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ABSTRACT
Large-scale classification of text streams is an essential problem
that is hard to solve. Batch processing systems are scalable and
proved their effectiveness for machine learning but do not provide
low latency. On the other hand, state-of-the-art distributed stream
processing systems are able to achieve low latency but do not
support the same level of fault tolerance and determinism. In this
work, we discuss how the distributed streaming computational
model and fault tolerance mechanisms can affect the correctness
of text classification data flow. We also propose solutions that can
mitigate the revealed pitfalls.
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1 INTRODUCTION
Classification of large text streams is hard, but important task for
researchers and practitioners. It has a wide range of applications
including detection of emerging news and current user interests,
suspicious traffic analysis, spam detection, etc. Popular open-source
libraries like sklearn [5] provide a rich set of tools, but they mostly
aim at handling static datasets. The lack of scalability across mul-
tiple computational units is another limitation of these solutions.
There are plenty of works which adapt batch processing systems
for text classification [6]. Their advantages are fault tolerance, high
throughput, and scalability. On the other hand, these systems do not
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provide low latency that is a strong requirement for most streaming
applications.

An immediate idea is to employ a distributed stream processing
engine such as Flink [2] or Storm [1]. However, unlike batch engines,
stream processing systems have several peculiarities:

• In a general case, failure and recovery are not transparent for
a user. The guarantees on data in case of failures are defined
in terms of delivery guarantees: at least once and exactly once.
The choice of a guarantee may affect the correctness of text
classification.

• Most of streaming systems are inherently non-deterministic.
It means that different runs on the same data may produce
different results. This feature can influence the classification
process as well.

In this work, we investigate the applicability of state-of-the-art
stream processing systems to the text classification and demonstrate
the challenges that a developer can experience. In particular, we dis-
cuss how the delivery guarantees and non-deterministic pipelines
may affect the results. Possible solutions to the mentioned issues
are proposed.

2 PROBLEM STATEMENT
Let us consider the news topic classification as an illustration of a
text stream multi-classification task. There are two input streams:
pre-labeled and raw. The latter stream elements must be labeled
by a classifier and delivered to end-user. The pre-labeled stream is
used for updating a machine learning model with new data in order
to adapt it to current events. The ultimate purpose is to achieve the
distribution of news topics that is changing over time. This task is
a typical representative of the text stream classification problem.

As the main requirement to a stream processing engine we claim
the following: each output element must depend only on the input.
In other words, node failures and execution environment parame-
ters must not affect the results, similar to batch systems. Otherwise,
it is hard to design a solution that provides reproducible and inter-
pretable classification results.

3 DATA FLOW
Typical classification pipeline based on bag-of-words text represen-
tation consists of three steps. The first one is computing TF-IDF
features. The second one is training a classifier on these features
or making a prediction. To adapt this pipeline for a stream pro-
cessing engine, one needs to represent it in the form of a logical
graph. It serves as a language for defining streaming computations.
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Vertices of a logical graph denote operations, while edges indicate
data subscriptions between them.

The initial point in our data flow is an Source vertex. It receives
input texts from data producers and computes term frequencies.
Computing of inverse document frequencies is a separate operation
because it maintains a state and requires different data partitioning
in a physical execution. TF-IDF vertex joins features corresponding
to the same text and passes them to the Text Classifier. Text Classifier
is the very last vertex that predicts a label and delivers it to a data
consumer. The scheme of the proposed logical graph is shown in
Figure 1.
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Figure 1: Text classification data flow

Training pipeline is a separate branch within the logical graph
introduced above. For already labeled text its features are sent to a
Partial fit vertex instead of the Classifier. Partial fit vertex buffers all
input elements until training is triggered. After training, the buffer
flushes. Updated parameters of a machine learning model are saved
for further training and broadcasted to all Text Classifier vertices.

4 CHALLENGES
Online training. An issue regarding the pipeline is that the

training process may be time-consuming. If training and prediction
processes run consecutively, there will be significant latency spikes,
e.g. if a training process lasts for several minutes, then spikes may
be 10 000 times greater than latency for prediction. However, with-
out synchronization, there will be no reproducible correspondence
between texts and applied model. It is almost impossible to achieve
the same results within a new run on the same data because the
training time becomes a hidden parameter that influences output.
For instance, assume that we make two runs. On the first run model
update consumes 70 seconds, but on the second run 75 seconds due
to extra CPU load. If training and predicting are not synchronized,
more unlabeled input elements are processed by an outdated model
in the second case, so the distribution of news topics may be dif-
ferent between these two runs. We propose two solutions for the
issues in question:

• Use online learning algorithms. In this case, model updating
is smooth and its synchronization with training does not
cause latency spikes.

• Consider model parameters as special input elements that
are stored with other input elements in a persistent queue,
e.g. using Kafka [3]. To reproduce results, there is just a need
to replay elements from this queue.

Delivery guarantees. Requirements on reproducibility and pre-
dictability of classification results affect the choice of a delivery
guarantee. If a stream processing system provides at least once,
some input texts can be processed more than one time in case of

failures. This behavior may lead to biased prediction results. For
example, if a single sports article is processed many times due to
multiple failures, the resulted topics distribution will show that
sport is a hot news topic right now. Hence, the only suitable deliv-
ery guarantee is exactly once. The problem here is that it is hard
to achieve both low latency (less than 500 ms) and exactly once.
Table 1 shows if a state-of-the-art system supports both features. To
the best of our knowledge, among open systems only FlameStream
provides for both low latency and exactly once. This property is
achieved using optimistic order enforcement that implies system-
wide idempotence. The details of this approach are discussed in [4].

Table 1: Support of exactly and low latency (less than 500ms)
by stream processing systems

System Exactly-once Latency
Storm,Heron,Samza – low
Spark Streaming + high
Flink + high∗
MillWheel + NA
FlameStream + low

* with enabled exactly-once [4]

5 CONCLUSION
In this work, we investigated the suitability of distributed stream
processing engines to the problem of text streams classification
with the following requirements:

• Unbiased by distributed environment: node failures or races
do not affect the ultimate result distribution.

• Reproducible: if input elements are stored in persistent stor-
age, the same predictions are obtained on each new run.

We discussed several pitfalls with a straightforward approach
and highlight several limitations regarding the choice of a process-
ing engine and the structure of data flow:

• Exactly once is a strong requirement.
• Embedding of time-consuming train process in the predic-
tion pipeline leads to significant latency spikes.

As future work, we plan to implement a text classification frame-
work that satisfies the proposed requirements and provides for low
latency.
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