group.

$$
\begin{equation*}
p_{2}(t, 0)=\mathbb{E}\left[\frac{1}{\sqrt{2 \pi \int_{0}^{t} e^{2 \tilde{B}_{s}^{1}} d s}}\right] \sim_{t \rightarrow+\infty} \frac{\pi}{t}, \frac{1}{\sqrt{2 \pi t}} p_{2}(t, 0)=p_{\mathrm{Aff}(\mathbb{R})}(t, e, e) \tag{4.2}
\end{equation*}
$$

Hence, we find the expected asymptotics in large time. We have a normalization in ε_{n} and not in ε_{n}^{3} in (4.1), because we have already normalized our approximation of the stochastic integral in our scheme (3.2). We also specify that the threshold δ_{n} has the above form, which equivalently rewrites $\frac{\varepsilon_{n}}{\delta_{n}}=n^{-\gamma}$, in order that some remainder terms in the analysis can be neglected w.r.t. the intrinsic scaling of the limit theorem in $t^{-3 / 2}$. The previous condition equivalently expresses that the ratio $\frac{\varepsilon_{n}}{\delta_{n}}$ between the time step ε_{n} and the window size δ_{n} for the approximating Dirac mass is negligible in n (window bigger than time step). We refer to the proof in Section 4.2 below for details (see in particular equation (4.20)).

To illustrate the phenomenon that appears on $\operatorname{Aff}(\mathbb{R})$, i.e. the tremendous different rates between the pointwise return probabilities, and the quasi-local Theorem, we consider a rather simple model which already enjoys such properties. Basically, this dichotomy emphasizes that, the discrete subgroups are somehow very dense, in the sense that they allow to have the expected convergence rates towards the densities of the limiting objects when integrated on a suitable neighborhood.
4.1. Quasi-local CLT: the toy model. We discuss in this section some points related to the local CLT on a dense subgroup G_{ε} of a Lie group G in the simplest possible case, taking $G=\mathbb{R}, G_{1}=\left\{x: x=\sum_{i=1}^{N} n_{i} \alpha_{i}\right\}$ (or more generally $\left.G_{\varepsilon}=\left\{x: x=\varepsilon \sum_{i=1}^{N} d_{i} \alpha_{i}\right\}, \varepsilon>0\right)$. Here, $N \in \mathbb{N}$ is a fixed given integer, $\alpha=$ $\left(\alpha_{1}, \cdots, \alpha_{N}\right)$ is s.t. the $\left\{\alpha_{i}, i \in \llbracket 1, N \rrbracket\right\}$ are rationally independent real numbers
and $d=\left(d_{1}, \cdots, d_{N}\right) \in \mathbb{Z}^{N}$ encodes the coordinates/displacements associated with the entries of α.

The subgroup G_{1} is not only dense in \mathbb{R} but is also in some sense locally uniformly distributed. This can for instance be seen from Herman Weyl's classical result (see e.g. [SS03]). Consider for a fixed non negative integer L, the sequence

$$
\tilde{x}_{d}=\left(\sum_{i=1}^{N} \alpha_{i} d_{i}\right) \operatorname{Mod} L=\langle\alpha, d\rangle \operatorname{Mod} L,
$$

where here the notation $\operatorname{Mod} L$ stands for the remainder term of the division by L. Then, for an arbitrary continuous and L periodic function f we have:

$$
\begin{equation*}
\lim _{M \rightarrow+\infty} \frac{\sum_{d \in \mathbb{Z}^{N}:|d| \leq M} f\left(\tilde{x}_{d}\right)}{\sharp\left\{d \in \mathbb{Z}^{N}:|d| \leq M\right\}}=\frac{1}{L} \int_{0}^{L} f(x) d x, \tag{4.3}
\end{equation*}
$$

where $|\cdot|$ stands here for the Euclidean norm of \mathbb{R}^{N}.
Consider now the symmetric random walk $\left(x_{n}\right)_{n \in \mathbb{N}}$ on \mathbb{R}, s.t. $x_{0}=0, x_{n}=$ $\sum_{j=1}^{n} u_{j}$ where the $\left(u_{j}\right)_{j \in \mathbb{N}^{*}}$ are i.i.d. real-valued discrete random variables with law:

$$
\begin{equation*}
u_{1} \stackrel{(\text { law })}{=} p_{0} \delta_{0}+\frac{1}{2} \sum_{i=1}^{N} p_{i}\left(\delta_{\alpha_{i}}+\delta_{-\alpha_{i}}\right), \forall i \in \llbracket 1, N \rrbracket, 0<p_{i}<1, \sum_{i=0}^{N} p_{i}=1 . \tag{4.4}
\end{equation*}
$$

We can as well consider the auxiliary random walk $\left(X_{n}\right)_{n \in \mathbb{N}}$ on \mathbb{R}^{N} s.t. $X_{0}=0$, $X_{n}=\sum_{j=1}^{n} U_{j}$ where the $\left(U_{j}\right)_{j \in \mathbb{N}^{*}}$ are i.i.d. \mathbb{R}^{N}-valued discrete random variables with law:

$$
U_{1} \stackrel{(\text { law })}{=} p_{0} \delta_{0_{\mathbb{R}} N}+\frac{1}{2} \sum_{i=1}^{N} p_{i}\left(\delta_{\alpha_{i} e_{i}}+\delta_{-\alpha_{i} e_{i}}\right), \forall i \in \llbracket 1, N \rrbracket, 0<p_{i}<1, \sum_{i=0}^{N} p_{i}=1 .
$$

In the above expression the $\left(e_{i}\right)_{i \in \llbracket 1, N \rrbracket}$ denote the canonical basis vectors of \mathbb{R}^{N}.
Observe that the relation between the random variables $\left(u_{j}\right)_{j \in \mathbb{N}^{*}}$ and $\left(U_{j}\right)_{j \in \mathbb{N}^{*}}$, and therefore between x and X is summarized as follows:

$$
\begin{equation*}
\forall j \in \mathbb{N}^{*}, u_{j}=\left\langle U_{j}, \sum_{k=1}^{N} e_{k}\right\rangle=\left\langle U_{j}, \mathbf{1}\right\rangle, x_{n}=\left\langle X_{n}, \sum_{k=1}^{N} e_{k}\right\rangle=\left\langle X_{n}, \mathbf{1}\right\rangle, \tag{4.5}
\end{equation*}
$$

where $1:=\sum_{k=1}^{N} e_{k}=(1, \cdots, 1)^{*}$.
Introduce now for notational convenience:

$$
\mathbb{P}\left[x_{n}=0\right]=r_{n},
$$

i.e. r_{n} denotes the return probability to 0 at time n. We want to emphasize the following fact. Even though, from the standard CLT:

$$
\begin{equation*}
\frac{x_{n}}{\sqrt{n}} \xrightarrow[n]{(\text { law })} \mathcal{N}\left(0, \sigma^{2}\right), \sigma^{2}=\mathbb{E}\left[u_{1}^{2}\right]=\sum_{i=1}^{N} p_{i} \alpha_{i}^{2} \tag{4.6}
\end{equation*}
$$

we do not have $r_{n} \sim_{n} \frac{c}{\sqrt{n}}$ but instead $r_{n} \sim_{n} \frac{c}{n^{N / 2}}$. The result can be intuitively justified from the fact that from the rational independence of the $\left\{\alpha_{i}\right\}_{i \in \llbracket 1, N \rrbracket}$,

$$
\begin{equation*}
r_{n}=\mathbb{P}\left[x_{n}=0\right]=\mathbb{P}\left[X_{n}=0_{\mathbb{R}^{N}}\right] . \tag{4.7}
\end{equation*}
$$

For the latter event, this means that in each direction the number of positive and negative transitions are the same, and the asymptotics for this return probability
corresponds to the product of the return probabilities in each direction. This fact can be formalized with the following proposition.

Proposition 4.3 (Asymptotics for the return probability). As $n \rightarrow+\infty$, the following result holds:

- If $p_{0}>0$, then:

$$
r_{n}=\mathbb{P}\left[x_{n}=0\right] \sim_{n} \frac{C(p)}{n^{\frac{N}{2}}}, C(p):=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi p_{i}}} .
$$

- If $p_{0}=0$, then: $r_{n}=0$ if n is odd and for n even:

$$
r_{n}=\mathbb{P}\left[x_{n}=0\right] \sim_{n} \frac{2 C(p)}{n^{\frac{N}{2}}} .
$$

We point out that, since the underlying random walk X_{n} is actually a random walk on \mathbb{Z}^{N} with steps distributed on the standard generators, the results of Proposition 4.3 can be directly derived from the standard local limit theorem, see e.g. Lawler and Limic LL10]. We anyhow provide below a proof which together with the deviation result of Proposition 4.4 gives a very simple one dimensional analytic proof of a more general quasi-local theorem and also emphasizes the point we want to stress: namely, for the considered scalar walk the dramatic dichotomy between the behavior of the return probabilities and the integration on a neighborhood of Theorem 4.5 below.

Proof. Observe that X_{n} is lattice valued. For a given $n \in \mathbb{N}$, defining $\mathscr{L}_{n}:=$ $\left\{\left(\xi_{1}, \cdots, \xi_{N}\right), \forall i \in \llbracket 1, N \rrbracket, \xi_{i} \in\left\{-n \alpha_{i}, \cdots, n \alpha_{i}\right\}\right\}$, we have $\mathbb{P}\left[X_{n} \in \mathscr{L}_{n}\right]=1$. Actually $\operatorname{supp}\left(X_{n}\right) \subset \mathscr{L}_{n}$, where the inclusion is strict. Write then for all $t \in \mathbb{R}^{N}$:

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(i\left\langle t, X_{n}\right\rangle\right)\right]=\sum_{\xi \in \mathscr{L}_{n}} \mathbb{P}\left[X_{n}=\xi\right] \exp (i\langle t, \xi\rangle) \tag{4.8}
\end{equation*}
$$

Introducing the rescaled torus $\mathbb{T}_{N}^{\alpha}:=\left[-\frac{\pi}{\alpha_{i}}, \frac{\pi}{\alpha_{i}}\right]$, we get that for all

$$
(\xi, \zeta) \in \mathscr{L}_{n}, \frac{1}{\left|\mathbb{T}_{N}^{\alpha}\right|} \int_{\mathbb{T}_{N}^{\alpha}} \exp (-i\langle t, \xi\rangle) \exp (+i\langle t, \zeta\rangle) d t=\delta_{\xi, \zeta}
$$

Hence, for any $\xi_{0} \in \operatorname{supp}\left(X_{n}\right)$:

$$
\begin{align*}
\mathbb{P}\left[X_{n}=\xi_{0}\right] & =\frac{1}{\left|\mathbb{T}_{N}^{\alpha}\right|} \int_{\mathbb{T}_{N}^{\alpha}} \exp \left(-i\left\langle t, \xi_{0}\right\rangle\right) \mathbb{E}\left[\exp \left(i\left\langle t, X_{n}\right\rangle\right)\right] d t \tag{4.9}\\
& =\frac{\prod_{j=1}^{N} \alpha_{j}}{(2 \pi)^{N}} \int_{\mathbb{T}_{N}^{\alpha}} \exp \left(-i\left\langle t, \xi_{0}\right\rangle\right) \varphi^{n}(t) d t,
\end{align*}
$$

where $\varphi(t):=\mathbb{E}\left[\exp \left(i\left\langle t, U_{1}\right\rangle\right)\right]=p_{0}+\sum_{j=1}^{N} p_{j} \cos \left(t_{j} \alpha_{j}\right)=1+\sum_{j=1}^{N} p_{j}\left(\cos \left(t_{j} \alpha_{j}\right)-\right.$ 1) $=1-2 \sum_{j=1}^{N} p_{j} \sin ^{2}\left(\frac{t_{j} \alpha_{j}}{2}\right)$.

Recalling (4.7), we thus readily get from the inversion formula (4.9) taking $\xi_{0}=0$, and changing variable to $s_{j}=\alpha_{j} t_{j}, j \in\{1, \cdots, N\}$

$$
\begin{aligned}
r_{n} & =\mathbb{P}\left[X_{n}=0_{\mathbb{R}^{N}}\right] \\
& =\frac{1}{(2 \pi)^{N}} \int_{\mathbb{T}_{N}} \varphi^{n}\left(\frac{s_{1}}{\alpha_{1}}, \cdots, \frac{s_{N}}{\alpha_{N}}\right) d s \\
& =\frac{1}{(2 \pi)^{N}} \int_{\mathbb{T}_{N}}\left(1-2 \sum_{j=1}^{N} p_{j} \sin ^{2}\left(\frac{s_{j}}{2}\right)\right)^{n} d s
\end{aligned}
$$

where $\mathbb{T}_{N}:=[-\pi, \pi]^{N}$. For small values of $|s|$, and recalling that X_{n} has zero third moments, we then get that:

$$
\begin{equation*}
\varphi\left(\frac{s_{1}}{\alpha_{1}}, \cdots, \frac{s_{N}}{\alpha_{N}}\right)=1+\sum_{j=1}^{N} p_{j}\left(-\frac{s_{j}^{2}}{2}+O\left(s_{j}^{4}\right)\right)=\exp \left(-\frac{1}{2} \sum_{j=1}^{N} p_{j} s_{j}^{2}+O\left(|s|^{4}\right)\right) \tag{4.10}
\end{equation*}
$$

Set $\delta_{n}:=c\left(\frac{\ln (n)}{n}\right)^{1 / 2}, c>\left(\frac{N}{\min _{j \in \llbracket 1, N \rrbracket} p_{j}}\right)^{1 / 2}$. We now introduce $B_{N}\left(\delta_{n}\right):=\{s \in$ $\left.\mathbb{T}_{N}:|s|_{\infty} \leq \delta_{n}\right\}$ (ball of radius δ_{n} around the origin) and $C_{N}\left(\delta_{n}\right):=\left\{s \in \mathbb{T}_{N}\right.$: $\left.\forall j \in \llbracket 1, N \rrbracket, s_{j} \in\left[-\pi,-\pi+\delta_{n}\right] \cup\left[\pi-\delta_{n}, \pi\right]\right\}$ (corners of radius δ_{n} of the torus $\left.\mathbb{T}_{N}\right)$. Set $M_{N}\left(\delta_{n}\right):=B_{N}\left(\delta_{n}\right) \cup C_{N}\left(\delta_{n}\right)$. Observe that for $s \in \mathbb{T}_{N} \backslash M_{N}\left(\delta_{n}\right)$, we have either:
(a) $\exists j_{0} \in \llbracket 1, N \rrbracket, \cos \left(s_{j_{0}}\right)-1=-2 \sin ^{2}\left(\frac{s_{j_{0}}}{2}\right) \in\left[-2+\frac{\delta_{n}^{2}}{2}+o\left(\delta_{n}^{2}\right),-\frac{\delta_{n}^{2}}{2}+o\left(\delta_{n}^{2}\right)\right]$.
(b) $K_{S}:=\left\{j \in \llbracket 1, N \rrbracket:\left|s_{j}\right| \leq \delta_{n}\right\}$ and $K_{L}:=\left\{j \in \llbracket 1, N \rrbracket:\left(\pi-\left|s_{j}\right|\right)^{2} \leq \delta_{n}\right\}$ are non empty.
In case (a), we readily get $\left|1-2 \sum_{j=1}^{N} p_{j} \sin ^{2}\left(\frac{s_{j}}{2}\right)\right| \leq\left(1-p_{j_{0}} \frac{\delta_{n}^{2}}{2}+o\left(\delta_{n}^{2}\right)\right)$. In case (b), we derive:

$$
\left|1-2 \sum_{j=1}^{N} p_{j} \sin ^{2}\left(\frac{s_{j}}{2}\right)\right| \leq\left|1-2 \sum_{k \in K_{L}} p_{k}\right|+\frac{\delta_{n}^{2}}{2}+o\left(\delta_{n}^{2}\right):=c_{L, S}(n) \leq 1-\frac{1}{2} \min _{j \in \llbracket 1, N \rrbracket} p_{j},
$$

for n large enough. We can therefore rewrite:

$$
\begin{align*}
r_{n} & =\frac{1}{(2 \pi)^{N}} \int_{M_{N}\left(\delta_{n}\right)}\left(1-2 \sum_{j=1}^{N} p_{j} \sin ^{2}\left(\frac{s_{j}}{2}\right)\right)^{n} d s+R_{N}^{n}, \\
\left|R_{N}^{n}\right| & \leq C \int_{\mathbb{T}_{N} \backslash M_{N}\left(\delta_{n}\right)}\left\{\left(1-p_{j_{0}} \frac{\delta_{n}^{2}}{2}+o\left(\delta_{n}^{2}\right)\right)^{n}+c_{L, S}(n)^{n}\right\} d s \tag{4.11}\\
& \leq C n^{-\frac{p_{j_{0} c^{2}}^{2}}{2}}=o\left(n^{-N / 2}\right) .
\end{align*}
$$

Let us discuss now the contribution associated with $C_{N}\left(\delta_{n}\right)$. For $s \in C_{N}\left(\delta_{n}\right)$, one has for all $j \in \llbracket 1, N \rrbracket$:

$$
-2 \sin ^{2}\left(\frac{s_{j}}{2}\right)=-2\left(1-\left(\frac{\pi-\left|s_{j}\right|}{2}\right)^{2}\right)+O\left(\left(\pi-\left|s_{j}\right|\right)^{4}\right)
$$

so that $1-2 \sum_{i=1}^{N} p_{j} \sin ^{2}\left(\frac{s_{j}}{2}\right)=-1+2 p_{0}+\sum_{j=1}^{N} p_{j} \frac{\left(\pi-\left|s_{j}\right|\right)^{2}}{2}+O\left(\left(\pi-\left|s_{j}\right|\right)^{4}\right)$. Hence,

- if $p_{0} \neq 0$, we thus readily get $\frac{1}{(2 \pi)^{N}} \int_{C_{N}\left(\delta_{n}\right)}\left(1-2 \sum_{j=1}^{N} p_{j} \sin ^{2}\left(\frac{s_{j}}{2}\right)\right)^{n} d s=o\left(n^{-N / 2}\right)$.
- if $p_{0}=0$, by symmetry, we get $r_{n}=0$ if n is odd and

$$
\begin{aligned}
\frac{1}{(2 \pi)^{N}} \int_{M_{N}\left(\delta_{n}\right)}\left(1-2 \sum_{j=1}^{N} p_{j} \sin ^{2}\right. & \left.\left(\frac{s_{j}}{2}\right)\right)^{n} d s \\
& =\frac{2}{(2 \pi)^{N}} \int_{B_{N}\left(\delta_{n}\right)}\left(1-2 \sum_{j=1}^{N} p_{j} \sin ^{2}\left(\frac{s_{j}}{2}\right)\right)^{n} d s
\end{aligned}
$$

if n is even. Recall now from (4.10) that:

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{N}} \int_{B_{N}\left(\delta_{n}\right)}\left(1-2 \sum_{j=1}^{N} p_{j} \sin ^{2}\left(\frac{s_{j}}{2}\right)\right)^{n} d s \\
& =\frac{1}{(2 \pi)^{N}} \int_{B_{N}\left(\delta_{n}\right)} \exp \left(-n\left\{\sum_{j=1}^{N} p_{j} \frac{s_{j}^{2}}{2}+O\left(|s|^{4}\right)\right\}\right) d s \\
& =\frac{1}{(2 \pi n)^{\frac{N}{2}} \prod_{j=1}^{N} \sqrt{p_{j}}} \int_{\prod_{j=1}^{N}\left\{\left|\tilde{s}_{j}\right| \leq \ln (n)^{1 / 2} p_{j}^{1 / 2}\right\}} \exp \left(-\frac{1}{2} \sum_{j=1}^{N} \tilde{s}_{j}^{2}+O\left(\frac{\ln (n)^{2}}{n}\right)\right) \frac{d \tilde{s}}{(2 \pi)^{\frac{N}{2}}} \\
& \sim_{n} \frac{1}{n^{\frac{N}{2}}} \prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi p_{i}}}=\frac{C(p)}{n^{\frac{N}{2}}} .
\end{aligned}
$$

This gives the stated result.

We can as well refer more generally to the proof of the classical local CLT (see e.g. Pet05, Chapter 5 in BR76 for the multidimensional case or again Lawler and Limic (LL10).

Observe that the asymptotic of the return probability r_{n} does not depend on the rationally independent numbers $\left(\alpha_{j}\right)_{j \in \llbracket 1, N \rrbracket}$ chosen. We simply used the fact that, to return to 0 , we must have over the considered time interval, for all $j \in \llbracket 1, N \rrbracket$, the same numbers of random variables taking the values $-\alpha_{j} e_{j}$ and $\alpha_{j} e_{j}$.

Hence, the bigger N, the smaller the exact return probability. Similarly, from (4.9) we can extend the previous proposition with the following result.

Proposition 4.4 (Deviation bounds for the LLT). Let $n \rightarrow+\infty$ and $y \in$ $\mathbb{R}^{N} \cap \operatorname{supp}\left(X_{n}\right)$ be s.t. its Euclidean norm $|y| \leq n^{\frac{3}{4}-\gamma}, \gamma>0$ (which is meant to be small). Then, for $p_{0}>0$, recalling as well that $X_{0}=0$, we obtain:

$$
\mathbb{P}\left[X_{n}=y\right] \sim_{n} \prod_{j=1}^{N}\left(\frac{\exp \left(-\frac{y_{j}^{2}}{2 \alpha_{j}^{2} p_{j} n}\right)}{\left(2 \pi p_{j} n\right)^{\frac{1}{2}}}\right)
$$

Proof. We indicate that starting from (4.9), proceeding as in the previous proof of Proposition 4.3 and considering a localization with respect to a ball of
radius $\delta_{n}=n^{-(1 / 4+\gamma / 2)}$, we derive:

$$
\begin{align*}
& \mathbb{P}\left[X_{n}=y\right]=\frac{1}{(2 \pi)^{N}} \int_{B\left(\delta_{n}\right)} \exp \left(-i\left\langle\left(\frac{y_{1}}{\alpha_{1}}, \cdots, \frac{y_{N}}{\alpha_{N}}\right), s\right\rangle\right) \tag{4.12}\\
& \quad \exp \left(-n\left(\frac{1}{2} \sum_{j=1}^{N} p_{j} s_{j}^{2}+O\left(|s|^{4}\right)\right)\right) d s+R_{N}^{n} \\
&=\frac{1}{(2 \pi n)^{\frac{N}{2}} \prod_{j=1}^{N} \sqrt{p_{j}}} \int_{\prod_{j=1}^{N}\left\{\left|\tilde{s}_{j}\right| \leq n^{1 / 4-\gamma / 2} p_{j}^{1 / 2}\right\}} \tag{4.13}\\
& \quad \exp \left(-i\left\langle\left(\frac{y_{1}}{\alpha_{1}\left(p_{1} n\right)^{1 / 2}}, \cdots, \frac{y_{N}}{\alpha_{N}\left(p_{N} n\right)^{1 / 2}}\right), \tilde{s}\right\rangle\right) \\
& \quad \times \exp \left(-\frac{1}{2} \sum_{j=1}^{N} \tilde{s}_{j}^{2}+O\left(\frac{|\tilde{s}|^{4}}{n}\right)\right) \frac{d \tilde{s}}{(2 \pi)^{N / 2}}+R_{N}^{n},
\end{align*}
$$

where, as in (4.11),

$$
\begin{equation*}
\left|R_{N}^{n}\right| \leq C \int_{\mathbb{T}_{N} \backslash M_{N}\left(\delta_{n}\right)}\left\{\left(1-p_{j_{0}} \frac{\delta_{n}^{2}}{2}+o\left(\delta_{n}^{2}\right)\right)^{n}+c_{L, S}(n)^{n}\right\} d s \leq C \exp \left(-c n^{1 / 2-\gamma}\right) \tag{4.14}
\end{equation*}
$$

using the current choice of δ_{n} for the last inequality. Hence,

$$
\begin{align*}
\mathbb{P}\left[X_{n}=y\right] & \sim_{n} \frac{1}{(2 \pi n)^{\frac{N}{2}} \prod_{j=1}^{N} \sqrt{p_{j}}} \int_{\prod_{j=1}^{N}\left\{\left|\tilde{s}_{j}\right| \leq n^{1 / 4-\gamma / 2} p_{j}^{1 / 2}\right\}} \tag{4.15}\\
& \times \exp \left(-i\left\langle\left(\frac{y_{1}}{\alpha_{1}\left(p_{1} n\right)^{1 / 2}}, \cdots, \frac{y_{N}}{\alpha_{N}\left(p_{N} n\right)^{1 / 2}}\right), \tilde{s}\right\rangle\right) \\
& \times \exp \left(-\frac{1}{2} \sum_{j=1}^{N} \tilde{s}_{j}^{2}\right) \frac{d \tilde{s}}{(2 \pi)^{N / 2}}+R_{N}^{n}=: \mathcal{P}_{n}(y)+R_{N}^{n} .
\end{align*}
$$

Write then,

$$
\begin{align*}
\mathcal{P}_{n}(y) & =\frac{1}{(2 \pi n)^{\frac{N}{2}} \prod_{j=1}^{N} \sqrt{p_{j}}} \prod_{j=1}^{N} \int_{\mathbb{R}} \exp \left(-i \frac{y_{j}}{\alpha_{j}\left(p_{j} n\right)^{1 / 2}} s\right) \exp \left(-\frac{s^{2}}{2}\right) d s+\mathcal{R}_{N}^{n} \\
4.16) & =\frac{1}{(2 \pi n)^{\frac{N}{2}} \prod_{j=1}^{N} \sqrt{p_{j}}} \exp \left(-\sum_{j=1}^{N} \frac{y_{j}^{2}}{2 \alpha_{j}^{2} p_{j} n}\right)+\mathcal{R}_{N}^{n}, \tag{4.16}\\
\left|\mathcal{R}_{N}^{n}\right| & \leq \frac{C}{n^{\frac{N}{2}}} \int_{\left(\prod_{j=1}^{N}\left\{\left|\tilde{s}_{j}\right| \leq n^{1 / 4-\gamma / 2} p_{j}^{1 / 2}\right\}\right)^{C}} \exp \left(-\frac{|\tilde{s}|^{2}}{2}\right) d \tilde{s} \leq \frac{C}{n^{\frac{N}{2}}} \exp \left(-c n^{1 / 2-\gamma}\right) .
\end{align*}
$$

On the considered range set for y, i.e. $|y| \leq n^{3 / 4-\gamma}$, since $\exp \left(-\sum_{j=1}^{N} \frac{y_{j}^{2}}{2 \alpha_{j}^{2} p_{j} n}\right) \geq$ $\exp \left(-c_{0} n^{1 / 2-2 \gamma}\right)$ and $\left|\mathcal{R}_{N}^{n}\right| \leq C \exp \left(-c n^{1 / 2-\gamma}\right)$, the term \mathcal{R}_{N}^{n} can indeed be seen as a global remainder uniformly in y. Equations (4.15) and (4.17), (4.14) then yield the result. Observe as well that for $y \in \operatorname{supp}\left(X_{n}\right),\left(\frac{y_{1}}{\alpha_{1}}, \cdots, \frac{y_{N}}{\alpha_{N}}\right) \in \mathbb{Z}^{N}$.

Again those deviation results can be deduced from the proof of the more complex Theorem 2.3.11 in LL10. We keep the proof for the sake of completeness and its simplicity.

Observe now that from the previous definition of x_{n}, for any $\Gamma \subset \mathbb{R}$,

$$
\begin{equation*}
\mathbb{P}\left[x_{n} \in \Gamma\right]=\mathbb{P}\left[\left\langle X_{n}, \mathbf{1}\right\rangle \in \Gamma\right]=\sum_{y \in \mathbb{Z}^{N},\langle y, \alpha\rangle \in \Gamma} \mathbb{P}\left[X_{n}=\sum_{i=1}^{N} \alpha_{i} y_{i} e_{i}\right] . \tag{4.17}
\end{equation*}
$$

From equation (4.17) in Proposition 4.4 we derive the following theorem.
Theorem 4.5. For a given $\gamma \in\left(0, \frac{1}{2}\right)$, and a positive sequence $\delta_{n} \rightarrow_{n} 0$ and s.t. $\delta_{n} \geq n^{-\left(\frac{1}{2}-\gamma\right)}$, we have for $p_{0}>0$:

$$
\mathbb{P}\left[x_{2 n} \in\left(-\delta_{n}^{-1}, \delta_{n}^{-1}\right)\right] \sim_{n} 2 \delta_{n}^{-1} \frac{1}{\sqrt{2 \pi(2 n)} \sigma}
$$

where as in the usual CLT stated in (4.6), $\sigma^{2}=\sum_{i=1}^{N} p_{i} \alpha_{i}^{2}$.
From Proposition 4.3 and Theorem 4.5, we precisely see that, the integrated probability gives the expected usual rate in $n^{-1 / 2}$. Actually, this is precisely due to the last part of Proposition 4.4, we integrate in a neighborhood of a hyperplane of \mathbb{R}^{N}, whereas the pointwise return probabilities might have arbitrarily polynomial decay in function of the chosen N. We will show in the next subsection a similar behavior for our random walk on $\operatorname{Aff}(\mathbb{R})$.

Remark 4.1 (Alternative formulation of Theorem 4.5). Note that, we can as well provide an upper bound of Theorem 4.5 not only around 0 but also for points a belonging to intervals whose size can as well go to infinity with n. Namely, for $\delta_{n} \rightarrow_{n} 0$ s.t. $\delta_{n} n^{\frac{1}{2}} \rightarrow_{n}+\infty$ and $\frac{|a|}{\ln \left(\delta_{n}^{\frac{1}{2}} n^{\frac{1}{2}}\right)} \rightarrow_{n} 0$, one has:

$$
\begin{equation*}
\mathbb{P}\left[\frac{x_{2 n}}{\sigma \sqrt{2 n}} \in\left(a, a+\delta_{n}\right)\right] \sim_{n} \delta_{n} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{a^{2}}{2}\right) \tag{4.18}
\end{equation*}
$$

Defining for $x \in \mathbb{R}, F_{n}(x):=\mathbb{P}\left[\frac{x_{2 n}}{\sigma \sqrt{2 n}} \leq x\right]$ and $F(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{y^{2}}{2}\right) d y$, write from the Berry-Essen theorem:

$$
\begin{aligned}
\mathbb{P}\left[\frac{x_{2 n}}{\sigma \sqrt{2 n}} \in\left(a, a+\delta_{n}\right)\right]= & F_{n}\left(a+\delta_{n}\right)-F_{n}(a)=\left(F_{n}\left(a+\delta_{n}\right)-F\left(a+\delta_{n}\right)\right) \\
& +\left(F\left(a+\delta_{n}\right)-F(a)\right) \\
& +\left(F(a)-F_{n}(a)\right)=: F\left(a+\delta_{n}\right)-F(a)+R_{n}, \\
\left|R_{n}\right| \leq & \frac{2 C \mu_{3}}{\sigma^{3} \sqrt{2 n}}, \mu_{3}=\mathbb{E}\left[\left|u_{1}\right|^{3}\right]
\end{aligned}
$$

with u_{1} defined in (4.4). On the considered ranges for δ_{n} and a, R_{n} is indeed a remainder and (4.18) readily follows from the above equation and a first order Taylor expansion.
4.2. Proof of Theorem 4.2, We first need the following auxiliary lemma concerning the maximum of the conditioned random walk.

Lemma 4.6 (Maximum and Minimum of the conditioned random walk). Let $n \geq 0$ be given and consider the conditioned random walk $\left(\tilde{S}_{j}\right)_{j \in \llbracket 0, n \rrbracket}, \tilde{S}_{j}=\sum_{i=1}^{j} X_{i}$ s.t. $\tilde{S}_{0}=\tilde{S}_{n}=0$. We recall here that $\left(X_{i}\right)_{i \in \mathbb{N}^{*}}$ is a sequence of i.i.d. Bernoulli
random variables. Denoting by $\tilde{M}_{n}^{+}:=\max _{i \in \llbracket 0, n \rrbracket} \tilde{S}_{i}, \tilde{M}_{n}^{-}:=\min _{i \in \llbracket 0, n \rrbracket} \tilde{S}_{i}$ we have that for all $\theta>0$ there exists $c:=c(\theta) \geq 1$ s.t.

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(\theta \frac{\tilde{M}_{n}^{+}}{\sqrt{n}}\right)\right]+\mathbb{E}\left[\exp \left(\theta \frac{\tilde{M}_{n}^{-}}{\sqrt{n}}\right)\right] \leq c \exp \left(c \theta^{2}\right) \tag{4.19}
\end{equation*}
$$

Proof. It is well known from the Donsker invariance principle that $\tilde{M}_{n}^{+}, \tilde{M}_{n}^{-}$ respectively converge in law towards the maximum and the minimum of a standard Brownian bridge on $[0,1]$ (see e.g. Liggett Lig68 or Vervaat Ver79). For the rest of the proof we focus on \tilde{M}_{n}^{+}, the results for \tilde{M}_{n}^{-}can be derived similarly by symmetry.

For any $A>0$, denoting by $\tilde{M}^{+}:=\sup _{s \in[0,1]} \tilde{B}_{s}$ where $(\tilde{B})_{s \in[0,1]}$ is a standard Brownian bridge, we get that for all $\theta \geq 0$:

$$
\mathbb{E}\left[\exp \left(\theta \frac{\tilde{M}_{n}^{+}}{\sqrt{n}}\right) \mathbb{I}_{\left|\frac{\tilde{M}_{n}^{+}}{\sqrt{n}}\right| \leq A}\right] \underset{n}{\rightarrow} \mathbb{E}\left[\exp \left(\theta \tilde{M}^{+}\right) \mathbb{I}_{\left|\tilde{M}^{+}\right| \leq A}\right] \leq \mathbb{E}\left[\exp \left(\theta \tilde{M}^{+}\right)\right]
$$

Letting $A \rightarrow \infty$, we then obtain by usual uniform integrability arguments that:

$$
\mathbb{E}\left[\exp \left(\theta \frac{\tilde{M}_{n}^{+}}{\sqrt{n}}\right)\right] \underset{n}{\longrightarrow} \mathbb{E}\left[\exp \left(\theta \tilde{M}^{+}\right)\right]
$$

Therefore, there exists $C:=C(\theta) \geq 1$ s.t. for all $n \geq 0$,

$$
\mathbb{E}\left[\exp \left(\theta \frac{\tilde{M}_{n}^{+}}{\sqrt{n}}\right)\right] \leq C \mathbb{E}\left[\exp \left(\theta \tilde{M}^{+}\right)\right] \leq C \exp \left(c \theta^{2}\right)
$$

where the last inequality simply follows from the exact expression of the joint law of the Brownian motion and its running maximum, see e.g. RY99.

Proof of Theorem 4.2. We have first, for even n :

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{I}_{S_{n}=0} \phi_{\delta_{n}}\left(\varepsilon_{n} \sum_{j=1}^{n} Y_{j} \exp \left(\varepsilon_{n} S_{j-1}\right)\right)\right] \\
& \quad=\mathbb{P}\left[S_{n}=0\right] \mathbb{E}\left[\phi_{\delta_{n}}\left(\varepsilon_{n} \sum_{j=1}^{n} Y_{j} \exp \left(\varepsilon_{n} S_{j-1}\right)\right) \mid S_{n}=0\right] \\
& \quad=\mathbb{P}\left[S_{n}=0\right] \mathbb{E}\left[\phi_{\delta_{n}}\left(\varepsilon_{n} \sum_{j=1}^{n} Y_{j} \exp \left(\varepsilon_{n} \tilde{S}_{j-1}\right)\right)\right]
\end{aligned}
$$

where $\left(\tilde{S}_{j}\right)_{j \in \llbracket 1, n \rrbracket}$ stands for the random walk conditioned to be at 0 at time n. Then:

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{I}_{S_{n}=0} \phi_{\delta_{n}}\right. & \left.\left(\varepsilon_{n} \sum_{j=1}^{n} Y_{j} \exp \left(\varepsilon_{n} S_{j-1}\right)\right)\right] \\
& \sim_{n} \frac{2}{\sqrt{2 \pi n}} \mathbb{E}\left[\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{\phi}\left(\delta_{n} x\right) \exp \left(-i \varepsilon_{n} x \sum_{j=1}^{n} Y_{j} \exp \left(\varepsilon_{n} \tilde{S}_{j-1}\right)\right) d x\right]
\end{aligned}
$$

Taking the conditional expectation w.r.t. to $\left(\tilde{S}_{j}\right)_{j \in \llbracket 1, n \rrbracket}$ and using the symmetry of the i.i.d random variables $\left(Y_{j}\right)_{j \in \llbracket 1, n \rrbracket}$, we derive:

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{I}_{S_{n}=0} \phi_{\delta_{n}}\left(\varepsilon_{n} \sum_{j=1}^{n} Y_{j} \exp \left(\varepsilon_{n} S_{j-1}\right)\right)\right] \\
& \sim_{n} \frac{2}{\sqrt{2 \pi n}} \frac{1}{2 \pi} \int_{\mathbb{R}} \hat{\phi}\left(\delta_{n} x\right) \mathbb{E}\left[\prod_{j=1}^{n} \cos \left(\varepsilon_{n} x \exp \left(\varepsilon_{n} \tilde{S}_{j-1}\right)\right)\right] d x .
\end{aligned}
$$

Let now $\widetilde{M}_{n}^{-}, \widetilde{M}_{n}^{+}$denote the respective minimum and maximum values of the conditioned random walk (bridge) $\left(\tilde{S}_{j}\right)_{j \in \llbracket 1, n \rrbracket}$. We can assume w.l.o.g. that $\left|\widetilde{M}_{n}^{+}\right| \leq$ $c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}$ for a sufficiently large constant c. Indeed,

$$
\begin{aligned}
\mathbb{P}\left[\left|\widetilde{M}_{n}^{+}\right| \geq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}\right] & =\frac{\mathbb{E}\left[\mathbb{I}_{\left.\left|M_{n}^{+}\right| \geq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}} \mathbb{I}_{S_{n}=0}\right]}\right.}{\mathbb{P}\left[S_{n}=0\right]} \\
& \leq C n^{\frac{1}{2}} \mathbb{P}\left[\left|M_{n}^{+}\right| \geq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}\right]^{\frac{1}{p}} \mathbb{P}\left[S_{n}=0\right]^{\frac{1}{4}}, p, q>1, \frac{1}{p}+\frac{1}{q}=1,
\end{aligned}
$$

using the lower bound of the control

$$
\frac{C^{-1}}{\sqrt{n}} \leq \mathbb{P}\left[S_{n}=0\right]=\binom{n}{n / 2} \frac{1}{2^{n}} \leq \frac{C}{\sqrt{n}}, C \geq 1
$$

which follows from the Stirling formula, for the last inequality. The upper bound and the Bernstein inequality ${ }^{\ddagger}$ for the standard random walk on \mathbb{Z} then yield:

$$
\mathbb{P}\left[\left|\widetilde{M}_{n}^{+}\right| \geq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}\right] \leq C \exp \left(-\frac{c^{2}}{2 p} \ln (n)\right) n^{\frac{1}{2}\left(1-\frac{1}{q}\right)}=C n^{-\frac{c^{2}}{2 p}+\frac{1}{2}\left(1-\frac{1}{q}\right)}
$$

which again gives a negligible contribution w.r.t. to the scale $n^{-\frac{3}{2}}$ for c large enough.

Recalling as well that we have assumed $\hat{\phi}$ to be compactly supported in $[-1,1]$, we get that we only have to consider the integration variable x in the range $|x| \leq \frac{1}{\delta_{n}}$. Recall from the statement of Theorem 4.2 that $\frac{\varepsilon_{n}}{\delta_{n}}=n^{-\gamma}$ for $0<\gamma<\frac{1}{2}$. Then, for all $j \in \llbracket 1, n \rrbracket$, on the event $\left\{\widetilde{M}_{n}^{+} \leq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}\right\}$:

$$
\begin{align*}
\varepsilon_{n}|x| \exp \left(\varepsilon_{n} \tilde{S}_{j-1}\right) & \leq \frac{\varepsilon_{n}}{\delta_{n}} \exp \left(\varepsilon_{n} \tilde{S}_{j-1}\right) \\
& \leq n^{-\gamma} \exp \left(\varepsilon_{n} \widetilde{M}_{n}^{+}\right) \\
& \leq n^{-\gamma} \exp \left(c t^{\frac{1}{2}}(\ln (n))^{\frac{1}{2}}\right) \rightarrow_{n} 0 \tag{4.20}
\end{align*}
$$

[^3]On the associated sets, we will therefore obtain that the arguments in the cosines are uniformly small. Precisely:

$$
\begin{aligned}
& \mathbb{E}\left[\prod_{j=1}^{n} \cos \left(\varepsilon_{n} x Y_{j} \exp \left(\varepsilon_{n} \tilde{S}_{j-1}\right)\right) \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}}\right] \\
& =\mathbb{E}\left[\prod_{j=1}^{n}\left(1-\frac{\left(\varepsilon_{n} x\right)^{2} \exp \left(2 \varepsilon_{n} \tilde{S}_{j-1}\right)}{2}+O\left(\left(\varepsilon_{n} x\right)^{4} \exp \left(4 \varepsilon_{n} \tilde{S}_{j-1}\right)\right)\right)\right. \\
& \left.\times \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}}\right] \\
& =\mathbb{E}\left[\exp \left(-\sum_{j=1}^{n}\left\{\frac{\left(\varepsilon_{n} x\right)^{2} \exp \left(2 \varepsilon_{n} \tilde{S}_{j-1}\right)}{2}+O\left(\left(\varepsilon_{n} x\right)^{4} \exp \left(4 \varepsilon_{n} \tilde{S}_{j-1}\right)\right)\right\}\right)\right. \\
& \left.\times \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}}\right] .
\end{aligned}
$$

Hence,

$$
\begin{array}{r}
\frac{1}{2 \pi} \int \hat{\phi}\left(\delta_{n} x\right) \mathbb{E}\left[\prod_{j=1}^{n} \cos \left(\varepsilon_{n} x Y_{j} \exp \left(\varepsilon_{n} \tilde{S}_{j-1}\right)\right)\right] d x \tag{4.21}\\
\sim_{n} \frac{1}{2 \pi} \int \hat{\phi}\left(\delta_{n} x\right) \mathbb{E}\left[\exp \left(-\frac{x^{2}}{2}\left(\tilde{A}_{n}(t)+\tilde{R}_{n}(t)\right)\right) \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}}\right] d x=: I_{n},
\end{array}
$$

where,

$$
\begin{equation*}
\tilde{A}_{n}(t):=\varepsilon_{n}^{2} \sum_{j=1}^{n} \exp \left(2 \varepsilon_{n} \tilde{S}_{j-1}\right),\left|\tilde{R}_{n}(t)\right| \leq C\left(\varepsilon_{n}^{2} \sum_{j=1}^{n} \exp \left(4 \varepsilon_{n} \tilde{S}_{j-1}\right) x^{2} \varepsilon_{n}^{2}\right) \tag{4.22}
\end{equation*}
$$

where the constant C in absolute constant, which in particular does not depend on x, t or n. Now, we derive from (4.20) that

$$
x^{2} \varepsilon_{n}^{2} \exp \left(2 \varepsilon_{n} \tilde{S}_{j-1}\right) \leq C n^{-2 \gamma} \exp \left(2 c t^{\frac{1}{2}}(\ln (n))^{\frac{1}{2}}\right) \underset{n}{\rightarrow} 0 .
$$

Thus,

$$
\begin{aligned}
\left|\tilde{R}_{n}(t)\right| & \leq C\left(\varepsilon_{n}^{2} \sum_{j=1}^{n} \exp \left(4 \varepsilon_{n} \tilde{S}_{j-1}\right) x^{2} \varepsilon_{n}^{2}\right) \\
& \leq C \tilde{A}_{n}(t) n^{-2 \gamma} \exp \left(2 c t^{\frac{1}{2}}(\ln (n))^{\frac{1}{2}}\right) \\
& :=C \tilde{A}_{n}(t) \beta_{n}, \beta_{n} \rightarrow_{n} 0 .
\end{aligned}
$$

We get that:

$$
\begin{equation*}
I_{n} \sim_{n} \frac{1}{2 \pi} \int \hat{\phi}\left(\delta_{n} x\right) \mathbb{E}\left[\exp \left(-\frac{x^{2}}{2} \tilde{A}_{n}(t)\right) \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}}\right] d x \tag{4.23}
\end{equation*}
$$

Indeed, for all $\lambda \in[0,1]$,
$\widetilde{A}_{n}(t)+\lambda \tilde{R}_{n}(t) \geq \varepsilon_{n}^{2} \sum_{j=1}^{n} \exp \left(2 \varepsilon_{n} \tilde{S}_{j-1}\right)-\left|\tilde{R}_{n}(t)\right| \geq \frac{1}{2} \varepsilon_{n}^{2} \sum_{j=1}^{n} \exp \left(2 \varepsilon_{n} \tilde{S}_{j-1}\right)=\frac{1}{2} \tilde{A}_{n}(t)$.
so that:

$$
\begin{aligned}
\left|\Delta_{n}(t, x)\right| & :=\left|\exp \left(-\frac{x^{2}}{2}\left(\tilde{A}_{n}(t)+\tilde{R}_{n}(t)\right)\right)-\exp \left(-\frac{x^{2}}{2} \tilde{A}_{n}(t)\right)\right| \\
& \leq \int_{0}^{1} \exp \left(-\frac{x^{2}}{2}\left(\tilde{A}_{n}(t)+\lambda \tilde{R}_{n}(t)\right)\right) \frac{x^{2}}{2}\left|\tilde{R}_{n}(t)\right| d \lambda \\
& \leq C \exp \left(-\frac{x^{2}}{4} \tilde{A}_{n}(t)\right) \frac{x^{2}}{2} \tilde{A}_{n}(t) \beta_{n} \leq C \exp \left(-\frac{x^{2}}{8} \tilde{A}_{n}(t)\right) \beta_{n} .
\end{aligned}
$$

Thus, exploiting that $\hat{\phi}$ is bounded we get:

$$
\begin{equation*}
\left|\int \hat{\phi}\left(\delta_{n} x\right) \mathbb{E}\left[\Delta_{n}(t, x) \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c n^{\frac{1}{2}} \ln (n)^{\frac{1}{2}}}\right] d x\right| \leq C \beta_{n} \mathbb{E}\left[\left|\tilde{A}_{n}(t)\right|^{-1 / 2}\right] . \tag{4.25}
\end{equation*}
$$

We now state a useful Proposition, whose proof is postponed to the end of the section for the sake of clarity.

Proposition 4.7. For $\theta \in\left\{\frac{1}{2}, 1\right\}$ and $n \geq 1$, there exists $C \geq 1$ s.t.:

$$
\begin{equation*}
\mathbb{E}\left[\left|\widetilde{A}_{n}(t)\right|^{-\theta}\right] \leq C t^{-1} \tag{4.26}
\end{equation*}
$$

Let us now prove that Proposition 4.7 and (4.25) yield (4.23).
We first split the term I_{n} introduced in (4.21) and equivalent to the r.h.s. of (4.23) into two parts.

$$
\begin{aligned}
I_{n}^{1} & :=\frac{1}{2 \pi} \int_{|x| \leq \frac{1}{\sqrt{\delta_{n}}}} \hat{\phi}\left(\delta_{n} x\right) \mathbb{E}\left[\exp \left(-\frac{1}{2} x^{2} \tilde{A}_{n}(t)\right) \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c(n \ln (n))^{\frac{1}{2}}}\right] d x \\
& \sim_{n} \hat{\phi}(0) \frac{1}{2 \pi} \int_{|x| \leq \frac{1}{\sqrt{\delta_{n}}}} \mathbb{E}\left[\exp \left(-\frac{1}{2} x^{2} \tilde{A}_{n}(t)\right) \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c(n \ln (n))^{\frac{1}{2}}}\right] d x=: \bar{I}_{n}
\end{aligned}
$$

Now, from the Fubini theorem, we get:

$$
\begin{aligned}
& \bar{I}_{n}:= \hat{\phi}(0) \frac{1}{2 \pi}\left(\mathbb{E}\left[\left\{\int_{\mathbb{R}} \exp \left(-\frac{1}{2} x^{2} \tilde{A}_{n}(t)\right) d x\right\} \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c(n \ln (n))^{\frac{1}{2}}}\right]\right. \\
&\left.-\int_{|x|>\frac{1}{\sqrt{\delta \delta_{n}}}} \mathbb{E}\left[\exp \left(-\frac{1}{2} x^{2} \tilde{A}_{n}(t)\right) \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c(n \ln (n))^{\frac{1}{2}}}\right] d x\right) \\
&=\left(\mathbb{E}\left[\frac{1}{\sqrt{2 \pi \tilde{A}_{n}(t)}} \mathbb{I}_{\widetilde{M}_{n}^{+} \leq c(n \ln (n))^{\frac{1}{2}}}\right]\right)+O\left(\mathbb{E}\left[\exp \left(-\frac{1}{4} \frac{\tilde{A}_{n}(t)}{\delta_{n}}\right) \frac{1}{\tilde{A}_{n}(t)^{1 / 2}}\right]\right) \\
&=\left(\mathbb{E}\left[\frac{1}{\sqrt{2 \pi \tilde{A}_{n}(t)}} \mathbb{I}_{\left.\widetilde{M}_{n}^{+} \leq c(n \ln (n))^{\frac{1}{2}}\right]}\right)+O\left(\delta_{n}^{1 / 2} \mathbb{E}\left[\left(\tilde{A}_{n}(t)\right)^{-1}\right]\right) .\right.
\end{aligned}
$$

From Propositions 4.1 and 4.7 and Fatou's lemma, we obtain:

$$
\begin{equation*}
\bar{I}_{n} \quad \sim_{n} \mathbb{E}\left[\frac{1}{\sqrt{2 \pi \tilde{A}(t)}}\right]=p_{2}(t, 0) \sim_{t \rightarrow+\infty} \frac{\pi}{t}, \tag{4.27}
\end{equation*}
$$

where $\tilde{A}(t)=\int_{0}^{t} \exp \left(2 \tilde{B}_{s}^{1}\right) d s$ and $p_{2}(t,$.$) stands for the density of \int_{0}^{t} \exp \left(\tilde{B}_{s}^{1}\right) d B_{s}^{2}$ at time t and point 0 (see (4.2)). Indeed, conditionally to $\left\{\left(\tilde{B}_{s}^{1}\right)_{s \in[0, t]}\right\}$ the law of
$\int_{0}^{t} \exp \left(\tilde{B}_{s}^{1}\right) d B_{s}^{2}$ is a centered Gaussian with variance $\tilde{A}(t)$ (Wiener integral). The last equivalence in (4.27) can be derived directly from Proposition 6.6 in MY05. Another derivation, exploiting the explicit large time behavior of the return probability on $\operatorname{Aff}(\mathbb{R})$ given in Theorem 2.3, is proposed in equation (4.31) below. The term $I_{n}^{1} \sim_{n} \bar{I}_{n}$ is the main contribution of I_{n}. The other contribution is small and can be treated as the above remainder. Let us write:

$$
\begin{aligned}
\left|I_{n}^{2}\right| & :=\frac{1}{2 \pi} \int_{|x|>\frac{1}{\sqrt{\delta_{n}}}}\left|\hat{\phi}\left(\delta_{n} x\right)\right| \mathbb{E}\left[\exp \left(-\frac{1}{2} x^{2} \tilde{A}_{n}(t)\right) \mathbb{I}_{M_{n}^{+} \leq c(n \ln (n))^{\frac{1}{2}}}\right] d x \\
& \leq C \mathbb{E}\left[\exp \left(-\frac{1}{4} \frac{\tilde{A}_{n}(t)}{\delta_{n}}\right) \frac{1}{\tilde{A}_{n}(t)^{1 / 2}}\right] \leq \delta_{n}^{1 / 2} \mathbb{E}\left[\left(\tilde{A}_{n}(t)\right)^{-1}\right] .
\end{aligned}
$$

This completes the proof of Theorem 4.2
Proof of Proposition 4.7. Recall from Donati-Martin et al. DMMY00, (see also Chaumont et al. CHY01) that for a standard Brownian bridge $\left(b_{u}\right)_{u \in[0,1]}$ on $[0,1]$, it holds that for $\alpha \in \mathbb{R}^{+}$,

$$
\begin{equation*}
\mathbb{E}\left[\left(\int_{0}^{1} \exp \left(\alpha b_{u}\right) d u\right)^{-1}\right]=1 \tag{4.28}
\end{equation*}
$$

We now detail how the indicated convergence rate in time can be deduced for $\theta=1$ and the limit Brownian bridge from (4.28). Recall that if $\left(\tilde{B}_{u}\right)_{u \in[0, t]}$ is a standard Brownian bridge on $[0, t]$, then

$$
\left(\tilde{B}_{u}\right)_{u \in[0, t]} \stackrel{\text { (law) }}{=}\left((t-u) \int_{0}^{u} \frac{d B_{v}}{t-v}\right)_{u \in[0, t]}
$$

where $\left(B_{u}\right)_{u \geq 0}$ is a standard Brownian motion. Hence:

$$
\begin{align*}
\mathbb{E}\left[\left(\int_{0}^{t} \exp \left(2 \tilde{B}_{u}\right) d u\right)^{-1}\right] & =\mathbb{E}\left[\left(\int_{0}^{t} \exp \left(2(t-u) \int_{0}^{u} \frac{d B_{v}}{t-v}\right) d u\right)^{-1}\right] \\
& =t^{-1} \mathbb{E}\left[\left(\int_{0}^{1} \exp \left(2 t(1-u) \int_{0}^{u t} \frac{d B_{v}}{t-v}\right) d u\right)^{-1}\right] . \tag{4.29}
\end{align*}
$$

A usual covariance computation then shows that $\left((1-u) \int_{0}^{u t} \frac{d B_{v}}{t-v}\right)_{u \in[0,1]} \stackrel{\text { (law) }}{=}$ $\frac{1}{t^{1 / 2}}\left((1-u) \int_{0}^{u} \frac{d B_{v}}{1-v}\right)_{u \in[0,1]} \stackrel{(\text { law })}{=} \frac{1}{t^{1 / 2}}\left(b_{u}\right)_{u \in[0,1]}$. Thus, from (4.29) and (4.28):

$$
\begin{equation*}
\mathbb{E}\left[\left(\int_{0}^{t} \exp \left(2 \tilde{B}_{u}\right) d u\right)^{-1}\right]=t^{-1} \mathbb{E}\left[\left(\int_{0}^{1} \exp \left(2 t^{1 / 2} b_{u}\right) d u\right)^{-1}\right]=t^{-1} \tag{4.30}
\end{equation*}
$$

On the other hand, recall that:

$$
\begin{aligned}
p_{\mathrm{Aff}(\mathbb{R})}(t, e, e) & =p_{\left(B_{t}^{1}, \int_{0}^{t} \exp \left(B_{s}^{1}\right) d B_{s}^{2}\right)}(0,0)=p_{B_{t}^{1}}(0) p_{\int_{0}^{t} \exp \left(B_{s}^{1}\right) d B_{s}^{2}}\left(0 \mid B_{t}^{1}=0\right) \\
& =\frac{1}{\sqrt{2 \pi t}} \mathbb{E}\left[\left(2 \pi \int_{0}^{t} \exp \left(2 B_{s}^{1}\right) d s\right)^{-1 / 2} \mid B_{t}^{1}=0\right]
\end{aligned}
$$

Hence, the asymptotic behavior of the return density for the Brownian motion on the group given in Theorem 2.3 (see also (4.2)) yields:

$$
\begin{equation*}
\mathbb{E}\left[\left(2 \pi \int_{0}^{t} \exp \left(2 \tilde{B}_{u}^{1}\right) d u\right)^{-1 / 2}\right] \sim_{t \rightarrow+\infty} \frac{\pi}{t} \tag{4.31}
\end{equation*}
$$

Let us now detail how the statement (4.26) of Proposition 4.7 can be derived from the previous controls (4.31), (4.30) on the continuous objects through convergence in law arguments. Starting from our simple random walk $S_{0}=0, S_{k}=$ $\sum_{j=1}^{k} X_{j}, k \geq 1$ we first introduce for any fixed $n \in \mathbb{N}$ the random polygonal function

$$
x_{n}(u):=S_{\lfloor n u\rfloor}+(n u-\lfloor n u\rfloor) X_{\lfloor n u\rfloor}, u \in[0,1],
$$

where we recall that $\lfloor\cdot\rfloor$ stands for the integer part. Introducing the rescaled conditioned process $\left(\theta_{n}(u)\right)_{u \in[0,1]}:=\frac{1}{\sqrt{n}}\left(x_{n}(u) \mid S_{n}=0\right)_{u \in[0,1]}$, we derive from Theorem 2 in Ver79 that $\left(\theta_{n}(u)\right)_{u \in[0,1]} \Rightarrow\left(b_{u}\right)_{u \in[0,1]}$, standard Brownian bridge on $[0,1]$ with canonical measure μ on $C([0,1])$. Considering now the stepwise constant approximation:

$$
\tilde{x}_{n}(u):=S_{\lfloor n u\rfloor}, u \in[0,1],
$$

and its associated rescaled conditioned process $\left(\tilde{\theta}_{n}(u)\right)_{u \in[0,1]}:=\frac{1}{\sqrt{n}}\left(\tilde{x}_{n}(u) \mid S_{n}=\right.$ $0)_{u \in[0,1]}$, it is easily seen that the corresponding measures $\tilde{\mu}_{n}$ on $D([0,1])$ converge weakly in $D[0,1]$ to the distribution μ (canonical measure of the Brownian bridge on $C([0,1]))$. From the definition of $\tilde{A}_{n}(t)$ in (4.22), recalling as well that $\varepsilon_{n}=\left(\frac{t}{n}\right)^{1 / 2}$, we thus rewrite:
$\tilde{A}_{n}(t):=\varepsilon_{n}^{2} \sum_{j=1}^{n} \exp \left(2 \varepsilon_{n} \tilde{S}_{j-1}\right)=\frac{t}{n} \sum_{j=1}^{n} \exp \left(2 t^{1 / 2} \frac{1}{\sqrt{n}} \tilde{x}_{n}\left(\frac{j}{n}\right)\right)=t \int_{0}^{1} \exp \left(2 t^{1 / 2} \tilde{\theta}_{n}(u)\right) d u$.
Hence, from the previous convergence in law $\tilde{A}_{n}(t) \xrightarrow{\text { (law) }} t \int_{0}^{1} \exp \left(2 t^{1 / 2} b_{u}\right) d u \stackrel{\text { (law) }}{=}$ $\int_{0}^{t} \exp \left(2 \tilde{B}_{u}\right) d u$ and for a given $A>0$ and $\theta \in\left\{\frac{1}{2}, 1\right\}$:

$$
\mathbb{E}\left[\left(\tilde{A}_{n}(t)\right)^{-\theta} \mathbb{I}_{A^{-1} \leq \tilde{A}_{n}(t) \leq A}\right] \underset{n}{\longrightarrow} \mathbb{E}\left[\left(\tilde{A}_{t}\right)^{-\theta} \mathbb{I}_{A^{-1} \leq \tilde{A}(t) \leq A}\right]
$$

The statement (4.26) now follows from the above equation and the previously established estimates (4.31), (4.30), noting as well that, since

$$
\tilde{A}_{n}(t)^{-\theta} \leq\left(t \exp \left(2 t^{1 / 2} \frac{M_{n}^{-}}{\sqrt{n}}\right)\right)^{-\theta}
$$

Lemma 4.6 gives that the sequence $\left(\tilde{A}_{n}(t)^{-\theta}\right)_{n \geq 0}$ is bounded in $L^{2}(\mathbb{P})$ and therefore uniformly integrable. The proof is complete.

Remark 4.2 (Balance of n and t for the approximation). Observe from the previous proof of Theorem 4.2 that one can actually consider at the same time n and t going to infinity provided inequality (4.20) holds. This control is needed in order to isolate the remainder terms, and basically imposes $t \leq c_{0} \ln (n)$ for c_{0} small enough which guarantees $n^{-\gamma} \exp \left(c t^{\frac{1}{2}}(\ln (n))^{1 / 2}\right) \rightarrow_{n} 0$.
4.3. The Mixed Case. We consider in this Section that the random variables $\left(Y_{i}\right)_{i \in \mathbb{N}}$ in the definition of the random walk approximation (3.2) are i.i.d. and have common standard Gaussian law, i.e. $Y_{i} \stackrel{(\text { law })}{=} \mathcal{N}(0,1)$. This modification is precisely enough to restore the "expected" local limit theorem.

THEOREM 4.8. For the previously described random walk, taking $\varepsilon_{n}=\left(\frac{t}{n}\right)^{\frac{1}{2}}$ and for $n \in 2 \mathbb{N}$:

$$
\begin{aligned}
\mathbb{P}\left[a_{\varepsilon_{n}}=\right. & \left.1, b_{\varepsilon_{n}} \in[0, d x)\right] \\
& =\mathbb{P}\left[S_{n}=0, \varepsilon_{n} \sum_{j=1}^{n} Y_{j} \exp \left(\varepsilon_{n} S_{j-1}\right) \in[0, d x)\right] \sim_{n} 2 \varepsilon_{n} \cdot p_{\mathrm{Aff}(\mathbb{R})}(t, e, e) d x .
\end{aligned}
$$

We indeed have a result similar to Theorem 4.2, except that no integration with respect to the previous mollifyer $\phi_{\delta_{n}}$ is needed.

Proof. Note that the random variable $b_{\varepsilon}(n)$ now has a conditional Gaussian density (for fixed trajectory $\left(S_{k}\right)_{k \in \mathbb{N}}$). We thus readily get:

$$
\mathbb{P}\left[a_{\varepsilon_{n}}=1, b_{\varepsilon_{n}} \in[0, d x)\right] \sim_{n} \frac{2}{\sqrt{2 \pi n}} \mathbb{E}\left[\left.\frac{1}{\sqrt{2 \pi \varepsilon_{n}^{2} \sum_{j=1}^{n} \exp \left(2 \varepsilon_{n} S_{j-1}\right)}} \right\rvert\, S_{n}=0\right] d x .
$$

Proposition 4.7 remains valid taking $\tilde{R}_{n}=0$ in the definition (4.24). With the notations used therein, this precisely gives $\tilde{A}_{n}(t)=\varepsilon_{n}^{2} \sum_{j=1}^{n} \exp \left(2 \varepsilon_{n} S_{j-1}\right)$. We then derive the statement from Propositions 4.1, 4.7 and Fatou's lemma.

Acknowledgments

We would like to thank the referee for his careful reading and helpful comments and suggestions.

References

[Ale02] Georgios K. Alexopoulos, Random walks on discrete groups of polynomial volume growth, Ann. Probab. 30 (2002), no. 2, 723-801, DOI 10.1214/aop/1023481007. MR 1905856
[Bou83] Philippe Bougerol, Exemples de théorèmes locaux sur les groupes résolubles (French, with English summary), Ann. Inst. H. Poincaré Sect. B (N.S.) 19 (1983), no. 4, 369391. MR730116
[Bou15] Philippe Bougerol, Matsumoto-Yor process and infinite dimensional hyperbolic space, In memoriam Marc Yor-Séminaire de Probabilités XLVII, Lecture Notes in Math., vol. 2137, Springer, Cham, 2015, pp. 521-559, DOI 10.1007/978-3-319-18585-9_23. MR 3444313
[BR76] R. N. Bhattacharya and R. Ranga Rao, Normal approximation and asymptotic expansions: Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons, New York-London-Sydney, 1976. MR0436272
[Bre05] E. Breuillard, Local limit theorems and equidistribution of random walks on the Heisenberg group, Geom. Funct. Anal. 15 (2005), no. 1, 35-82, DOI 10.1007/s00039-005-0501-3. MR2140628
[CHY01] L. Chaumont, D. G. Hobson, and M. Yor, Some consequences of the cyclic exchangeability property for exponential functionals of Lévy processes, Séminaire de Probabilités, XXXV, Lecture Notes in Math., vol. 1755, Springer, Berlin, 2001, pp. 334-347, DOI 10.1007/978-3-540-44671-2_23. MR 1837296
[DMMY00] Catherine Donati-Martin, Hiroyuki Matsumoto, and Marc Yor, On striking identities about the exponential functionals of the Brownian bridge and Brownian motion, Period. Math. Hungar. 41 (2000), no. 1-2, 103-119, DOI 10.1023/A:1010308203346. Endre Csáki 65. MR1812799
[Gro81] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73. MR623534
[Gru96] J.-C. Gruet, Semi-groupe du mouvement brownien hyperbolique (French, with French summary), Stochastics Stochastics Rep. 56 (1996), no. 1-2, 53-61. MR 1396754
[Ibé76] Michel Ibéro, Intégrales stochastiques multiplicatives et construction de diffusions sur un groupe de Lie (French), Bull. Sci. Math. (2) 100 (1976), no. 2, 175-191. MR0517986
[IL71] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
[IW80] Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1981. MR637061
[Kes59] Harry Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354, DOI 10.2307/1993160. MR0109367
[KMM11] V. D. Konakov, S. Menozzi, and S. A. Molchanov, Diffusion processes on solvable groups of upper triangular (2×2)-matrices and their approximations (Russian), Dokl. Akad. Nauk 439 (2011), no. 5, 585-588, DOI 10.1134/S1064562411050036; English transl., Dokl. Math. 84 (2011), no. 1, 527-530. MR2883788
[KMM17] V. Konakov, S. Menozzi, and S. Molchanov. Approximation of diffusion processes on solvable Lie groups by random walks. Local and quasi-local theorems. Analytical and computational methods in probability theory and its application (ACMPT-17), pages 202-206, 2017.
[KTS59] F. I. Karpelevič, V. N. Tutubalin, and M. G. Šur, Limit theorems for compositions of distributions in the Lobačevski冗 plane and space (Russian, with English summary), Teor. Veroyatnost. i Primenen. 4 (1959), 432-436. MR 0114235
[Lig68] Thomas M. Liggett, An invariance principle for conditioned sums of independent random variables, J. Math. Mech. 18 (1968), 559-570, DOI 10.1512/iumj.1969.18.18043. MR 0238373
[LL10] Gregory F. Lawler and Vlada Limic, Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, vol. 123, Cambridge University Press, Cambridge, 2010. MR 2677157
[McK69] H. P. McKean Jr., Stochastic integrals, Probability and Mathematical Statistics, No. 5, Academic Press, New York-London, 1969. MR 0247684
[Mel02] Camillo Melzi, Large time estimates for non-symmetric heat kernel on the affine group, Ann. Math. Blaise Pascal 9 (2002), no. 1, 63-78. MR 1914261
[Mil68] John Milnor, Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968), 447-449. MR0244899
[Mol75] S. A. Molčanov, Diffusion processes, and Riemannian geometry (Russian), Uspehi Mat. Nauk 30 (1975), no. 1(181), 3-59. MR0413289
[MV08] S. Molchanov and B. Vainberg. Estimates for the counting function of the Laplace operator on domains with rough boundaries. Around the Research of Vladimir Mazya III: Analysis and Applications, 3, 2008.
[MY05] Hiroyuki Matsumoto and Marc Yor, Exponential functionals of Brownian motion. I. Probability laws at fixed time, Probab. Surv. 2 (2005), 312-347, DOI 10.1214/154957805100000159. MR2203675
[Pet05] V. V. Petrov, Summy nezavisimykh sluchai nykh velichin (Russian), Izdat. "Nauka", Moscow, 1972. MR0322927
[Pin95] R.G. Pinsky. Positive Harmonic Functions and Diffusion, volume 45. Cambridge Studies Advanced Mathematics, 1995.
[PSC02] C. Pittet and L. Saloff-Coste, On random walks on wreath products, Ann. Probab. 30 (2002), no. 2, 948-977, DOI 10.1214/aop/1023481013. MR 1905862
[Rev05] Pál Révész, Random walk in random and non-random environments, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. MR2168855
[RW85] D. Rogers and D. Williams. Diffusions and Markov processes, II. C.U.P., 1985.
[RY99] Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR1725357
[SS03] Elias M. Stein and Rami Shakarchi, Fourier analysis, Princeton Lectures in Analysis, vol. 1, Princeton University Press, Princeton, NJ, 2003. An introduction. MR 1970295
[Tes13] Romain Tessera, Isoperimetric profile and random walks on locally compact solvable groups, Rev. Mat. Iberoam. 29 (2013), no. 2, 715-737, DOI 10.4171/RMI/736. MR 3047434
[Ver79] Wim Vervaat, A relation between Brownian bridge and Brownian excursion, Ann. Probab. 7 (1979), no. 1, 143-149. MR 515820
[Wol68] Joseph A. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differential Geometry 2 (1968), 421-446. MR0248688
[Yor92] Marc Yor, On some exponential functionals of Brownian motion, Adv. in Appl. Probab. 24 (1992), no. 3, 509-531, DOI 10.2307/1427477. MR 1174378

Higher School of Economics, National Research University, Shabolovka 28, Moscow, Russian Federation.

Email address: vkonakov@hse.ru
Laboratoire de Modélisation Mathématique d’Evry (LaMME), UMR CNRS 8071, Université d’Evry Val-d’Essonne, 23 Boulevard de France, 91037 Evry and Higher School of Economics, National Research University, Shabolovka 28, Moscow, Russian Federation.

Email address: stephane.menozzi@univ-evry.fr
University of North Carolina at Charlotte, USA and Higher School of Economics, National Research University, Shabolovka 28, Moscow, Russian Federation

Email address: smolchan@uncc.edu

[^0]: Key words and phrases. Affine group, random walks and Brownian motion, local and quasilocal limit theorems, heat-kernel bounds.

 The study has been funded by the Russian Science Foundation (project no. 17-11-01098) and the Russian Academic Excellence Project 5-100 for the second author.

[^1]: * Observe that this would as well be the case for any integer valued independent sequences $\left(X_{i}, Y_{i}\right)_{i \in \mathbb{N}^{*}}$ of independent random variables sharing the two first moments of the Gaussian law.

[^2]: ${ }^{\dagger}$ from now on we denote by $\llbracket \cdot, \cdot \rrbracket$ intervals of integers.

[^3]: ${ }^{\ddagger}$ We can also refer here to formula (2.16) of Theorem 2.13 in Rev05] for a more precise result which is not needed for our current purpose.

