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The Brownian motion on Aff(R) and quasi-local theorems

V. Konakov, S. Menozzi, and S. Molchanov

Abstract. This paper is concerned with Random walk approximations of the
Brownian motion on the Affine group Aff(R). We are in particular interested
in the case where the innovations are discrete. In this framework, the return
probabilities of the walk have fractional exponential decay in large time, as
opposed to the polynomial one of the continuous object. We prove that in-
tegrating those return probabilities on a suitable neighborhood of the origin,
the expected polynomial decay is restored. This is what we call a Quasi-local
theorem.

1. Introduction

In his seminal paper [Yor92] (see also the related survey work [MY05]), M.
Yor studied the distribution density and the moments for the following particular
exponential functional of the Brownian motion (Bs)s≥0:

(1.1) Aν
t =

∫ t

0

exp(2Bs + νs)ds,

which corresponds, up to a normalization in t−1, to the quantity appearing in the
Asian options in the Black and Scholes setting (see again [Yor92]). The general
case ν �= 0 can be reduced to ν = 0 using the Girsanov theorem and the central

object will be from now on the functional At =
∫ t

0
exp(2Bs)ds.

This functional appears in several different situations, including the study of
the Brownian motion on the group Aff(R) of the affine transformations of R : x �→
ax+ b, a, b ∈ R, a > 0. This group can be isomorphically represented in the upper

triangular 2 × 2 matrices setting g =

[
a b
0 1

]
, a > 0. The affine group provides

the simplest example of solvable Lie group. We announced several results on the
Brownian motion xt :=

(
at, bt

)
on Aff(R) in the short communication [KMM11]

which partly rely on the results by Yor [Yor92].
The central result of [KMM11] is the following Theorem.
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Theorem 1.1. Let p(t, ·, ·) be the transition density of the Brownian motion
xt =

(
at, bt

)
on Aff(R) w.r.t. the corresponding Riemannian volume. Then, for all

g ∈ Aff(R):

(1.2) p(t, g, g) = p(t, e, e) ∼t→+∞

√
π

2

1

t
3
2

,

where e = I2 is the neutral element of Aff(R).

The note [KMM11] contains similar results for other solvable Lie groups. We
also refer to [KMM17] for related topics. We will prove Theorem 1.1 in Section 2.

The most interesting fact in Theorem 1.1 is the slow decay of p(t, g, g), t → +∞,
which looks contradictory to the exponential growth of Aff(R). Observe that such
an exponential growth occurs for all finitely generated solvable groups that have
no nilpotent subgroups of finite index, i.e. that are not virtually nilpotent, by
Milnor’s theorem [Mil68] (see also [Wol68]). We will establish that the random
walks on the subgroups of Aff(R) cannot directly give a good approximation of
the Brownian motion (xt)t≥0 on Aff(R). There are several reasons for that. First,
Aff(R) is non-unimodular, i.e. it cannot be approximated with increasing accuracy
by discrete subgroups (lattices). Secondly, any such subgroup is typically dense and
chaotically distributed in Aff(R), see the results below, in particular Proposition
3.2 and Theorem 4.2. These arguments potentially apply to much more general
situations.

More precisely, if (xε
n)n∈N is the Markov chain corresponding to a symmetric

random walk on the subgroup Gε ⊂ G generated by the matrices

[
exp(+ε) 0

0 1

]
=

g
+ε
1 ;

[
1 +ε
0 1

]
= g

+ε
2 with step ε2 in time, ε ∈ Q, then for t = nε2 ∈ R+ we have

that:

(1.3) P ε(t, g, g) := P ε(n, g, g) = Pg(x
ε
n = g) ≤ exp(−cn

1
3 ln(n)

2
3 ), g ∈ Gε.

Let us stress that the exponential estimation P ε(n, g, g) ≤ exp(−cn), c > 0,
which one could expect due to the exponential growth of the group cannot hold.
Indeed, the solvable groups are amenable and it therefore follows from Kesten
[Kes59] that P ε(n, g, g) decays at a sub-exponential rate. We will establish in
Section 3 by direct elementary arguments this estimate which is a particular case
of the typical asymptotics obtained for the return probabilities of random walks
on general solvable groups studied e.g. by Pittet and Saloff-Coste [PSC02] and
Tessera [Tes13]. The striking point is here that the return probability has fractional
exponential decay and does not behave as c

t
3
2

as one could have expected from

Theorem 1.1. The cause of this phenomenon is the special nature of the subgroup
Gε (which is dense but again highly chaotically distributed).

Note that for the nilpotent groups, like e.g. the Heisenberg one H3, the cor-
responding local limit theorems hold, see e.g. Breuillard [Bre05] (like in the case
of the random walk on Zd see e.g. [IL71], [Pet05], [BR76] or [LL10]). In the
nilpotent setting we refer as well to the work of Alexopoulos [Ale02], where the
most general local limit theorem on finitely generated groups of polynomial growth
(i.e. virtually nilpotent by Gromov [Gro81]) is given.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE BROWNIAN MOTION ON Aff(R) AND QUASI-LOCAL THEOREMS 99

We also mention that for absolutely continuous innovations, a local Theorem
on Aff(R), with the expected rate of order n−3/2, matching the diagonal decay of
the heat-kernel in (1.2) for large times, was proved by Bougerol [Bou83].

In this work, we will establish what we call quasi-local theorems for the pre-
viously described random walk on the discrete subgroup. Our first quasi-local
theorem gives the estimation of the probability that xε

n belongs to a small neigh-
borhood of the unit element e = I which shrinks to e when n → +∞. We establish
that the corresponding limit theorem holds with the expected convergence rate (see
Section 4). It will be specified as well in Section 4.1 how this phenomenon, i.e. the
dramatic difference between the fractional exponential decay of return probabili-
ties stated in (1.3) and the polynomial one appearing when taking into account an
associated neighborhood (which precisely corresponds to the large time behavior
in (1.2)), already appears for a specific simple random walk on the dense locally
uniformly distributed subgroup of R generated by finitely many rationally indepen-
dent numbers +αi, i ∈ {1, · · · , N}. Roughly speaking, this dichotomy emphasizes
that the paths of the random walk on the subgroup are quite dense. We will then
eventually show that introducing (partially) an absolutely continuous component
in the Markov chain xε

n on Aff(R), one can check that the densities of the finite
dimensional distributions of xε

n converge uniformly to the corresponding densities
of the diffusion on Aff(R).

2. Diffusion on Aff(R) and similar groups

We briefly recall the construction of the Brownian motion on Aff(R), see e.g.
McKean [McK69], Ibéro [Ibé76] or Rogers and Williams [RW85]. The Lie algebra

A(Aff(R)) consists of the matrices of the form

[
x y
0 0

]
, x, y ∈ R. The metric on

this algebra (i.e. in each plane of the tangent bundle of Aff(R)) has the form
ds2 = dx2 + dy2. The exponential mapping Exp from the algebra A(Aff(R)) to the
group Aff(R) then writes:

(2.1) g = Exp

([
x y
0 0

])
=

[
a b
0 1

]
=
∑
k≥0

1

k!

[
x y
0 0

]k
=

[
ex exy
0 1

]
,

i.e. x = ln(a), y = be−x = b
a so that

(2.2) ds2 = dx2 + dy2 =
da2 + db2

a2
,

i.e. the Riemannian metric on Aff(R) is given by the same formula as the hyperbolic
metric on the Poincaré model of the Lobachevskii plane (i.e. upper half plane of
C):

C+ = {b+ ia, a > 0}.
The ball of radius R in this metric has an exponentially growing volume, i.e.
V ol(B(R)) = 2π

(
cosh(R)− 1

)
(see e.g. Gruet [Gru96]).

In Section 3 we will consider the symmetric random walk on the finitely gener-
ated subgroups Gε ⊂ G. We consider the simplest subgroups with two generators:

gε1 =

[
exp(ε) 0

0 1

]
, gε2 =

[
1 ε
0 1

]
.(2.3)
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The number of different words of length n with the alphabet {gε1, g−ε
1 , gε2, g

−ε
2 } again

grows exponentially with n from Milnor [Mil68] (non-niplotent or non-abelian solv-
able groups with finite number of generators have exponential growth).

The symmetric Brownian motion on G can be constructed as the exponential
mapping in the Stratonovich sense of the Brownian motion

(
B1

t , B
2
t

)
, i.e. B1, B2

are two independent scalar Brownian motions, on A(Aff(R)):
(2.4)

gt =

[
at bt
0 1

]
=
(
◦
) t⋂
s=0

[
(1 + dB1

s ) dB2
s

0 0

]
=

[
exp(B1

t )
∫ t

0
exp(B1

s )dB
2
s

0 1

]
.

The generator of
(
at, bt

)
t≥0

writes for all ϕ ∈ C2(R+\{0} × R,R):

(2.5) Lϕ(a, b) =
1

2

(
a2
(
∂2
a + ∂2

b

)
ϕ+ a∂aϕ

)
(a, b) =: ΔAff(R)ϕ(a, b),

where ΔAff(R) stands for the Laplace-Beltrami operator on Aff(R). Observe that

the diffusion matrix a2I2 is indeed the inverse of the Riemannian metric tensor
a−2I2.

To find the fundamental solution of the parabolic equation ∂tp = Lp, i.e. the
transition density of the Brownian motion on Aff(R), we will apply the Doob trans-
form to the well known density of the Brownian diffusion on the hyperbolic space,
see Karpelevich et al. [KTS59] and Gruet [Gru96] for multi-dimensional gen-
eralizations. We also refer to Bougerol [Bou15] for other applications of Doob
transforms on algebraic structures.

Proposition 2.1 (Transition Density of the Brownian Motion on the hyper-
bolic plane H2). The density of the diffusion with generator

Lϕ(a, b) = 1

2
a2Δϕ(a, b)

w.r.t. the corresponding Riemann volume dadb
a2 is given by:

(2.6) pH2(t, x, y) =

√
2 exp(− t

8 )

(2πt)3/2

∫ +∞

r

u exp(−u2

2t )√
cosh(u)− cosh(r)

du,

where r = dH2(x, y) is the hyperbolic distance between x = (a1, b1), y = (a2, b2) ∈
H2, namely:

dH2(x, y) = arcosh

(
1 +

|x− y|2
2a1a2

)
,

where |x − y|2 = |a1 − a2|2 + |b1 − b2|2 is the usual squared Euclidean distance in
R2.

Now we want to use the Doob transform. The following Proposition holds, see
e.g. Pinsky [Pin95].

Proposition 2.2 (Doob transform). Let M be a Riemannian manifold with
metric ds2 = gijdx

idxj and corresponding Laplace-Beltrami operator

ΔMf(x) =
1√

det(g)
∂xi

(
gij
√
det(g)∂xj

f
)
(x).
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Let p(t, x, y) be the fundamental solution of the heat equation ∂tp = 1
2ΔMp =

− 1
2Δ

∗
Mp and ψ(x) > 0 be the positive λ-harmonic function, i.e. it solves 1

2ΔMψ =
λψ. Put

pλ(t, x, y) = exp(−λt)
p(t, x, y)

ψ(x)
ψ(y).

Then, pλ(t, x, y) is the transition density of a new diffusion on M with generator:

Lλf(x) =
1

2

ΔM (fψ)(x)

ψ(x)
− λf(x) =

1

2
ΔMf(x) +∇Mf(x) · ∇ ln(ψ(x)).

Here ∇M stands for the Riemannian gradient, and the densities are always intended
to be w.r.t. the corresponding Riemannian volume

√
det gdy.

Observe now that for ψ(a, b) = a
1
2 , simple computations give that

1

2
ΔH2ψ(a, b) =

a2

2

(
a

1
2

)′′
= −1

8
ψ(a, b), λ = −1

8
.

Combining Propositions 2.1 and 2.2 and the above expression for ψ, we derive
that the density of the Brownian motion on Aff(R) can be expressed as the Doob-
transform of the density of the Brownian motion on H2.

Theorem 2.3 (Density of the Brownian motion in Aff(R) and Diagonal behav-
ior in long time). The density pAff(t, e, ·) of the Brownian motion in Aff(R) writes
for all (t, g, h) ∈ R∗

+ ×Aff(R)2:
(2.7)

pAff(R)(t, g, h)=exp
( t
8

)pH2(t, g, h)

ψ(g)
ψ(h)=exp

( t
8

)pH2(t, g, h)

a
1
2

c
1
2 , g=(a, b), h=(c, d).

with pH2 as in (2.6). For t → +∞ one has for all g ∈ Aff(R):

pAff(R)(t, g, g) ∼
1

(2πt)
3
2

∫ +∞

0

u

sinh(u2 )
du =

√
π

2

1

t
3
2

.

The previous theorem has an important application in spectral theory (together
with the remark that pAff(R)(t, g, g) ∼ C

t as t → 0, since dim(Aff(R)) = 2, see e.g.
[Mol75]).

Theorem 2.4. Consider on Aff(R) the Schrödinger operator with non-positive
fast decreasing potential W (g):

H = −ΔAff(R) +W (g),ΔAff(R) =
1

2
a2
(
∂2
a + ∂2

b

)
+

1

2
a∂a,

and the spectral problem Hψ = λψ. Then, since operator H has at most a finite
negative spectrum {λj ≤ 0}, one has:

N0(W ) := 
{j : λj ≤ 0} ≤

C1

∫
g∈Aff(R):0≤|W (g)|≤1

|W (g)| 34σ(dg) + C2

∫
g∈Aff(R):|W (g)|>1

|W (g)|σ(dg),

where for g = (a, b), σ(dg) = dadb
a2 is the Riemannian volume element on Aff(R).

Also, the constants C1, C2 here are independent of the considered potential W and
can be computed directly.
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The previous Theorem is a direct consequence of the work by Molchanov and
Vainberg [MV08].

Eventually, we can also refer to Melzi [Mel02] for a global upper bound of the
density of the Brownian motion on Aff(R). This work provides a tractable control
for the diagonal and off-diagonal behavior of the heat-kernel in large time.

3. Approximation of diffusion by random walks and associated return
probability estimates

In this section, we are interested in the approximation of the Brownian motion
on Aff(R) by a discrete random walk. Let now ε be a given small parameter. The
time step of our random walk (xε

n)n≥0 will be ε2 (with the usual parabolic scaling).
In particular for a given time t > 0, it makes

(3.1) nε(t) =  t

ε2
�

steps on the interval [0, t]. Set xε
0 =

[
1 0
0 1

]
, and for all n ≥ 1:

xε
n+1 = xε

nAε,n+1, Aε,n+1 =

[
exp(εXn+1) εYn+1

0 1

]
,

where the (Xi)i∈N∗ , (Yi)i∈N∗ are independent symmetric random variables, defined
on some given probability space (Ω,A,P), sharing the moment of the standard
Gaussian law up to order two. Hence, the above dynamics rewrites at time n:

xε
n :=

[
aεn bεn
0 1

]
=

[
eε

∑n
i=1 Xi ε

(∑n
i=1 Yi exp(ε

∑i−1
j=1 Xi)

)
0 1

]
=:

[
eεSn ε

(∑n
i=1 Yi exp(εSi−1)

)
0 1

]
,(3.2)

where we use the usual convention
∑0

j=1 = 0. We will consider here mainly two
cases.

- The Bernoulli Case: both (Xi)i∈N∗ , (Yi)i∈N∗ are independent sequences of inde-
pendent Bernoulli random variables, i.e. P[X1 = 1] = P[X1 = −1] = P[Y1 = 1] =
P[Y1 = −1] = 1

2 . In such case, it is easy to see that the random walk stays on the
subgroup Gε.∗

- The mixed case: (Xi)i∈N∗ , (Yi)i∈N∗ are independent sequences. The (Xi)i∈N∗ are
still Bernoulli random variables whereas the (Yi)i∈N∗ have an absolutely continuous
law.

For the rest of the section we focus on the Bernoulli case and the associated return
probability estimates (see (1.3) and Theorem 3.1). The mixed case is developed
in Section 4.3, since it can be handled rather directly from the proof of our main
results in Section 4.2. In particular, we emphasize that for the mixed case, the
density assumption for the (Yi)i∈N∗ is sufficient to restore the LLT (see Theorem
4.8).

∗Observe that this would as well be the case for any integer valued independent sequences
(Xi, Yi)i∈N∗ of independent random variables sharing the two first moments of the Gaussian law.
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In the Bernoulli case, the idea is to express the non-diagonal element bεn in
(3.2) in terms of the local times L(a, n) of the random walk (Sk)k≥0 at level a ∈
�M−

n ,M+
n �†, where

M−
n := min

k≤n
Sk ≤ 0, M+

n := max
k≤n

Sk ≥ 0.

We also precisely define:

L(n, a) := 
{k : Sk = a, 0 < k ≤ n}.
With these notations, we readily derive from the definition in (3.2) the following
discrete occupation time formula:

(3.3) bεn = ε

M+
n∑

a=M−
n

( ∑
k∈�1,n�:Sk−1=a

Yk

)
exp(εa).

The simplest (and yet very important) local theorem for xε
n concerns the as-

ymptotic behaviour of the return probability π2n = Pe[x
ε
2n = e] = P[S2n =

0,
∑2n

k=1 Yke
εSk−1 = 0].

The exact asymptotic convergence rates of π2n can be found in [PSC02] (see
Theorem 3.11, i) therein). Precisely, the following result holds.

Theorem 3.1 (Asymptotics of the return probabilities on the subgroup). As-
sume that eε is transcendental. Then, there exists c ≥ 1 s.t. for n large enough:

c−1n
1
3 (ln(n))

2
3 ≤ − ln(π2n) ≤ cn

1
3 (ln(n))

2
3 .

In the quoted article, the authors actually consider ε = 1, which readily gives
the transcendence property. Actually, when eε is transcendental, the group gener-
ated by gε1 and gε2 defined in (2.3) is isomorphic to Z �Z, where gε1 corresponds to the
walk generator on the base Z and gε2 to the switch generator in the lamp group Z.
Hence, Theorem 3.1 is again a direct consequence of Theorem 3.11, i) in [PSC02].
The bounds follow from some properties of the local time of the simple random
walk on Z. For the sake of completeness, we prefer to give below a slightly different
proof of the lower bound of Theorem 3.1 which directly uses the transcendentality
of eε. We also hope that our approach might extend to higher order solvable matrix
groups for which the reduction to the random walk on the wreath product is less
clear.

In our work, we are indeed interested in Donsker-Prokhorov type results (see
Proposition 4.1 below), which will require the previous scaling of (3.1). This leads
us to consider the previous transcendence condition. Namely, if eε is transcendent,
and since (Si)i∈N is Z valued, we will have that:

2n∑
i=1

Yi exp(εSi−1) =
∑

a∈�M−
2n,M

+
2n�

∑
k∈�1,2n�,Sk−1=a

Yk exp(εa)

= 0 ⇐⇒ ∀a ∈ �M−
2n,M

+
2n�,

∑
k∈�1,2n�,Sk−1=a

Yk = 0.

We now mention that, from the Lindemann-Weierstrass theorem, a sufficient con-
dition for eε to be transcendental is that ε is algebraic, which for instance happens
if ε ∈ Q.

†from now on we denote by �·, ·� intervals of integers.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

104 V. KONAKOV, S. MENOZZI, AND S. MOLCHANOV

We now provide a proof for this lower bound, which relies on stochastic analysis
arguments associated with some controls for the local time of the simple random
walk, see e.g. [Rev05].

Proposition 3.2. If eε is transcendental then there exists c ≥ 1 s.t. for n
large enough:

π2n ≤ exp(−c−1n
1
3 ln(n)

2
3 ).

In particular, the proof emphasizes that the upper bound of the return proba-
bility does not depend on ε as soon as it is algebraic.

Proof. The numbers ekε, k ∈ Z being rationally independent the probability
π2n rewrites:

π2n = P

[
∩a∈�M−

2n−1,M
+
2n−1� L(2n− 1, a)

= 0 Mod 2, S2n(3.4)

= 0, ∀a ∈ �M−
2n−1,M

+
2n−1�

∑
k∈�1,n�:Sk−1=a

Yk = 0
]
.

Set now, A := {∩a∈�M−
2n−1,M

+
2n−1�L(2n − 1, a) = 0 Mod 2, S2n = 0}. We can thus

write:

π2n = E

⎡⎢⎢⎢⎣ ∏
a∈�M−

2n−1,M
+
2n−1�

(
L(2n− 1, a)

L(2n−1,a)
2

)
2L(2n−1,a)

IA

⎤⎥⎥⎥⎦ .(3.5)

Observe that, on the considered event A, for a ∈ �M−
2n−1,M

+
2n−1�, the local time

L(2n − 1, a) is even. The contribution

⎛
⎝ L(2n− 1, a)

L(2n−1,a)
2

⎞
⎠

2L(2n−1,a) then corresponds to the
probability that a symmetric Binomial law with parameter L(2n− 1, a) is equal to
0. This exactly describes the event

∑
k∈�1,n�:Sk−1=a Yk = 0.

Observe importantly that on A:(
L(2n− 1, a)

L(2n−1,a)
2

)
2L(2n−1,a)

≤ 1

2
.

Let us now localize w.r.t. the position of the minimum M−
2n−1 and maximum

M+
2n−1. Namely, we want to get rid of the large deviations for our current problem.

Introduce the set Dα := {M−
2n−1 ≤ −α}

⋃
{M+

2n−1 ≥ α}. Observe that

TDα
2n := E

⎡⎢⎢⎢⎣ ∏
a∈�M−

2n−1,M
+
2n−1�

(
L(2n− 1, a)

L(2n−1,a)
2

)
2L(2n−1,a)

IDα∩A

⎤⎥⎥⎥⎦ ≤
(
1

2

)α

2P[M+
2n−1 ≥ α]

≤ 4 exp(−α ln 2) exp(−α2

4n
),

using the Bernstein inequality for the last control. Now in order to equilibrate the
contributions of these large deviations w.r.t the stated bound in Proposition 3.2 we
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want to solve the equation α2

n + α ln 2 = n
1
3 ln(n)

2
3 . It is then easily checked that

the positive root αn of the equation is s.t. αn ∼ n
1
3 ln(n)

2
3

ln(2) =: mn. It thus follows

that there exists C1
0 s.t. for n large enough:

T
Dmn
2n ≤ exp(−C1

0mn).

On the other hand, we can as well derive the required control provided the
extremas are small with the previously emphasized threshold. Namely, introducing:

TS
2n := E

⎡⎢⎢⎢⎣ ∏
a∈�M−

2n−1,M
+
2n−1�

(
L(2n− 1, a)

L(2n−1,a)
2

)
2L(2n−1,a)

I|M−
2n−1|≤

mn
ln(n)

,|M+
2n−1|≤

mn
ln(n)

IA

⎤⎥⎥⎥⎦
≤ P

[
|M−

2n−1| ≤
mn

ln(n)
,M+

2n−1 ≤ mn

ln(n)
, S2n=0

]
≤ P

[
∀k ∈ �0, 2n�,

Sk√
n
∈ [− mn√

n ln(n)
,

mn√
n ln(n)

]
]
.

(3.6)

To control the last inequality we use the following important Lemma concerning
tube estimates for the random walk:

Lemma 3.3 (Tube Estimates for the Random Walk). There exists constants
c ≤ 1, C ≥ 1 s.t.:

P[∀k ∈ �1, 2n�, |Sk| ≤
mn

ln(n)
] ≤ C exp(−cn

1
3 ln(n)

2
3 ),

mn∑
a=−mn

P[L(2n− 1, a) > c−1n
2
3 ln(n)

1
3 ] ≤ C exp(−cn

1
3 ln(n)

2
3 ).

The above result can be viewed as a discrete analogue of the tube estimates for
the Brownian motion that can be found in [IW80]. The proof is postponed to the
end of the Section for the sake of clarity.

From Lemma 3.3 and (3.6) we get TS
2n ≤ C exp(−cn

1
3 ln(n)

2
3 ). Thus, it suffices

to restrict to the study of:

TM
2n := E

[ ∏
a∈�M−

2n−1,M
+
2n−1�

(
L(2n− 1, a)

L(2n−1,a)
2

)
2L(2n−1,a)

I|M−
2n−1|≤mn,M

+
2n−1≤mn

×
(
IM+

2n−1>
mn
ln(n)

+ I|M−
2n−1|>

mn
ln(n)

)
IA

]
.

Fix now a δ ∈ (0, 1) and introduce the random set:

Aδ := {a ∈ �M−
2n−1,M

+
2n−1� : L(2n− 1, a) > nδ}.
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Let us now fix c ∈ (0, 1). If 
Aδ ≥ c mn

ln(n) , then:

TM,1
2n := E

[ M+
2n−1∏

a=M−
2n−1

(
L(2n− 1, a)

L(2n−1,a)
2

)
2L(2n−1,a)

I|M−
2n−1|≤mn,M

+
2n−1≤mn

×
(
IM+

2n−1>
mn
ln(n)

+ I|M−
2n−1|>

mn
ln(n)

)
I�Aδ≥c mn

ln(n)
IA

]

≤ CE[
∏
a∈Aδ

1

L(2n− 1, a)
1
2

I|M−
2n−1|≤mn,M

+
2n−1≤mn

×
(
IM+

2n−1>
mn
ln(n)

+ I|M−
2n−1|>

mn
ln(n)

)
I�Aδ≥c mn

ln(n)
IA]

≤ C(
1

n
δ
2

)c
mn
ln(n) = C exp(−δ

2
ln(n)× c

mn

ln(n)
) = C exp(−δ

2
cmn),

where on the event Aδ, we used the Stirling formula for the first inequality. It
remains to handle:

TM,2
2n := E

[ ∏
a∈�M−

2n−1,M
+
2n−1�

(
L(2n− 1, a)

L(2n−1,a)
2

)
2L(2n−1,a)

I|M−
2n−1|≤mn,M

+
2n−1≤mn

(
IM+

2n−1>
mn
ln(n)

+ I|M−
2n−1|>

mn
ln(n)

)
I�Aδ<c mn

ln(n)
IA

]
.

The first point to note is that, on the event {
Aδ < c mn

ln(n)} ∩ {|M−
2n−1| ≤

mn, |M+
2n−1| ≤ mn}, necessarily the occupation measure of Aδ is large. Precisely,

we have that defining:

AC
δ := {a ∈ �−mn,mn�, a �∈ Aδ}, 
AC

δ ≥ 2mn − c
mn

ln(n)
.

On the other hand, the total local time generated by the points in AC
δ is less

than 2mnn
δ = 2n

1
3+δ ln(n)

2
3 < n, for δ ∈ (0, 2

3 ) and n large enough. Hence, the
occupation time of Aδ is s.t.:

|{i ∈ �1, 2n� : Si ∈ Aδ}| > n.

Since we also know that on the considered event {
Aδ < c mn

ln(n)}, we derive that

there necessarily exists a level a ∈ Aδ s.t.

L(2n− 1, a) >
n

c mn

ln(n)

.
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We obtain:

TM,2
2n ≤ P[|{i ∈ �1, 2n� : Si ∈ Aδ}| > n, 
Aδ < c

mn

ln(n)
, |M−

2n−1| ≤ mn,M
+
2n−1 ≤ mn]

≤ P[∃a ∈ Aδ, L(2n− 1, a) > c−1n
2
3 ln(n)

1
3 ,


Aδ < c
mn

ln(n)
, |M−

2n−1| ≤ mn,M
+
2n−1 ≤ mn]

≤
mn∑

a=−mn

P[L(2n− 1, a) > c−1n
2
3 ln(n)

1
3 ] ≤ C exp(−cn

1
3 ln(n)

2
3 ),

using again Lemma 3.3 for the last inequality. �

Proof of Lemma 3.3 (Tubes for the random walk). Let us begin the
proof observing that since,

P[∀k ∈ �1, 2n�, |Sk| ≤ mn

ln(n)
]

≤ P[∃a ∈ �− mn

ln(n)
,
mn

ln(n)
�, L(2n, a) ≥ n

mn

ln(n)

]

≤

mn
ln(n)∑

a=− mn
ln(n)

P[L(2n, a) ≥ n
2
3 ln

1
3 (n)],

it suffices to prove the second statement of the Lemma. To this end, observe first
that from Theorem 9.4 in Revesz [Rev05], we get for all a > 0, k ∈ N:

(3.7) P[L(2n, a) = k] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

22n−k+1

(
2n− k + 1

(2n+ a)/2

)
, if a is even,

1
22n−k

(
2n− k

(2n+ a− 1)/2

)
, if a is odd.

By symmetry we also derive that for a < 0, the above expression holds replacing a

by |a| (recall indeed that L(2n, a)
(law)
= L(2n,−a)). Eventually, for a = 0, Theorem

9.3 in [Rev05] yields:

(3.8) P[L(2n, 0) = k] = 2−2n+k

(
2n− k

n

)
.

Hence,

Pmn
:=

mn∑
a=−mn

P[L(2n, a) > c−1n
2
3 ln(n)

1
3 ]

= P[L(2n, 0) > c−1n
2
3 ln(n)

1
3 ]

+ 2

mn∑
a=1

P[L(2n, a) > c−1n
2
3 ln(n)

1
3 ].

Note as well from (3.7) that, in agreement with the intuition, P[L(2n, 0) = k] >
P[L(2n, a) = k], a > 0, k ∈ N. We therefore derive:

Pmn
≤ (1 + 2mn)P[L(2n, 0) > c−1n

2
3 ln(n)

1
3 ].
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Write now from (3.8):

Pmn
≤ (1 + 2mn)

n∑
k=
c−1n

2
3 ln(n)

1
3 �

2−2n+k

(
2n− k

n

)
.(3.9)

By the Stirling formula, we obtain that for k ∈ �c−1n
2
3 ln(n)

1
3 �, n− 1�,

P[L(2n, 0) =k] = 2−2n+k

(
2n− k

n

)

≤ e

π
√
2n

√
n− k

2√
n− k

exp

(
(2n− k) ln(1− k

2n
)− (n− k) ln(1− k

n
)

)
.

The contribution for k = n gives P[L(2n, 0) = k] = 2−n and therefore a negligible
term in the r.h.s. of (3.9). We will now split the summation in (3.9) according to

k ∈ �c−1n
2
3 ln(n)

1
3 �, n1−η� and k ∈ �n1−η, n� for η > 0 small enough to be specified

later on. Observing that P[L(2n, 0) = k] is a decreasing function of k we obtain:
(3.10)

Pmn
≤ (1+2mn)

( n1−η∑
k=
c−1n

2
3 ln(n)

1
3 �

P[L(2n, 0) = k]+(n−n1−η)P[L(2n, 0) = n1−η]

)
.

From (??) it can be deduced from usual computations that there exists C > 0 s.t.

uniformly on k ∈ �c−1n
2
3 ln(n)

1
3 �, n1−η�, for n large enough:

P[L(2n, 0) = k] ≤ C√
n
exp

(
− k2

5n

)
.

Plugging this estimate in (3.10) yields:

Pmn
≤ C(1 + 2mn)

( ∑
c−1n

1
6 ln(n)

1
3 < k√

n
≤n1/2−η

1√
2πn

exp

(
−1

5

( k√
n

)2)

+ (n
1
2 − n

1
2−η) exp

(
−n1−2η

5

))
≤ C(1 + 2mn)

(
1√
2π

∫ +∞

c−1n
1
6 ln(n)

1
3

exp(−x2

5
)dx+ exp

(
−n1−2η

6

))

≤ C(1 + 2mn)

(
exp(−c−1n

1
3 ln(n)

2
3 ) + exp

(
−n1−2η

6

))
≤ C exp(−c−1n

1
3 ln(n)

2
3 ),

taking η ∈ (0, 1
3 ) and up to modifications of C, c for the last inequality. This

completes the proof. �

4. Quasi-Local Theorems

We first mention that the integral theorem (which is an obvious corollary of
the functional Donsker-Prokhorov Central Limit Theorem (CLT) for the random
walks) of course applies. Namely, we have the following result.
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Proposition 4.1 (Donsker-Prokhorov approximation). Fix t > 0. If ε → 0,
nε(t) :=  t

ε2 � → +∞, then

(aε
snε(t)�, b
ε

snε(t)�)s∈[0,1]

(law)−→
ε→0

(a(st), b(st))s∈[0,1],

where a and b are defined in (2.4).

On the other hand, we are going to prove that some quasi -local Theorems
as well hold. By quasi -local Theorem, we mean here that we consider a suitable
renormalization of a neighborhood of the origin. Our main result in that direction
is the following Theorem.

Theorem 4.2. Let φ be a smooth test function s.t. its Fourier transform is
compactly supported in [−1, 1] and s.t.

∫
R
φ(x)dx = 1. Denote, for a given δ > 0,

by φδ(x) :=
1
δφ(

x
δ ) its rescaling. Fix t > 0, possibly large, and define for n ∈ 2N,

εn =
(
t
n

) 1
2 . Then, for δn := t

1
2n− 1

2+γ , γ ∈ (0, 12 ), we have:

(4.1) E

[
ISn=0 φδn

(
εn

n∑
j=1

Yj exp(εnSj−1)
)]

∼n
2εn

t
1
2

√
2π

· p2(t, 0).

Here, we denote for t > 0 by p2(t, ·) the density of the random variable b̃t :=∫ t

0
eB̃

1
sdB2

s where
(
B̃1

s

)
s∈[0,t]

is a usual Brownian Bridge independent of the Brow-

nian motion B2. The subscript 2 in p2(t, ·), is here to recall the considered random
variable is associated with the second component of the Brownian motion on the
group.

Also,

(4.2) p2(t, 0) = E

[ 1√
2π
∫ t

0
e2B̃

1
sds

]
∼t→+∞

π

t
,

1√
2πt

p2(t, 0) = pAff(R)(t, e, e).

Hence, we find the expected asymptotics in large time. We have a normalization
in εn and not in ε3n in (4.1), because we have already normalized our approximation
of the stochastic integral in our scheme (3.2). We also specify that the threshold
δn has the above form, which equivalently rewrites εn

δn
= n−γ , in order that some

remainder terms in the analysis can be neglected w.r.t. the intrinsic scaling of the
limit theorem in t−3/2. The previous condition equivalently expresses that the ratio
εn
δn

between the time step εn and the window size δn for the approximating Dirac

mass is negligible in n (window bigger than time step). We refer to the proof in
Section 4.2 below for details (see in particular equation (4.20)).

To illustrate the phenomenon that appears on Aff(R), i.e. the tremendous
different rates between the pointwise return probabilities, and the quasi -local The-
orem, we consider a rather simple model which already enjoys such properties. Ba-
sically, this dichotomy emphasizes that, the discrete subgroups are somehow very
dense, in the sense that they allow to have the expected convergence rates towards
the densities of the limiting objects when integrated on a suitable neighborhood.

4.1. Quasi-local CLT: the toy model. We discuss in this section some
points related to the local CLT on a dense subgroup Gε of a Lie group G in the

simplest possible case, taking G = R, G1 = {x : x =
∑N

i=1 niαi} (or more generally

Gε = {x : x = ε
∑N

i=1 diαi}, ε > 0). Here, N ∈ N is a fixed given integer, α =
(α1, · · · , αN ) is s.t. the

{
αi, i ∈ �1, N�

}
are rationally independent real numbers
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and d = (d1, · · · , dN ) ∈ ZN encodes the coordinates/displacements associated with
the entries of α.

The subgroup G1 is not only dense in R but is also in some sense locally uni-
formly distributed. This can for instance be seen from Herman Weyl’s classical
result (see e.g. [SS03]). Consider for a fixed non negative integer L, the sequence

x̃d =
( N∑

i=1

αidi

)
Mod L = 〈α, d〉 Mod L,

where here the notation Mod L stands for the remainder term of the division by L.
Then, for an arbitrary continuous and L periodic function f we have:

(4.3) lim
M→+∞

∑
d∈ZN :|d|≤M f(x̃d)


{d ∈ ZN : |d| ≤ M} =
1

L

∫ L

0

f(x)dx,

where | · | stands here for the Euclidean norm of RN .
Consider now the symmetric random walk (xn)n∈N on R, s.t. x0 = 0, xn =∑n

j=1 uj where the (uj)j∈N∗ are i.i.d. real-valued discrete random variables with
law:

(4.4) u1
(law)
= p0δ0 +

1

2

N∑
i=1

pi(δαi
+ δ−αi

), ∀i ∈ �1, N�, 0 < pi < 1,
N∑
i=0

pi = 1.

We can as well consider the auxiliary random walk (Xn)n∈N on RN s.t. X0 = 0,
Xn =

∑n
j=1 Uj where the (Uj)j∈N∗ are i.i.d. RN -valued discrete random variables

with law:

U1
(law)
= p0δ0

RN
+

1

2

N∑
i=1

pi(δαiei + δ−αiei), ∀i ∈ �1, N�, 0 < pi < 1,

N∑
i=0

pi = 1.

In the above expression the (ei)i∈�1,N� denote the canonical basis vectors of RN .
Observe that the relation between the random variables (uj)j∈N∗ and (Uj)j∈N∗ ,

and therefore between x and X is summarized as follows:

(4.5) ∀j ∈ N∗, uj = 〈Uj ,
N∑

k=1

ek〉 = 〈Uj ,1〉, xn = 〈Xn,
N∑

k=1

ek〉 = 〈Xn,1〉,

where 1 :=
∑N

k=1 ek = (1, · · · , 1)∗.
Introduce now for notational convenience:

P[xn = 0] = rn,

i.e. rn denotes the return probability to 0 at time n. We want to emphasize the
following fact. Even though, from the standard CLT:

(4.6)
xn√
n

(law)−→
n

N (0, σ2), σ2 = E[u2
1] =

N∑
i=1

piα
2
i ,

we do not have rn ∼n
c√
n
but instead rn ∼n

c
nN/2 . The result can be intuitively

justified from the fact that from the rational independence of the {αi}i∈�1,N�,

(4.7) rn = P[xn = 0] = P[Xn = 0RN ].

For the latter event, this means that in each direction the number of positive and
negative transitions are the same, and the asymptotics for this return probability
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corresponds to the product of the return probabilities in each direction. This fact
can be formalized with the following proposition.

Proposition 4.3 (Asymptotics for the return probability). As n → +∞, the
following result holds:

- If p0 > 0, then:

rn = P[xn = 0] ∼n
C(p)

n
N
2

, C(p) :=
N∏
i=1

1√
2πpi

.

- If p0 = 0, then: rn = 0 if n is odd and for n even:

rn = P[xn = 0] ∼n
2C(p)

n
N
2

.

We point out that, since the underlying random walk Xn is actually a random
walk on ZN with steps distributed on the standard generators, the results of Propo-
sition 4.3 can be directly derived from the standard local limit theorem, see e.g.
Lawler and Limic [LL10]. We anyhow provide below a proof which together with
the deviation result of Proposition 4.4 gives a very simple one dimensional analytic
proof of a more general quasi-local theorem and also emphasizes the point we want
to stress: namely, for the considered scalar walk the dramatic dichotomy between
the behavior of the return probabilities and the integration on a neighborhood of
Theorem 4.5 below.

Proof. Observe that Xn is lattice valued. For a given n ∈ N, defining Ln :={
(ξ1, · · · , ξN ), ∀i ∈ �1, N�, ξi ∈ {−nαi, · · · , nαi}

}
, we have P[Xn ∈ Ln] = 1.

Actually supp(Xn) ⊂ Ln, where the inclusion is strict. Write then for all t ∈ RN :

(4.8) E[exp(i〈t,Xn〉)] =
∑
ξ∈Ln

P[Xn = ξ] exp(i〈t, ξ〉).

Introducing the rescaled torus Tα
N := [− π

αi
, π
αi
], we get that for all

(ξ, ζ) ∈ Ln,
1

|Tα
N |

∫
Tα
N

exp(−i〈t, ξ〉) exp(+i〈t, ζ〉)dt = δξ,ζ .

Hence, for any ξ0 ∈ supp(Xn):

P[Xn = ξ0] =
1

|Tα
N |

∫
Tα
N

exp(−i〈t, ξ0〉)E[exp(i〈t,Xn〉)]dt(4.9)

=

∏N
j=1 αj

(2π)N

∫
Tα
N

exp(−i〈t, ξ0〉)ϕn(t)dt,

where ϕ(t) := E[exp(i〈t, U1〉)] = p0 +
∑N

j=1 pj cos(tjαj) = 1+
∑N

j=1 pj
(
cos(tjαj)−

1
)
= 1− 2

∑N
j=1 pj sin

2
(

tjαj

2

)
.
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Recalling (4.7), we thus readily get from the inversion formula (4.9) taking
ξ0 = 0, and changing variable to sj = αjtj , j ∈ {1, · · · , N}

rn = P[Xn = 0RN ]

=
1

(2π)N

∫
TN

ϕn
( s1
α1

, · · · , sN
αN

)
ds

=
1

(2π)N

∫
TN

(
1− 2

N∑
j=1

pj sin
2
(sj
2

))n
ds,

where TN := [−π, π]N . For small values of |s|, and recalling that Xn has zero third
moments, we then get that:

(4.10) ϕ
( s1
α1

, · · · , sN
αN

)
= 1+

N∑
j=1

pj

(
−
s2j
2
+O(s4j)

)
= exp

(
−1

2

N∑
j=1

pjs
2
j+O(|s|4)

)
.

Set δn := c
(

ln(n)
n

)1/2
, c >

(
N

minj∈�1,N� pj

)1/2
. We now introduce BN (δn) := {s ∈

TN : |s|∞ ≤ δn} (ball of radius δn around the origin) and CN (δn) := {s ∈ TN :
∀j ∈ �1, N�, sj ∈ [−π,−π + δn] ∪ [π − δn, π]} (corners of radius δn of the torus
TN ). Set MN (δn) := BN (δn)∪CN (δn). Observe that for s ∈ TN\MN (δn), we have
either:

(a) ∃j0 ∈ �1, N�, cos(sj0)− 1 = −2 sin2(
sj0
2 ) ∈ [−2 +

δ2n
2 + o(δ2n),−

δ2n
2 + o(δ2n)].

(b) KS := {j ∈ �1, N� : |sj | ≤ δn} and KL := {j ∈ �1, N� : (π − |sj |) ≤ δn} are non
empty.

In case (a), we readily get |1− 2
∑N

j=1 pj sin
2
( sj

2

)
| ≤
(
1− pj0

δ2n
2 + o(δ2n)

)
. In case

(b), we derive:

|1− 2
N∑
j=1

pj sin
2
(sj
2

)
| ≤ |1− 2

∑
k∈KL

pk|+
δ2n
2

+ o(δ2n) := cL,S(n) ≤ 1− 1

2
min

j∈�1,N�
pj ,

for n large enough. We can therefore rewrite:

rn =
1

(2π)N

∫
MN (δn)

(
1− 2

N∑
j=1

pj sin
2
(sj
2

))n
ds+Rn

N ,

|Rn
N | ≤ C

∫
TN\MN (δn)

{(
1− pj0

δ2n
2

+ o(δ2n)

)n

+ cL,S(n)
n

}
ds(4.11)

≤ Cn−
pj0

c2

2 = o(n−N/2).

Let us discuss now the contribution associated with CN (δn). For s ∈ CN (δn), one
has for all j ∈ �1, N�:

−2 sin2
(sj
2

)
= −2

(
1−
(π − |sj |

2

)2)
+O

(
(π − |sj |)4

)
,

so that 1 − 2
∑N

i=1 pj sin
2
( sj

2

)
= −1 + 2p0 +

∑N
j=1 pj

(π−|sj |)2
2 + O

(
(π − |sj |)4

)
.

Hence,

- if p0 �=0, we thus readily get 1
(2π)N

∫
CN (δn)

(
1−2

∑N
j=1 pj sin

2
( sj

2

) )n
ds=o(n−N/2).
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- if p0=0, by symmetry, we get rn = 0 if n is odd and

1

(2π)N

∫
MN (δn)

(
1− 2

N∑
j=1

pj sin
2
(sj
2

))n
ds

=
2

(2π)N

∫
BN (δn)

(
1− 2

N∑
j=1

pj sin
2
(sj
2

))n
ds,

if n is even. Recall now from (4.10) that:

1

(2π)N

∫
BN (δn)

(
1− 2

N∑
j=1

pj sin
2
(sj
2

))n
ds

=
1

(2π)N

∫
BN (δn)

exp
(
− n
{ N∑

j=1

pj
s2j
2

+O(|s|4)
})

ds

=
1

(2πn)
N
2

∏N
j=1

√
pj

∫
∏N

j=1

{
|s̃j |≤ln(n)1/2p

1/2
j

} exp
(
− 1

2

N∑
j=1

s̃2j+O
( ln(n)2

n

)) ds̃

(2π)
N
2

∼n
1

n
N
2

N∏
i=1

1√
2πpi

=
C(p)

n
N
2

.

This gives the stated result.

We can as well refer more generally to the proof of the classical local CLT (see e.g.
[Pet05], Chapter 5 in [BR76] for the multidimensional case or again Lawler and
Limic [LL10]).

Observe that the asymptotic of the return probability rn does not depend on the
rationally independent numbers (αj)j∈�1,N� chosen. We simply used the fact that,
to return to 0, we must have over the considered time interval, for all j ∈ �1, N�,
the same numbers of random variables taking the values −αjej and αjej . �

Hence, the bigger N , the smaller the exact return probability. Similarly, from
(4.9) we can extend the previous proposition with the following result.

Proposition 4.4 (Deviation bounds for the LLT). Let n → +∞ and y ∈
RN ∩ supp(Xn) be s.t. its Euclidean norm |y| ≤ n

3
4−γ , γ > 0 (which is meant to

be small). Then, for p0 > 0, recalling as well that X0 = 0, we obtain:

P[Xn = y] ∼n

N∏
j=1

⎛⎜⎝exp(− y2
j

2α2
jpjn

)

(2πpjn)
1
2

⎞⎟⎠ .

Proof. We indicate that starting from (4.9), proceeding as in the previous
proof of Proposition 4.3 and considering a localization with respect to a ball of



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

114 V. KONAKOV, S. MENOZZI, AND S. MOLCHANOV

radius δn = n−(1/4+γ/2), we derive:

P[Xn = y] =
1

(2π)N

∫
B(δn)

exp
(
− i

〈( y1
α1

, · · · , yN
αN

)
, s

〉)(4.12)

× exp
(
− n
(1
2

N∑
j=1

pjs
2
j +O(|s|4)

))
ds+Rn

N

=
1

(2πn)
N
2

∏N
j=1

√
pj

∫
∏

N
j=1{|s̃j |≤n1/4−γ/2p

1/2
j }

(4.13)

× exp
(
− i

〈( y1
α1(p1n)1/2

, · · · , yN
αN (pNn)1/2

)
, s̃

〉)
× exp

(
− 1

2

N∑
j=1

s̃2j +O(
|s̃|4
n

)
) ds̃

(2π)N/2
+Rn

N ,

where, as in (4.11),
(4.14)

|Rn
N | ≤ C

∫
TN\MN (δn)

{(
1− pj0

δ2n
2

+ o(δ2n)

)n

+ cL,S(n)
n

}
ds ≤ C exp(−cn1/2−γ),

using the current choice of δn for the last inequality. Hence,

P[Xn = y] ∼n
1

(2πn)
N
2

∏N
j=1

√
pj

∫
∏N

j=1{|s̃j |≤n1/4−γ/2p
1/2
j }

(4.15)

× exp
(
− i

〈( y1
α1(p1n)1/2

, · · · , yN
αN (pNn)1/2

)
, s̃

〉)
× exp

(
− 1

2

N∑
j=1

s̃2j

) ds̃

(2π)N/2
+Rn

N =: Pn(y) +Rn
N .

Write then,

Pn(y) =
1

(2πn)
N
2

∏N
j=1

√
pj

N∏
j=1

∫
R

exp
(
− i

yj
αj(pjn)1/2

s
)
exp(−s2

2
)ds+Rn

N

=
1

(2πn)
N
2

∏N
j=1

√
pj

exp

⎛⎝−
N∑
j=1

y2j
2α2

jpjn

⎞⎠+Rn
N ,(4.16)

|Rn
N | ≤ C

n
N
2

∫
(
∏

N
j=1{|s̃j |≤n1/4−γ/2p

1/2
j })C

exp(−|s̃|2
2

)ds̃ ≤ C

n
N
2

exp(−cn1/2−γ).

On the considered range set for y, i.e. |y| ≤ n3/4−γ , since exp(−
∑N

j=1

y2
j

2α2
jpjn

) ≥
exp(−c0n

1/2−2γ) and |Rn
N | ≤ C exp(−cn1/2−γ), the term Rn

N can indeed be seen
as a global remainder uniformly in y. Equations (4.15) and (4.17), (4.14) then yield

the result. Observe as well that for y ∈ supp(Xn),
(

y1

α1
, · · · , yN

αN
) ∈ ZN . �
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Again those deviation results can be deduced from the proof of the more com-
plex Theorem 2.3.11 in [LL10]. We keep the proof for the sake of completeness
and its simplicity.

Observe now that from the previous definition of xn, for any Γ ⊂ R,

(4.17) P[xn ∈ Γ] = P[〈Xn,1〉 ∈ Γ] =
∑

y∈ZN ,〈y,α〉∈Γ

P[Xn =

N∑
i=1

αiyiei].

From equation (4.17) in Proposition 4.4, we derive the following theorem.

Theorem 4.5. For a given γ ∈ (0, 1
2 ), and a positive sequence δn →n 0 and

s.t. δn ≥ n−( 1
2−γ), we have for p0 > 0:

P[x2n ∈ (−δ−1
n , δ−1

n )] ∼n 2δ−1
n

1√
2π(2n)σ

,

where as in the usual CLT stated in (4.6), σ2 =
∑N

i=1 piα
2
i .

From Proposition 4.3 and Theorem 4.5, we precisely see that, the integrated
probability gives the expected usual rate in n−1/2. Actually, this is precisely due to
the last part of Proposition 4.4, we integrate in a neighborhood of a hyperplane of
RN , whereas the pointwise return probabilities might have arbitrarily polynomial
decay in function of the chosen N . We will show in the next subsection a similar
behavior for our random walk on Aff(R).

Remark 4.1 (Alternative formulation of Theorem 4.5). Note that, we can as
well provide an upper bound of Theorem 4.5 not only around 0 but also for points
a belonging to intervals whose size can as well go to infinity with n. Namely, for

δn →n 0 s.t. δnn
1
2 →n +∞ and |a|

ln(δ
1
2
n n

1
2 )

→n 0, one has:

(4.18) P[
x2n

σ
√
2n

∈ (a, a+ δn)] ∼n δn
1√
2π

exp

(
−a2

2

)
.

Defining for x ∈ R, Fn(x) := P[ x2n

σ
√
2n

≤ x] and F (x) := 1√
2π

∫ x

−∞ exp(−y2

2 )dy, write

from the Berry-Essen theorem:

P[
x2n

σ
√
2n

∈ (a, a+ δn)] = Fn(a+ δn)− Fn(a) =
(
Fn(a+ δn)− F (a+ δn)

)
+
(
F (a+ δn)− F (a)

)
+
(
F (a)− Fn(a)

)
=: F (a+ δn)− F (a) +Rn,

|Rn| ≤ 2Cμ3

σ3
√
2n

, μ3 = E[|u1|3],

with u1 defined in (4.4). On the considered ranges for δn and a, Rn is indeed
a remainder and (4.18) readily follows from the above equation and a first order
Taylor expansion.

4.2. Proof of Theorem 4.2. We first need the following auxiliary lemma
concerning the maximum of the conditioned random walk.

Lemma 4.6 (Maximum and Minimum of the conditioned random walk). Let

n ≥ 0 be given and consider the conditioned random walk
(
S̃j

)
j∈�0,n�

, S̃j =
∑j

i=1 Xi

s.t. S̃0 = S̃n = 0. We recall here that (Xi)i∈N∗ is a sequence of i.i.d. Bernoulli
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random variables. Denoting by M̃+
n := maxi∈�0,n� S̃i, M̃

−
n := mini∈�0,n� S̃i we have

that for all θ > 0 there exists c := c(θ) ≥ 1 s.t.

(4.19) E

[
exp
(
θ
M̃+

n√
n

)]
+ E

[
exp
(
θ
M̃−

n√
n

)]
≤ c exp(cθ2).

Proof. It is well known from the Donsker invariance principle that M̃+
n , M̃−

n

respectively converge in law towards the maximum and the minimum of a standard
Brownian bridge on [0, 1] (see e.g. Liggett [Lig68] or Vervaat [Ver79]). For the

rest of the proof we focus on M̃+
n , the results for M̃−

n can be derived similarly by
symmetry.

For any A > 0, denoting by M̃+ := sups∈[0,1] B̃s where
(
B̃
)
s∈[0,1]

is a standard

Brownian bridge, we get that for all θ ≥ 0:

E

[
exp
(
θ
M̃+

n√
n

)
I∣∣∣∣ M̃+

n√
n

∣∣∣∣≤A

]
−→
n

E

[
exp(θM̃+)I|M̃+|≤A

]
≤ E

[
exp(θM̃+)

]
.

Letting A → ∞, we then obtain by usual uniform integrability arguments that:

E

[
exp
(
θ
M̃+

n√
n

)]
−→
n

E

[
exp(θM̃+)

]
.

Therefore, there exists C := C(θ) ≥ 1 s.t. for all n ≥ 0,

E

[
exp
(
θ
M̃+

n√
n

)]
≤ CE

[
exp(θM̃+)

]
≤ C exp(cθ2),

where the last inequality simply follows from the exact expression of the joint law
of the Brownian motion and its running maximum, see e.g. [RY99]. �

Proof of Theorem 4.2. We have first, for even n:

E

[
ISn=0 φδn

(
εn

n∑
j=1

Yj exp(εnSj−1)
)]

= P[Sn = 0]E

[
φδn

(
εn

n∑
j=1

Yj exp(εnSj−1)
)
|Sn = 0

]

= P[Sn = 0]E

[
φδn

(
εn

n∑
j=1

Yj exp(εnS̃j−1)
)]

,

where (S̃j)j∈�1,n� stands for the random walk conditioned to be at 0 at time n.
Then:

E

[
ISn=0 φδn

(
εn

n∑
j=1

Yj exp(εnSj−1)
)]

∼n
2√
2πn

E

[
1

2π

∫
R

φ̂(δnx) exp
(
− iεnx

n∑
j=1

Yj exp(εnS̃j−1)
)
dx

]
.
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Taking the conditional expectation w.r.t. to (S̃j)j∈�1,n� and using the symmetry of
the i.i.d random variables (Yj)j∈�1,n�, we derive:

E

[
ISn=0 φδn

(
εn

n∑
j=1

Yj exp(εnSj−1)
)]

∼n
2√
2πn

1

2π

∫
R

φ̂(δnx)E

[
n∏

j=1

cos
(
εnx exp(εnS̃j−1)

)]
dx.

Let now M̃−
n , M̃+

n denote the respective minimum and maximum values of the

conditioned random walk (bridge) (S̃j)j∈�1,n�. We can assume w.l.o.g. that |M̃+
n | ≤

cn
1
2 ln(n)

1
2 for a sufficiently large constant c. Indeed,

P[|M̃+
n | ≥ cn

1
2 ln(n)

1
2 ] =

E[I
|M+

n |≥cn
1
2 ln(n)

1
2
ISn=0]

P[Sn = 0]

≤ Cn
1
2P[|M+

n |≥cn
1
2 ln(n)

1
2 ]

1
pP[Sn = 0]

1
q , p, q>1,

1

p
+
1

q
=1,

using the lower bound of the control

C−1

√
n

≤ P[Sn = 0] =

(
n
n/2

)
1

2n
≤ C√

n
, C ≥ 1,

which follows from the Stirling formula, for the last inequality. The upper bound
and the Bernstein inequality‡ for the standard random walk on Z then yield:

P[|M̃+
n | ≥ cn

1
2 ln(n)

1
2 ] ≤ C exp

(
− c2

2p
ln(n)

)
n

1
2 (1−

1
q ) = Cn− c2

2p+
1
2 (1−

1
q ),

which again gives a negligible contribution w.r.t. to the scale n− 3
2 for c large

enough.

Recalling as well that we have assumed φ̂ to be compactly supported in [−1, 1],
we get that we only have to consider the integration variable x in the range |x| ≤ 1

δn
.

Recall from the statement of Theorem 4.2 that εn
δn

= n−γ for 0 < γ < 1
2 . Then, for

all j ∈ �1, n�, on the event {M̃+
n ≤ cn

1
2 ln(n)

1
2 }:

εn|x| exp(εnS̃j−1) ≤
εn
δn

exp(εnS̃j−1)

≤ n−γ exp(εnM̃
+
n )

≤ n−γ exp
(
ct

1
2

(
ln(n)

) 1
2

)
→n 0.(4.20)

‡We can also refer here to formula (2.16) of Theorem 2.13 in [Rev05] for a more precise
result which is not needed for our current purpose.
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On the associated sets, we will therefore obtain that the arguments in the cosines
are uniformly small. Precisely:

E

[
n∏

j=1

cos
(
εnxYj exp(εnS̃j−1)

)
I
M̃+

n ≤cn
1
2 ln(n)

1
2

]

= E

[
n∏

j=1

(
1− (εnx)

2 exp(2εnS̃j−1)

2
+O

(
(εnx)

4 exp(4εnS̃j−1)
))

× I
M̃+

n ≤cn
1
2 ln(n)

1
2

]

= E

[
exp

(
−

n∑
j=1

{ (εnx)2 exp(2εnS̃j−1)

2
+ O

(
(εnx)

4 exp(4εnS̃j−1)
)})

× I
M̃+

n ≤cn
1
2 ln(n)

1
2

]
.

Hence,

1

2π

∫
φ̂(δnx)E

[
n∏

j=1

cos
(
εnxYj exp(εnS̃j−1)

)]
dx

∼n
1

2π

∫
φ̂(δnx)E

[
exp

(
− x2

2
(Ãn(t) + R̃n(t))

)
I
M̃+

n ≤cn
1
2 ln(n)

1
2

]
dx =: In,

(4.21)

where,

(4.22) Ãn(t) := ε2n

n∑
j=1

exp(2εnS̃j−1), |R̃n(t)| ≤ C
(
ε2n

n∑
j=1

exp(4εnS̃j−1)x
2ε2n

)
,

where the constant C in absolute constant, which in particular does not depend on
x, t or n. Now, we derive from (4.20) that

x2ε2n exp
(
2εnS̃j−1

)
≤Cn−2γ exp

(
2ct

1
2 (ln(n))

1
2

)
→
n

0.

Thus,

|R̃n(t)| ≤ C

⎛⎝ε2n

n∑
j=1

exp(4εnS̃j−1)x
2ε2n

⎞⎠
≤ CÃn(t)n

−2γ exp
(
2ct

1
2 (ln(n))

1
2

)
:= CÃn(t)βn, βn →n 0.

We get that:

(4.23) In ∼n
1

2π

∫
φ̂(δnx)E

[
exp

(
− x2

2
Ãn(t)

)
I
M̃+

n ≤cn
1
2 ln(n)

1
2

]
dx.

Indeed, for all λ ∈ [0, 1],
(4.24)

Ãn(t)+λR̃n(t) ≥ ε2n

n∑
j=1

exp(2εnS̃j−1)−|R̃n(t)| ≥
1

2
ε2n

n∑
j=1

exp(2εnS̃j−1) =
1

2
Ãn(t).
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so that:

|Δn(t, x)| :=
∣∣∣∣∣ exp

(
− x2

2
(Ãn(t) + R̃n(t))

)
− exp

(
− x2

2
Ãn(t)

)∣∣∣∣∣
≤
∫ 1

0

exp

(
− x2

2
(Ãn(t) + λR̃n(t))

)
x2

2
|R̃n(t)|dλ,

≤
(4.24)

C exp

(
− x2

4
Ãn(t)

)
x2

2
Ãn(t)βn ≤ C exp

(
− x2

8
Ãn(t)

)
βn.

Thus, exploiting that φ̂ is bounded we get:∣∣∣ ∫ φ̂(δnx)E
[
Δn(t, x)I

M̃+
n ≤cn

1
2 ln(n)

1
2

]
dx
∣∣∣ ≤ CβnE[|Ãn(t)|−1/2].(4.25)

We now state a useful Proposition, whose proof is postponed to the end of the
section for the sake of clarity.

Proposition 4.7. For θ ∈ { 1
2 , 1} and n ≥ 1, there exists C ≥ 1 s.t.:

(4.26) E[|Ãn(t)|−θ] ≤ Ct−1.

Let us now prove that Proposition 4.7 and (4.25) yield (4.23).
We first split the term In introduced in (4.21) and equivalent to the r.h.s. of

(4.23) into two parts.

I1n :=
1

2π

∫
|x|≤ 1√

δn

φ̂(δnx)E[exp(−
1

2
x2Ãn(t))I

M̃+
n ≤c(n ln(n))

1
2
]dx

∼n φ̂(0)
1

2π

∫
|x|≤ 1√

δn

E[exp(−1

2
x2Ãn(t))I

M̃+
n ≤c(n ln(n))

1
2
]dx =: Īn.

Now, from the Fubini theorem, we get:

Īn := φ̂(0)
1

2π

(
E

[{∫
R

exp(−1

2
x2Ãn(t))dx

}
I
M̃+

n ≤c(n ln(n))
1
2

]

−
∫
|x|> 1√

δn

E[exp(−1

2
x2Ãn(t))I

M̃+
n ≤c(n ln(n))

1
2
]dx

)

=

(
E[

1√
2πÃn(t)

I
M̃+

n ≤c(n ln(n))
1
2
]

)
+O

(
E[exp(−1

4

Ãn(t)

δn
)

1

Ãn(t)1/2
]

)

=

(
E[

1√
2πÃn(t)

I
M̃+

n ≤c(n ln(n))
1
2
]

)
+O

(
δ1/2n E[(Ãn(t))

−1]

)
.

From Propositions 4.1 and 4.7 and Fatou’s lemma, we obtain:

Īn ∼n E

[
1√

2πÃ(t)

]
= p2(t, 0) ∼t→+∞

π

t
,(4.27)

where Ã(t) =
∫ t

0
exp(2B̃1

s )ds and p2(t, .) stands for the density of
∫ t

0
exp(B̃1

s )dB
2
s

at time t and point 0 (see (4.2)). Indeed, conditionally to {(B̃1
s )s∈[0,t]} the law of
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0
exp(B̃1

s )dB
2
s is a centered Gaussian with variance Ã(t) (Wiener integral). The

last equivalence in (4.27) can be derived directly from Proposition 6.6 in [MY05].
Another derivation, exploiting the explicit large time behavior of the return prob-
ability on Aff(R) given in Theorem 2.3, is proposed in equation (4.31) below. The
term I1n ∼n Īn is the main contribution of In. The other contribution is small and
can be treated as the above remainder. Let us write:

|I2n| :=
1

2π

∫
|x|> 1√

δn

|φ̂(δnx)|E[exp(−
1

2
x2Ãn(t))I

M+
n ≤c(n ln(n))

1
2
]dx

≤ CE[exp(−1

4

Ãn(t)

δn
)

1

Ãn(t)1/2
] ≤ δ1/2n E[(Ãn(t))

−1].

This completes the proof of Theorem 4.2. �

Proof of Proposition 4.7. Recall from Donati-Martin et al. [DMMY00]
(see also Chaumont et al. [CHY01]) that for a standard Brownian bridge (bu)u∈[0,1]

on [0, 1], it holds that for α ∈ R+,

(4.28) E

[(∫ 1

0

exp(αbu)du

)−1
]
= 1.

We now detail how the indicated convergence rate in time can be deduced for θ = 1
and the limit Brownian bridge from (4.28). Recall that if (B̃u)u∈[0,t] is a standard
Brownian bridge on [0, t], then

(B̃u)u∈[0,t]
(law)
=
(
(t− u)

∫ u

0

dBv

t− v

)
u∈[0,t]

,

where (Bu)u≥0 is a standard Brownian motion. Hence:

E

[(∫ t

0

exp(2B̃u)du

)−1
]

= E

[(∫ t

0

exp
(
2(t− u)

∫ u

0

dBv

t− v

)
du

)−1
]

= t−1E

[(∫ 1

0

exp
(
2t(1− u)

∫ ut

0

dBv

t− v

)
du

)−1
]
.(4.29)

A usual covariance computation then shows that
(
(1 − u)

∫ ut

0
dBv

t−v

)
u∈[0,1]

(law)
=

1
t1/2

(
(1− u)

∫ u

0
dBv

1−v

)
u∈[0,1]

(law)
= 1

t1/2
(bu)u∈[0,1]. Thus, from (4.29) and (4.28):

(4.30) E

[(∫ t

0

exp(2B̃u)du

)−1
]
= t−1E

[(∫ 1

0

exp
(
2t1/2bu

)
du

)−1
]
= t−1.

On the other hand, recall that:

pAff(R)(t, e, e) = p(
B1

t ,
∫ t
0
exp(B1

s)dB
2
s

)(0, 0) = pB1
t
(0)p∫ t

0
exp(B1

s)dB
2
s
(0|B1

t = 0)

=
1√
2πt

E

[(
2π

∫ t

0

exp(2B1
s )ds

)−1/2 ∣∣∣B1
t = 0

]
.
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Hence, the asymptotic behavior of the return density for the Brownian motion on
the group given in Theorem 2.3 (see also (4.2)) yields:

(4.31) E

[(
2π

∫ t

0

exp(2B̃1
u)du

)−1/2
]
∼t→+∞

π

t
.

Let us now detail how the statement (4.26) of Proposition 4.7 can be derived
from the previous controls (4.31), (4.30) on the continuous objects through con-
vergence in law arguments. Starting from our simple random walk S0 = 0, Sk =∑k

j=1 Xj , k ≥ 1 we first introduce for any fixed n ∈ N the random polygonal
function

xn(u) := S
nu� + (nu− nu�)X
nu�, u ∈ [0, 1],

where we recall that ·� stands for the integer part. Introducing the rescaled condi-
tioned process

(
θn(u)

)
u∈[0,1]

:= 1√
n

(
xn(u)|Sn = 0

)
u∈[0,1]

, we derive from Theorem

2 in [Ver79] that
(
θn(u)

)
u∈[0,1]

⇒
(
bu
)
u∈[0,1]

, standard Brownian bridge on [0, 1]

with canonical measure μ on C([0, 1]). Considering now the stepwise constant ap-
proximation:

x̃n(u) := S
nu�, u ∈ [0, 1],

and its associated rescaled conditioned process
(
θ̃n(u)

)
u∈[0,1]

:= 1√
n

(
x̃n(u)|Sn =

0
)
u∈[0,1]

, it is easily seen that the corresponding measures μ̃n on D([0, 1]) converge

weakly inD[0, 1] to the distribution μ (canonical measure of the Brownian bridge on

C([0, 1])). From the definition of Ãn(t) in (4.22), recalling as well that εn =
(
t
n

)1/2
,

we thus rewrite:

Ãn(t) :=ε2n

n∑
j=1

exp(2εnS̃j−1)=
t

n

n∑
j=1

exp

(
2t1/2

1√
n
x̃n

( j
n

))
=t

∫ 1

0

exp
(
2t1/2θ̃n(u)

)
du.

Hence, from the previous convergence in law Ãn(t)
(law)→ t

∫ 1

0
exp(2t1/2bu)du

(law)
=∫ t

0
exp(2B̃u)du and for a given A > 0 and θ ∈ { 1

2 , 1}:

E[(Ãn(t))
−θIA−1≤Ãn(t)≤A] −→n E[(Ãt)

−θIA−1≤Ã(t)≤A].

The statement (4.26) now follows from the above equation and the previously es-
tablished estimates (4.31), (4.30), noting as well that, since

Ãn(t)
−θ ≤ (t exp(2t1/2

M−
n√
n
))−θ,

Lemma 4.6 gives that the sequence
(
Ãn(t)

−θ
)
n≥0

is bounded in L2(P) and therefore

uniformly integrable. The proof is complete. �

Remark 4.2 (Balance of n and t for the approximation). Observe from the
previous proof of Theorem 4.2 that one can actually consider at the same time n
and t going to infinity provided inequality (4.20) holds. This control is needed in
order to isolate the remainder terms, and basically imposes t ≤ c0 ln(n) for c0 small

enough which guarantees n−γ exp
(
ct

1
2 (ln(n))1/2

)
→n 0.
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4.3. The Mixed Case. We consider in this Section that the random variables
(Yi)i∈N in the definition of the random walk approximation (3.2) are i.i.d. and have

common standard Gaussian law, i.e. Yi
(law)
= N (0, 1). This modification is precisely

enough to restore the “expected” local limit theorem.

Theorem 4.8. For the previously described random walk, taking εn =
(
t
n

) 1
2

and for n ∈ 2N:

P[aεn = 1, bεn ∈ [0, dx)]

= P[Sn = 0, εn

n∑
j=1

Yj exp(εnSj−1) ∈ [0, dx)] ∼n 2εn · pAff(R)(t, e, e)dx.

We indeed have a result similar to Theorem 4.2, except that no integration
with respect to the previous mollifyer φδn is needed.

Proof. Note that the random variable bε(n) now has a conditional Gaussian
density (for fixed trajectory (Sk)k∈N). We thus readily get:

P[aεn = 1, bεn ∈ [0, dx)] ∼n
2√
2πn

E

⎡⎣ 1√
2πε2n

∑n
j=1 exp(2εnSj−1)

∣∣∣∣∣∣Sn = 0

⎤⎦ dx.
Proposition 4.7 remains valid taking R̃n = 0 in the definition (4.24). With the

notations used therein, this precisely gives Ãn(t) = ε2n
∑n

j=1 exp(2εnSj−1). We
then derive the statement from Propositions 4.1, 4.7 and Fatou’s lemma. �
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[Bou83] Philippe Bougerol, Exemples de théorèmes locaux sur les groupes résolubles (French,
with English summary), Ann. Inst. H. Poincaré Sect. B (N.S.) 19 (1983), no. 4, 369–
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Études Sci. Publ. Math. 53 (1981), 53–73. MR623534
[Gru96] J.-C. Gruet, Semi-groupe du mouvement brownien hyperbolique (French, with French

summary), Stochastics Stochastics Rep. 56 (1996), no. 1-2, 53–61. MR1396754
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