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Preface

In the last 30 years a new pattern of interaction between mathematics and physics
emerged, in which the latter catalyzed the creation of new mathematical theories.
Most notable examples of this kind of interaction can be found in the theory of
moduli spaces. In algebraic geometry the theory of moduli spaces goes back at
least to Riemann, but they were first rigorously constructed by Mumford only in the
1960s. The theory has experienced an extraordinary development in recent decades,
finding an increasing number of connections with other fields of mathematics
and physics. In particular, moduli spaces of different objects (sheaves, instantons,
curves, stable maps, etc.) have been used to construct invariants (such as Donaldson,
Seiberg-Witten, Gromov-Witten, Donaldson-Thomas invariants) that solve long-
standing, difficult enumerative problems. These invariants are related to the partition
functions and expectation values of quantum field and string theories. In recent
years, developments in both fields have led to an unprecedented cross-fertilization
between geometry and physics.

These striking interactions between geometry and physics were the theme of the
CIME School Geometric Representation Theory and Gauge Theory. The School
took place at the Grand Hotel San Michele, Cetraro, Italy, in June, Monday 25
to Friday 29, 2018. The present volume is a collection of notes of the lectures
delivered at the school. It consists of three articles from Alexander Braverman and
Michael Finkelberg, Andrei Negut, and Alexei Oblomkov, respectively. Here we
briefly summarize the contributions to this volume.

Braverman and Filkelberg’s notes review the constructions and results presented
in several joint papers with Hiraku Nakajima, where a mathematical definition of
the Coulomb branch of 3D N = 4 quantum gauge theories (of cotangent type) is
given. A section of the notes is dedicated to explaining the motivations coming
from physics (“What do we (as mathematicians) might want from 3D N = 4
SUSY quantum field theory?”): Higgs and Coulomb branch and mirror symmetry,
gauge theories. The lecture notes also include examples and explicit computations
(in particular in the toric case). They also present a framework for studying some
related further mathematical structures (e.g., categories of line operators in the
corresponding topologically twisted theories).

v

fnklberg@gmail.com



vi Preface

The purpose of Negut’s notes is to study moduli spaces of sheaves on a surface as
well as Hecke correspondences between them. Hecke correspondences are varieties
parameterizing collections of sheaves on a surface which only differ at points; they
lead to interesting operators on the cohomology, Chow groups, and K-theory of the
moduli spaces of sheaves. Their applications range from mathematical physics to
classical problems in the algebraic geometry of hyperkähler manifolds. Oblomkov
starts with an introduction to matrix factorizations and in particular equivariant
matrix factorizations. Then he explains the homomorphism from the braid group to
the category of matrix factorizations. He explains how one can construct interesting
geometric realizations of the braid group, providing a categorification of the Markov
trace. He also works out a computation of the above-mentioned trace for some
small braids. The object of his lectures is related to the Kapustin-Saulina-Rozansky
topological quantum field theory for the cotangent bundles to the Lie algebras as
targets.

Trieste, Italy Ugo Bruzzo
Bologna, Italy Antonella Grassi
Kashiwa-shi, Chiba, Japan Francesco Sala
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Chapter 1
Coulomb Branches of 3-Dimensional
Gauge Theories and Related Structures

Alexander Braverman and Michael Finkelberg

Abstract These are (somewhat informal) lecture notes for the CIME summer
school “Geometric Representation Theory and Gauge Theory” in June 2018. In
these notes we review the constructions and results of Braverman et al. (Adv Theor
Math Phys 22(5):1017–1147, 2018; Adv Theor Math Phys 23(1):75–166, 2019;
Adv Theor Math Phys 23(2):253–344, 2019) where a mathematical definition of
Coulomb branches of 3d N = 4 quantum gauge theories (of cotangent type)
is given, and also present a framework for studying some further mathematical
structures (e.g. categories of line operators in the corresponding topologically
twisted theories) related to these theories.

A. Braverman (�)
Department of Mathematics, University of Toronto and Perimeter Institute of Theoretical Physics,
Waterloo, ON, Canada

Skolkovo Institute of Science and Technology, Moskva, Russia
e-mail: braval@math.toronto.edu

M. Finkelberg
National Research University Higher School of Economics, Russian Federation, Department
of Mathematics, Moscow, Russia

Skolkovo Institute of Science and Technology, Institute for Information Transmission Problems,
Moskva, Russia

© Springer Nature Switzerland AG 2019
U. Bruzzo et al. (eds.), Geometric Representation Theory
and Gauge Theory, Lecture Notes in Mathematics 2248,
https://doi.org/10.1007/978-3-030-26856-5_1

1

fnklberg@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26856-5_1&domain=pdf
mailto:braval@math.toronto.edu
https://doi.org/10.1007/978-3-030-26856-5_1


2 A. Braverman and M. Finkelberg

1.1 Introduction and First Motivation: Symplectic Duality
and a Little Bit of Physics

1.1.1 Symplectic Singularities

Let X be an algebraic variety over C. We say that X is singular symplectic (or X
has symplectic singularities) if

(1) X is a normal Poisson variety;
(2) There exists a smooth dense open subset U ofX on which the Poisson structure

comes from a symplectic structure. We shall denote by ω the corresponding
symplectic form.

(3) There exists a resolution of singularities π : ˜X → X such that π∗ω has no
poles on ˜X.

This definition is due to A. Beauville, who showed that if condition (3) above holds
for some ˜X then it holds for any resolution of X.

1.1.2 Conical Symplectic Singularities

We say that X is a conical symplectic singularity if in addition to (1)–(3) above the
following conditions are satisfied:

(4) X is affine;
(5) There exists a C

×-action on X which contracts it to a point x0 ∈ X and such
that the form ω has positive weight.

We shall consider examples a little later.

1.1.3 Symplectic Resolutions

By a symplectic resolutions we mean a morphism π : ˜X→ X such that

(a) X satisfies (1)–(5) above;
(b) ˜X is smooth and π is proper and birational and the action of C× on X extends

to an action on ˜X.
(c) π∗ω extends to a symplectic form on ˜X.

Example Let g be a semi-simple Lie algebra overC and let Ng ⊂ g∗ be its nilpotent
cone. Let B denote the flag variety of g. Then the Springer map π : T ∗B → Ng

is proper and birational, so if we let X = Ng, ˜X = T ∗B we get a symplectic
resolution.

fnklberg@gmail.com



1 Coulomb Branches of 3-Dimensional Gauge Theories 3

1.1.4 The Spaces tX and sX

To any conical symplectic singularity X one can associate two canonical vector
spaces which we shall denote by tX and sX. The space sX is just the Cartan
subalgebra of the group of Hamiltonian automorphisms of X commuting with the
contracting C×-action (which is an finite-dimensional algebraic group over C). The
space tX is trickier to define. First, assume that X has a symplectic resolution
˜X. Then tX = H 2(˜X,C) (it follows from the results of Namikawa that tX is
independent of the choice of ˜X). Moreover, tX also has another interpretation: there
is a deformation X of X as a singular symplectic variety over the base tX. The map
X→ tX is smooth away from a finite union of hyperplanes in tX.

If X doesn’t have a symplectic resolution, Namikawa still defines the space
tX and the above deformation; the only difference is that in this case X is no
longer smooth over the generic point of tX (informally, one can say that X is the
deformation which makes X “as smooth as possible” while staying in the class
of symplectic varieties). More formally, if ˜Xreg stands for the smooth locus of
a partial resolution (“as smooth as possible”), then tX = H 2(˜Xreg,C), see [33,
Corollary 2.7].

1.1.5 Some Examples

LetX be Ng as in the example above. Then sX is the Cartan subalgebra of g and tX
is its dual space. One may think that tX and sX always have the same dimension.
However, it is not true already in the case X = C2n. In this case sX has dimension
n and tX = 0.

Let now X be a Kleinian surface singularity of type A,D or E. In other words
X is isomorphic to C2/Γ where Γ is a finite subgroup of SL(2,C). Thus X has
a unique singular point and it is known that X has a symplectic resolution ˜X with
exceptional divisor formed by a tree of P1’s whose intersection matrix is the above
Cartan matrix of typeA,D orE. Thus the dimension of tX is the rank of this Cartan
matrix. On the other hand, it is easy to show that sX is 1-dimensional if Γ is of type
A and is equal to 0 otherwise.

1.1.6 The Idea of Symplectic Duality

The idea of symplectic duality is this1: often conical symplectic singularities come
in “dual” pairs (X,X∗) (the assignment X → X∗ is by no means a functor; we

1The main ideas are due to T. Braden, A. Licata, N. Proudfoot and B. Webster.

fnklberg@gmail.com



4 A. Braverman and M. Finkelberg

just have a lot of interesting examples of dual pairs). What does it mean that X and
X∗ are dual? There is no formal definition; however, there are a lot of interesting
properties that a dual pair must satisfy. The most straightforward one is this: we
should have

tX = sX∗ sX = tX∗ .

Other properties of dual pairs are more difficult to describe. For example, if both X
and X∗ have symplectic resolutions ˜X and ˜X∗ then one should have

dimH ∗(˜X,C) = dimH ∗(˜X∗,C).

(However, these spaces are not supposed to be canonically isomorphic). We refer
the reader to [9, 10] for more details.

One of the purposes of these notes will be to provide a construction of a large
class of symplectically dual pairs. Before we discuss what this class is, let us talk
about some examples.

1.1.7 Examples of Symplectically Dual Spaces

1.1.7.1 Nilpotent Cones

Let X = Ng and let X∗ = Ng∨ where g∨ is the Langlands dual Lie algebra. This is
supposed to be a symplectically dual pair.

1.1.7.2 Slodowy Slices in Type A

For partitions λ ≥ μ of n, let Sλμ be the intersection of the nilpotent orbit closure

Oλ ⊂ gl(n) with the Slodowy slice to the orbit Oμ. Then Sλμ is dual to S
μt

λt
.

1.1.7.3 Toric Hyperkähler Manifolds

Consider an exact sequence

0→ Z
d−n α−→ Z

d β−→ Z
n → 0

of the free based Z-modules. It gives rise to a toric hyperkähler manifold X [7].
Then X∗ is the toric hyperkähler manifold associated to the dual exact sequence
(Gale duality).

fnklberg@gmail.com



1 Coulomb Branches of 3-Dimensional Gauge Theories 5

1.1.7.4 Uhlenbeck Spaces

Syma(A2/Γ )∨ � UaG(A
2)/G2

a for a finite subgroup Γ ⊂ SL(2) corresponding
by McKay to an almost simple simply connected simply laced Lie group G. Here
UaG(A

2) is the Uhlenbeck partial compactification of the moduli space ofG-bundles
of second Chern class a on P

2 equipped with a trivialization at infinity P
1∞ ⊂ P

2,
see [12]. Note that G2

a acts on A
2 by translations, and hence it acts on UaG(A

2) by
the transport of structure.

1.1.8 3d N = 4 Quantum Field Theories and Symplectic
Duality

One source of dual pairs (X,X∗) comes from quantum field theory. We discuss this
in more detail in Sect. 1.4; here we are just going to mention briefly the relevant
notions.

Physicists have a notion of 3-dimensional N = 4 super-symmetric quantum
field theory. Any such theory T is supposed to have a well-defined moduli space
of vacua M(T). This space is somewhat too complicated for our present discussion.
Instead we are going to discuss some “easy” parts of this space. Namely, the above
moduli space of vacua should have two special pieces called the Higgs and the
Coulomb branch of the moduli space of vacua; we shall denote these by MH(T)

and MC(T). They are supposed to be Poisson (generically symplectic) complex
algebraic varieties (in fact, the don’t even have to be algebraic but for simplicity we
shall only consider examples when they are). They should also be hyper-kähler in
some sense, but (to the best of our knowledge) this notion is not well-defined for
singular varieties, we are going to ignore the hyper-kähler structure in these notes.
But at least they are expected to be singular symplectic.

There is no mathematical classification of 3d N = 4 theories. However, here
is a class of examples. Let G be a complex reductive algebraic group and let M
be a symplectic representation of G; moreover we shall assume that the action of
G is Hamiltonian, i.e. that we have a well-defined moment map μ : M → g∗
(this map can be fixed uniquely by requiring that μ(0) = 0). Then to the pair
(G,M) one is supposed to associate a theory T(G,M). This theory is called gauge
theory with gauge group G and matter M. Its Higgs branch is expected to be equal
to M///G—the Hamiltonian reduction of M with respect to G. In particular, all
Nakajima quiver varieties arise in this way (the corresponding theories are called
quiver gauge theories).

What about the Coulomb branch of gauge theories? These are more tricky to
define. Physicists have some expectations about those but no rigorous definition
in general. For example, MC(G,M) is supposed to be birationally isomorphic to
(T ∗T ∨)/W . Here T ∨ is the torus to dual the Cartan torus of G and W is the
Weyl group. The above birational isomorphism should also preserve the Poisson

fnklberg@gmail.com



6 A. Braverman and M. Finkelberg

structure.2 In addition MC(G,M) has a canonical C×-action with respect to which
the symplectic for has weight 2. Unfortunately, it is not always conical but very often
it is. Roughly speaking, to guarantee that MC(G,M) is conical one needs that the
representation M be “big enough” (for reasons not to be discussed here physicists
call the corresponding gauge theories “good or ugly”). In the conical case physicists
(cf. [17]) produce a formula for the graded character of the algebra of functions
on MC(G,M). This formula is called “the monopole formula” (in a special case
relevant for the purposes of these notes it is recalled in Sect. 1.5.3).

The idea is that at least in the conical case the pair (MH(T),MC(T)) should
produce an example of a dual symplectic pair. One of the purposes of these notes
(but not the only purpose) is to review the contents of the papers [13–15] (joint with
H. Nakajima) where a mathematical definition of the Coulomb branchesMC(G,M)
ia given under an additional assumption (namely, we assume that M = T ∗N =
N ⊕ N∗ for some representation N of G—such theories are called gauge theories
of cotangent type) and some further properties of Coulomb brancnes are studied.3

In this case we shall write MC(G,N) instead of MC(G,M). In loc. cit. it is
defined as Spec(C[MC(G,N)]) where C[MC(G,N)] is some geometrically defined
algebra over C. The varieties MC(G,N) are normal, affine, Poisson and generically
symplectic. We expect that the they are actually singular symplectic, but we can’t
prove this in general. The main ingredient in the definition is the geometry of the
affine Grassmannian GrG of G.

1.1.9 Remark About Categorical Symplectic Duality

The following will never be used in the sequel, but we think it is important
to mention it for the interested reader. Perhaps the most interesting aspect of
symplectic duality is the categorical symplectic duality discussed in [10]. Namely, in
loc. cit. the authors explain that if bothX and X∗ have a symplectic resolution, then
one can think about symplectic duality between them as Koszul duality between
some version of category O over the quantization of the algebras C[X] and C[X∗].
In fact, it is explained in [47] that a slightly weaker version of this statement can be
formulated even when X and X∗ do not have a symplectic resolution. This weaker
statement is in fact proved in [47] for MH(G,N) and MC(G,N) (where the author
uses the definition of MC(G,N) from [13]).

2(T ∗T ∨)/W is actually the Coulomb branch of the corresponding classical field theory and the
fact that the above birational isomorphism is not in general biregular means that “in the quantum
theory the Coulomb branch acquires quantum corrections”.
3The reader is also advised to consult the papers [39, 41, 42] by Nakajima. In particular, the papers
[13–15] are based on the ideas developed earlier in [39]. Also [41] contains a lot of interesting
open problems in the subject most of which will not be addressed in these notes.

fnklberg@gmail.com



1 Coulomb Branches of 3-Dimensional Gauge Theories 7

1.1.10 The Plan

These notes are organized as follows. First, as was mentioned above the main
geometric player in our construction of MC(G,N) is the affine Grassmannian GrG
of G. In Sects. 1.2 and 1.3 we review some facts and constructions related to GrG.
Namely, in Sect. 1.2 we review the so called geometric Satake equivalence; in
Sect. 1.3 we discuss an upgrade this construction: the derived geometric Satake
equivalence. In Sect. 1.4 we discuss some general expectations about 3d N = 4
theories and in Sect. 1.5 we give a definition of the varieties MC(G,N). Section 1.6
is devoted to the example of quiver gauge theories; in particular, for finite quivers of
ADE type we identify the Coulomb branches with certain (generalized) slices in the
affine Grassmannian of the corresponding group of ADE-type. Finally, in Sect. 1.7
we discuss some conjectural categorical structures related to the topologically
twisted version of gauge theories of cotangent type (we have learned the main ideas
of this section from T. Dimofte, D. Gaiotto, J. Hilburn and P. Yoo).

1.2 Geometric Satake

1.2.1 Overview

Let O denote the formal power series ring C[[z]], and let K denote its fraction field
C((z)). Let G be a reductive complex algebraic group with a Borel and a Cartan
subgroupG ⊃ B ⊃ T , and with the Weyl groupW of (G, T ). LetΛ be the coweight
lattice, and letΛ+ ⊂ Λ be the submonoid of dominant coweights. Let alsoΛ+ ⊂ Λ
be the submonoid spanned by the simple coroots αi, i ∈ I . We denote byG∨ ⊃ T ∨
the Langlands dual group, so that Λ is the weight lattice of G∨.

The affine Grassmannian GrG = GK/GO is an ind-projective scheme, the
union

⊔

λ∈Λ+ GrλG of GO-orbits. The closure of GrλG is a projective variety GrλG =
⊔

μ≤λGrμG. The fixed point set GrTG is naturally identified with the coweight lattice

Λ; and μ ∈ Λ lies in GrλG iff μ ∈ Wλ.
One of the cornerstones of the Geometric Langlands Program initiated by

V. Drinfeld is an equivalence S of the tensor category Rep(G∨) and the category
PervGO

(GrG) of GO-equivariant perverse constructible sheaves on GrG equipped
with a natural monoidal convolution structure 	 and a fiber functor H •(GrG,−) [5,
25, 36, 37]. It is a categorification of the classical Satake isomorphism between
K(Rep(G∨)) = C[T ∨]W and the spherical affine Hecke algebra of G. The
geometric Satake equivalence S sends an irreducible G∨-module V λ with highest
weight λ to the Goresky–MacPherson sheaf IC(GrλG).

fnklberg@gmail.com



8 A. Braverman and M. Finkelberg

In order to construct a commutativity constraint for (PervGO
(GrG), 	), Beilinson

and Drinfeld introduced a relative version GrG,BD of the Grassmannian over the
Ran space of a smooth curveX, and a fusion monoidal structureΨ on PervGO

(GrG)
(isomorphic to 	). One of the main discoveries of [37] was a Λ-grading of the fiber
functorH •(GrG,F) =⊕

λ∈Λ Φλ(F) by the hyperbolic stalks at T -fixed points. For
a G∨-module V , its weight space Vλ is canonically isomorphic to the hyperbolic
stalk Φλ(SV ).

Various geometric structures of a perverse sheaf SV reflect some fine represen-
tation theoretic structures of V , such as Brylinski–Kostant filtration and the action
of dynamical Weyl group, see [28]. One of the important technical tools of studying
PervGO

(GrG) is the embedding GrG ↪→ GrG into Kashiwara infinite type scheme
GrG = GC((z−1))/GC[z] [30, 31]. The quotient GC[[z−1]]\GrG is the moduli stack
BunG(P1) of G-bundles on the projective line P1. The GC[[z−1]]-orbits on GrG are
of finite codimension; they are also numbered by the dominant coweights of G,
and the image of an orbit GrλG in BunG(P1) consists of G-bundles of isomorphism
type λ [29]. The stratifications GrG = ⊔

λ∈Λ+ GrλG and GrG = ⊔

λ∈Λ+ GrλG are
transversal, and their intersections and various generalizations thereof will play an
important role later on.

More precisely, we denote by K1 the first congruence subgroup of GC[[z−1]]: the
kernel of the evaluation projection ev∞ : GC[[z−1]] � G. The transversal slice Wλ

μ

(resp. W
λ

μ) is defined as the intersection of GrλG (resp. Gr
λ

G) and K1 · μ in GrG.

It is known that W
λ

μ is nonempty iff μ ≤ λ, and dimW
λ

μ is an affine irreducible
variety of dimension 〈2ρ∨, λ− μ〉. Following an idea of Mirković, [32] proved that

W
λ

μ =
⊔

μ≤ν≤λWν
μ is the decomposition of W

λ

μ into symplectic leaves of a natural
Poisson structure.

1.2.2 Hyperbolic Stalks

LetN denote the unipotent radical of the BorelB, and letN− stand for the unipotent
radical of the opposite Borel B−. For a coweight ν ∈ Λ = GrTG, we denote by
Sν ⊂ GrG (resp. Tν ⊂ GrG) the orbit of N(K) (resp. of N−(K). The intersections
Sν ∩ GrλG (resp. Tν ∩ GrλG) are the attractors (resp. repellents) of C× acting via
its homomorphism 2ρ to the Cartan torus T � GrλG : Sν ∩ GrλG = {x ∈ GrλG :
lim
c→0

2ρ(c) · x = ν} and Tν ∩ GrλG = {x ∈ GrλG : lim
c→∞ 2ρ(c) · x = ν}. Going to

the limit GrG = lim
λ∈Λ+

GrλG, Sν (resp. Tν) is the attractor (resp. repellent) of ν in

GrG. We denote by rν,+ (resp. rν,−) the locally closed embedding Sν ↪→ GrG (resp.
Tν ↪→ GrG). We also denote by ιν,+ (resp. ιν,−) the closed embedding of the point
ν into Sν (resp. into Tν). The following theorem is proved in [8, 18].
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1 Coulomb Branches of 3-Dimensional Gauge Theories 9

Theorem 1.1 There is a canonical isomorphism of functors ι∗ν,+r !ν,+ �
ι!ν,−r∗ν,− : DbGO

(GrG)→ Db(Vect).

Definition 1.2 For a sheaf F ∈ DbGO
(GrG) we define its hyperbolic stalk at ν as

Φν(F) := ι∗ν,+r !ν,+F � ι!ν,−r∗ν,−F.

The following dimension estimate due to [37] is crucial for the geometric Satake.

Lemma 1.3

(a) Sν ∩GrλG �= ∅ iff Tν ∩GrλG �= ∅ iff ν has nonzero multiplicity in the irreducible

G∨-module V λ with highest weight λ. This is also equivalent to ν ∈ Gr
λ

G.

(b) The nonempty intersection Sν∩Gr
λ

G is equidimensional of dimension 〈ν+λ, ρ∨〉.
(c) The nonempty intersection Tν ∩ Gr

λ

G is equidimensional of dimension 〈ν +
w0λ, ρ

∨〉. Here w0 is the longest element of the Weyl groupW .

Corollary 1.4

(a) For F ∈ PervGO
(GrG), the hyperbolic stalk Φν(F) is concentrated in degree

〈ν, 2ρ∨〉.
(b) There is a canonical direct sum decomposition H •(GrG,F) =⊕

ν∈ΛΦν(F).
(c) The functor H •(GrG,−) : PervGO

(GrG) → Vectgr, as well as its upgrade
⊕

ν∈ΛΦν : PervGO
(GrG)→ Rep(T ∨), is exact and conservative.

1.2.3 Convolution

We have the following basic diagram:

GrG × GrG
p←− GK × GrG

q−→ GrG˜×GrG
m−→ GrG. (1.1)

Here GrG˜×GrG = GK

GO× GrG = (GK × GrG)/((g, x) ∼ (gh−1, hx), h ∈ GO).
Furthermore, p is the projection on the first factor and identity on the second factor,
and the compositionm◦q is the action morphismGK×GrG→ GrG (which clearly

factors throughGK

GO× GrG).

Definition 1.5 Given F1,F2 ∈ DbGO
(GrG), their convolutionF1 	F2 ∈ DbGO

(GrG)

is defined as F1 	 F2 := m∗(F1˜�F2), where F1˜�F2 is the descent of p∗(F1 � F2),
that is q∗(F1˜�F) = p∗(F1 � F2).

The next lemma is due to [36, 37]. It follows from the stratified semismallness

ofm : Gr
λ,μ

G := p−1(Gr
λ

G)
GO× Gr

μ

G→ Gr
λ+μ
G . Here Gr

λ,μ

G is stratified by the union
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10 A. Braverman and M. Finkelberg

of Grν,θG := p−1(GrνG)
GO× GrθG over ν ≤ λ, θ ≤ μ. The stratified semismallness in

turn follows from the dimension estimate of Lemma 1.3.

Lemma 1.6 Given F1,F2 ∈ PervGO
(GrG), their convolution F1 	 F2 lies in

PervGO
(GrG) as well.

In order to define a commutativity constraint for 	, we will need an equivalent
construction of the monoidal structure on PervGO

(GrG) via fusion due to V. Drin-
feld.

1.2.4 Fusion

Let X be a smooth curve, e.g. X = A1. We have the following basic diagram:

(GrG×GrG)X
i

GrG,X×GrG,X
j

(GrG,X× GrG,X)|U
mX m

X2

GrG,X
i GrG,X2

j
(GrG,X× GrG,X)|U

π π π

X
Δ

X2 j
U.

⏐
⏐

⏐
⏐

⏐
⏐

⏐
⏐

⏐
⏐

⏐
⏐

� � �

� � �

�
��

�

�

�

Here U ↪→ X2 is the open embedding of the complement to the diagonalΔX ↪→
X2. Furthermore, for n ∈ N, GrG,Xn is the moduli space of the following data:
{(x1, . . . , xn) ∈ Xn, PG, τ }, where PG is aG-bundle onX, and τ is a trivialization
of PG on X \ {x1, . . . , xn}. The projection π : GrG,Xn → Xn forgets the data of PG
and τ . Note that GrG,X2|U � (GrG,X × GrG,X)|U , while GrG,X2 |ΔX � GrG,X.
Furthermore, GrG,X˜×GrG,X is the moduli space of the following data: {(x1, x2) ∈
X2, P1

G,P
2
G, τ, σ }, where P1

G,P
2
G areG-bundles on X; σ : P1

G|X\x2
∼−→P2

G|X\x2 ,
and τ is a trivialization of P1

G on X \ x1. Note that (GrG,X˜×GrG,X)|U � (GrG,X ×
GrG,X)|U , while (GrG,X˜×GrG,X)|ΔX is fibered over X with fibers isomophic to
GrG˜×GrG. Finally,mX2 : GrG,X˜×GrG,X → GrG,X2 takes (x1, x2,P

1
G,P

2
G, τ, σ ) to

(x1, x2,P
2
G, τ

′) where τ ′ = σ ◦ τ |X\{x1,x2}. All the squares in the above diagram
are cartesian. The stratified semismallness property of the convolution morphism
m used in the proof of Lemma 1.6 implies the stratified smallness property of the
relative convolution morphismmX2 .

Now given F1,F2 ∈ DbGO
(GrG), we can define the constructible complexes

F1,X,F2,X on GrG,X smooth over X, and by descent similarly to Sect. 1.2.3, a
constructible complex F1,X˜�F2,X on GrG,X˜×GrG,X smooth over X2. Note that
(F1,X˜�F2,X)|U = (F1,X � F2,X)|U . For simplicity, let us take X = A1. Then by
the proper base change for nearby cycles Ψx1−x2mX2∗(F1,X˜�F2,X) on GrG,X2 we
deduce (F1	F2)X = Ψx1−x2(F1,X�F2,X)|U . The RHS being manifestly symmetric,
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1 Coulomb Branches of 3-Dimensional Gauge Theories 11

we deduce the desired commutativity constraint for the convolution product 	. Note
that due to the stratified smallness of mX2 and the local acyclicity of π ◦ mX2 , we
have an isomorphism

Ψx1−x2(F1,X � F2,X)|U [1] ∼−→ i∗(π ◦mX2)∗(F1,X � F2,X)

∼−→ i∗j!∗
(

(F1,X � F2,X)|U
)

.

Also, the above smoothness of F1,X˜�F2,X over X2 implies that π∗mX2∗
(F1,X˜�F2,X) is a constant sheaf on X2. Since its diagonal stalks are H •(GrG,F1 	

F2), and the off-diagonal stalks are H •(GrG,F1) ⊗ H •(GrG,F2), we obtain that
the cohomology functor PervGO

(GrG) → Vect is a tensor functor: H •(GrG,F1 	

F2)
∼−→H •(GrG,F1)⊗H •(GrG,F2).

Corollary 1.7 The abelian category PervGO
(GrG) is equipped with a symmetric

monoidal structure 	 and a fiber functor H •(GrG,−).
By Tannakian formalism, the tensor category PervGO

(GrG) must be equivalent
to Rep(G′) for a proalgebraic group G′. It remains to identify G′ with the
Langlands dual group G∨. From the semisimplicity of PervGO

(GrG), the group
G′ must be reductive. The upgraded fiber functor

⊕

ν∈ΛΦν : PervGO
(GrG) →

Rep(T ∨) is tensor since the nearby cycles commute with hyperbolic stalks by [40,
Proposition 5.4.1.(2)]. Hence we obtain a homomorphismT ∨ ↪→ G′. Now it is easy
to identifyG′ with G∨ using Lemma 1.3(a). We have proved

Theorem 1.8 There is a tensor equivalence S : Rep(G∨),⊗ ∼−→ PervGO
(GrG), 	.

1.3 Derived Geometric Satake

In this section we extend the algebraic description of PervGO
(GrG) to an algebraic

description of the equivariant derived category DGO�C×(GrG). Our exposition
follows [6].

1.3.1 Asymptotic Harish-Chandra Bimodules

First we develop the necessary algebraic machinery. LetU = U(g∨) be the universal
enveloping algebra, and let Uh̄ be the graded enveloping algebra, i.e. the graded
C[h̄]-algebra generated by g∨ with relations xy − yx = h̄[x, y] for x, y ∈ g∨ (thus
Uh̄ is obtained from U by the Rees construction producing a graded algebra from
the filtered one). The adjoint action extends to the action of G∨ on Uh̄.
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12 A. Braverman and M. Finkelberg

We consider the category HCh̄ of graded modules over U2
h̄ := Uh̄ ⊗C[h̄] Uh̄ �

Uh̄ � U equipped with an action ofG∨ (denoted β : G∨ ×M → M) satisfying the
following conditions:

(a) The action U2
h̄ ⊗M → M is G∨-equivariant;

(b) for any x ∈ g∨, the action of x ⊗ 1 + 1⊗ x ∈ U2
h̄ coincides with the action of

h̄ · dβ(x);
(c) the moduleM is finitely generated as aUh̄⊗1-module (equivalently, as a 1⊗Uh̄-

module).

The restriction fromU2
h̄ to Uh̄⊗1 gives an equivalence of HCh̄ with the category

of G∨-modules equipped with a G∨-equivariant Uh̄-action.

1.3.1.1 Example: Free Harish-Chandra Bimodules

Let V ∈ Rep(G∨). We define a free Harish-Chandra bimodule Fr(V ) = Uh̄ ⊗ V
with theG∨-action g(y⊗ v) = Adg(y)⊗g(v) and the U2

h̄ -action (x⊗u)(y⊗ v) =
xyu ⊗ v + h̄xy ⊗ u(v), where x, u ∈ g∨ ⊂ Uh̄. Thus, Fr(V ) is the induction
of V (the left adjoint functor to the restriction res : HCh̄ → Rep(G∨)). This is a
projective object of the category HCh̄. We will denote by HCfr

h̄ the full subcategory
of HCh̄ formed by all the free Harish-Chandra bimodules.

1.3.2 Kostant–Whittaker Reduction

We also consider the subalgebraU2
h̄ (n

∨−) = Uh̄(n∨−)�U(n∨−) ⊂ U2
h̄ . We fix a regular

character ψ : Uh̄(n∨−) → C[h̄] taking value 1 at each generator fi . We extend it to
a character ψ(2) : U2

h̄ (n
∨−) = Uh̄(n∨−)� U(n∨−)→ C[h̄] trivial on the second factor

(its restriction to 1⊗ Uh̄(n∨−) equals −ψ).

Definition 1.9 ForM ∈ HCh̄ we set �h̄(M) := (M
L⊗1⊗Uh̄(n∨−) (−ψ))N

∨− (Kostant-
Whittaker reduction). It is equipped with an action of the Harish-Chandra center
Z(Uh̄)⊗C[h̄] Z(Uh̄) = C[t/W × t/W ×A1]. Furthermore, �h̄(M) is graded by the
action of the element h from a principal sl2 = 〈e, h, f 〉-triple whose e corresponds
to ψ under the Killing form. All in all, �h̄(M) is a C×-equivariant coherent sheaf
on t/W × t/W ×A1 (with respect to the natural C×-action on t/W ).

1.3.2.1 Example: Differential Operators and Quantum Toda Lattice

The ring of h̄-differential operators onG∨, Dh̄(G∨) = Uh̄�C[G∨] is an object of
the Ind-completion IndHCh̄. It carries one more commuting structure of a Harish-
Chandra bimodule (where Uh̄ acts by the right-invariant h̄-differential operators).
We define K := �h̄(Dh̄(G∨)), an algebra in the category IndHCh̄. It corepresents
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1 Coulomb Branches of 3-Dimensional Gauge Theories 13

the functor Hom(M,K) = �h̄(DM) where DM = HomUh̄(M,Uh̄) is a duality on
HCh̄. Here HomUh̄ is taken with respect to the right action of Uh̄, while the left
actions of Uh̄ on M and on itself are used to construct the left and right actions of
Uh̄ on HomUh̄(M,Uh̄). Finally, we define an associative algebra Th̄ := �h̄(K) =
�

right
h̄ � left

h̄ Dh̄(G
∨), the quantum open Toda lattice.

1.3.3 Deformation to the Normal Cone

A well known construction associates to a closed subvarietyZ ⊂ X the deformation
to the normal cone NZX projecting toX×A1; all the nonzero fibers are isomorphic
to X, while the zero fiber is isomorphic to the normal cone CZX. Recall that NZX
is defined as the relative spectrum of the subsheaf of algebras OX[h̄±1], generated
over OX×A1 by the elements of the following type: f h̄−1, where f ∈ OX, f |Z = 0.

Now if M is a Harish-Chandra bimodule free over C[h̄], then the action of
C[t/W×t/W×A1] on �h̄(M) extends uniquely to the action of the ring of functions
C[NΔ(t/W×t/W)] on the deformation to the normal cone of diagonal, since for z ∈
ZUh̄, m ∈ M , the difference of the left and right actions z(1)m− z(2)m is divisible
by h̄. So we will consider �h̄(M) as a C×-equivariant sheaf on NΔ(t/W × t/W).
Note that C[NΔ(t/W × t/W)]/h̄ = C[CΔ(t/W × t/W)] = C[Tt/W ] = C[TΣ ].
Here Σ ⊂ (g∨)∗ is the Kostant slice (we identify g∨ and (g∨)∗ by the Killing form).

Recall the universal centralizer Zg∨
g∨ = {(x ∈ g∨, ξ ∈ Σ) : adx ξ = 0}.

Lemma 1.10 Under the identification of g∨ and (g∨)∗, the universal centralizer Zg∨
g∨

is canonically isomorphic to the cotangent bundle T ∗Σ .

Proof The open subset of regular elements (g∨)∗reg ⊂ (g∨)∗ carries the centralizer
sheaf z ⊂ g∨⊗O of abelian Lie algebras. We have z = pr∗ T ∗Σ where pr : (g∨)∗reg →
(g∨)∗reg/AdG∨ = t/W = Σ is the evident projection. Indeed, the fiber of pr∗ T ∗Σ
at a point η ∈ (g∨)∗ is dual to the cokernel of the map aη : g∨ → (g∨)∗, x �→ adx η.
In other words, this fiber is isomorphic to the kernel of the dual map which happens
to coincide with aη. The latter kernel is by definition nothing but the fiber zη. ��
Lemma 1.11 For V ∈ Rep(G∨), the C[TΣ ]-module �h̄(Fr(V ))|h̄=0 is isomorphic

to C[Σ] ⊗ V as a Z
g∨
g∨-module.

Proof Let Poly((g∨)∗, g∨)G∨ be the space of G∨-invariant polynomial morphisms.
It is a vector bundle over SpecC[(g∨)∗]G∨ = Σ . If P ∈ C[(g∨)∗]G∨ , then the
differential dP is a section of this bundle. If z ∈ ZU(g∨) = C[(g∨)∗]G∨ , we denote

dz by σz. If {zi} is a set of generators of ZU(g∨), then {σzi } forms a basis of Zg∨
g∨ as

a vector bundle overΣ , and hence identifies it with T ∗Σ . Let z(1), z(2) stand for the
left and right actions of z on Fr(V ). We have to check that the action of z

(1)−z(2)
h̄

|h̄=0
on (Uh̄ ⊗ V )|h̄=0 = C[(g∨)∗] ⊗ V coincides with the action of σz ∈ C[(g∨)∗] ⊗ g∨.
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14 A. Braverman and M. Finkelberg

But if v ∈ V, z =∑

i cixi1 · · · xir (xip ∈ g∨), and ỹ ∈ Uh̄ is a lift of y ∈ C[(g∨)∗] =
Uh̄|h̄=0, then z(ỹ⊗v)−(ỹ⊗v)z

h̄
|h̄=0 = ∑

ip∈i cixi1 · · · x̂ip · · · xir y ⊗ xip (v) =
σz(y ⊗ v). ��

1.3.4 Quasiclassical Limit of the Kostant–Whittaker Reduction

We define a functor � : CohG
∨×C×(g∨)∗ → CohC

×
(T Σ) as follows. For a G∨-

equivariant coherent sheaf F on (g∨)∗, the restriction F|(g∨)∗reg
is equipped with an

action of the centralizer sheaf z. Hence, this restriction gives rise to a coherent sheaf
on pr∗ TΣ . Restricting it to the Kostant slice Σ , we obtain a coherent sheaf �̄F
on TΣ . Equivalently, the latter sheaf can be described as (F|Υ )N∨− , where Υ =
e + b∨− ⊂ g∨ � (g∨)∗. This construction is C×-equivariant, and gives rise to the
desired functor �.

We define CohG
∨×C×

fr (g∨)∗ ⊂ CohG
∨×C×(g∨)∗ as the full subcategory formed

by the sheaves V ⊗ O(g∨)∗ for V ∈ Rep(G∨).

Lemma 1.12

(a) The functors �, �h̄ are exact;
(b) �|

CohG
∨×C×

fr (g∨)∗, �h̄|HCfr
h̄

are fully faithful.

Proof The statements about �h̄ follow from the ones for � by the graded Nakayama
Lemma. To prove (a), note that the functor F �→ F|Υ , CohG

∨
(g∨)∗ → CohN

∨− (Υ )
is exact. Moreover,N∨− acts freely on Υ , and Υ/N∨− = Σ . It follows that the functor

G �→ GN
∨− is exact on CohN

∨− (Υ ). Now (b) follows since the codimension in (g∨)∗
of the complement (g∨)∗ \(g∨)∗reg is at least 2, and the centralizer of a general regular
element is connected. ��

1.3.5 Equivariant Cohomology of the Affine Grassmannian

Now we turn to the topological machinery. We have an evident homomorphism
pr∗ : C[h̄] = H •

C×(pt) → H •
GO�C×(GrG). Also, viewing H •

GO�C×(GrG) as
H •

C×(GO\GK/GO), we obtain two homomorphisms pr∗1, pr∗2 : C[Σ] = C[t/W ] =
H •GO

(pt) ⇒ H •
GO�C×(GrG). Let us assume for simplicity that G is simply

connected. Recall the deformation to the normal cone of diagonal in t/W × t/W ,
see Sect. 1.3.3.

Proposition 1.13 There is a natural isomorphism α : C[NΔ(t/W × t/W)] ∼−→
H •
GO�C×(GrG) compatible with the above pr∗1, pr∗2, pr∗.

Proof Since H •
GO�C×(GrG)|h̄=0 = H •GO

(GrG), we see that pr∗1 |h̄=0 = pr∗2 |h̄=0.

It follows that (pr∗1, pr∗2, pr∗) : C[t/W × t/W × A1] → H •
GO�C×(GrG) fac-
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1 Coulomb Branches of 3-Dimensional Gauge Theories 15

tors as a composition C[t/W × t/W × A1] → C[NΔ(t/W × t/W)] α−→
H •
GO�C×(GrG) for a uniquely defined homomorphism α. Let us check that α

is injective. Indeed, αloc : C[NΔ(t/W × t/W)] ⊗C[t/W×A1] Frac(C[t × A
1]) →

H •
GO�C×(GrG)⊗C[t/W×A1] Frac(C[t×A1]) = H •

T×C×(GrG)⊗C[t×A1] Frac(C[t×
A1]) ↪→ lim← H •

T×C×(GrλG)⊗C[t×A1] Frac(C[t×A1]) =∏

λ∈X∗(T ) Frac(C[t×A1])
associates to a function its restriction to the union of graphs Γλ := {(x1, x2, c) :
x1 = x2 + cλ} ⊂ t × t × A1. More precisely, for a T -fixed point λ ∈ GrG, the
C[t×(t/W)×A1]-moduleH •

T×C×(λ) is canonically isomorphic to (Id, π, Id)∗OΓλ ,
where π stands for the projection t → t/W . Indeed, let p : F�G → GrG be the
projection from the affine flag variety F�G = GK/ Iw ofG, and let λ̃ ∈ F�G be the
T -fixed point in p−1(λ) corresponding to the coweight λ ∈ X∗(T ) ⊂ Waff. Viewing
H •
T×C×(F�G) as H •

C×(Iw \GK/ Iw), we identify H •
T×C×(λ̃) with a C[t× t× A1]-

module M such that (Id, π, Id)∗M = H •
T×C×(λ). The preimage Tλ of λ̃ in GK

is homotopy equivalent to the torus T , and the action of T × T × C× on Tλ is
homotopy equivalent to (t1, t2, c) · t = t1tt−1

2 λ(c). We conclude that H •
T×C×(λ̃) =

H •
C×(T \Tλ/T ) = C[Γλ].
Finally, the union

⋃

λ∈X∗(T ) Γλ is Zariski dense in t × t × A1. Hence αloc is
injective, and α is injective as well.

To finish the proof it suffices to compare the graded dimensions of the LHS and
the RHS (the grading in the LHS arises from the natural action of C× on t and
A1). Now dimgr(H

•
GO�C×(GrG)) = dimgr(H

•
GO
(pt) ⊗ H •

C×(pt) ⊗ H •(GrG)) =
dimgr C[x1, . . . , xr, y1, . . . , yr , h̄] where deg h̄ = 2, deg xi = deg yi = 2(mi + 1),
andm1, . . . ,mr are the exponents ofG (so thatmi+1 are the degrees of generators
ofW -invariant polynomials on t).

Furthermore, t/W = Σ , and NΔ(Σ × Σ) � Σ × Σ × A1 (an affine
space). Indeed, for affine spaces V, V ′ we have an isomorphism β : V × V ′ ×
A1 ∼−→NV (V × V ′); namely, γ : V × V ′ × A1 → V × V ′ × A1, (v, v′, c) �→
(v, cv′, c) factors through V ×V ′ ×A

1 β−→ NV×V ′V → V ×V ′ ×A
1. We conclude

that dimgr(LHS) = dimgr(RHS). This completes the proof. ��
In view of Proposition 1.13, we can viewH •

GO�C×(GrG,−) as a functor from the

full subcategory ICGO�C× ⊂ DbGO�C×(GrG) formed by the semisimple complexes

(i.e. finite direct sums of objects of the form IC(Gr
λ

G)[a]), to CohC
×
(NΔ(t/W ×

t/W)). This functor is fully faithful according to [26]. For V ∈ Rep(G∨), one can
identify H •

GO�C×(GrG, S(V )) with �h̄(Fr(V )); moreover, one can make this iden-

tification compatible with the tensor structures on Rep(G∨) and PervGO
(GrG) [6]:

Theorem 1.14 The geometric Satake equivalence S : Rep(G∨) ∼−→ PervGO
(GrG)

extends to a tensor equivalence Sh̄ : HCfr
h̄

∼−→ ICGO�C× such that �h̄ =
H •
GO�C×(GrG,−)◦Sh̄. There is also a quasiclassical version Sqc : CohG

∨×C×
fr (g∨)∗

∼−→ ICGO
such that � = H •GO

(GrG,−) ◦ Sqc.
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16 A. Braverman and M. Finkelberg

Now using the formality of RHom-algebras in our categories, one can deduce
the desired derived geometric Satake equivalence. To formulate it, we introduce a
bit of notation. To a dg-algebra A one can associate the triangulated category of
dg-modules localized by quasi-isomorphisms, and a full triangulated subcategory
Dperf(A) ⊂ D(A) of perfect complexes. Given an algebraic group H acting
on A, we can consider H -equivariant dg-modules and localize them by quasi-
isomorphisms, arriving at the equivariant versionDHperf(A).

We now consider the dg-versions Sym[](g∨), U []h̄ of the graded algebras
Sym(g∨), Uh̄, equipping them with the zero differential and the cohomological
grading so that elements of g∨ and h̄ have degree 2. The construction of the previous
paragraph gives rise to the categories DG

∨
perf(U

[]
h̄ ),D

G∨
perf(Sym[](g∨)). Their Ind-

completions will be denoted by DG
∨
(U
[]
h̄ ),D

G∨(Sym[](g∨)). The Ind-completions

of the equivariant derived categories Db
GO�C×(GrG),DbGO

(GrG) will be denoted
by DGO�C×(GrG),DGO

(GrG).
The following theorem is proved in [6].

Theorem 1.15 The equivalences of Theorem 1.14 extend to the equivalences
of monoidal triangulated categories Ψh̄ : DG∨perf(U

[]
h̄ )

∼−→Db
GO�C×(GrG) and

Ψqc : DG∨perf(Sym[](g∨)) ∼−→DbGO
(GrG). They induce the equivalences of their Ind-

completions Ψh̄ : DG∨(U []h̄ ) ∼−→DGO�C×(GrG) and Ψqc : DG∨(Sym[](g∨)) ∼−→
DGO

(GrG).

1.3.5.1 The Dualities

We denote by CG∨ the autoequivalence ofDG
∨
(U
[]
h̄ ) induced by the canonical outer

automorphism of G∨ interchanging conjugacy classes of g and g−1 (the Chevalley
involution). We also denote by CG the autoequivalence of DGO�C×(GrG) induced
by g �→ g−1, G((z)) → G((z)). Then the Verdier duality D : DGO�C×(GrG) →
DGO�C×(GrG) and the duality D : DG∨(U []h̄ ) → DG

∨
(U
[]
h̄ ) introduced in Exam-

ple 1.3.2.1 are related by Ψh̄ ◦ CG∨ ◦D = D ◦ Ψh̄.

1.3.6 The Regular Sheaf

Recall the setup of Example 1.3.2.1. We consider D
[]
h̄ (G

∨) = U
[]
h̄ � C[G∨] ∈

DG
∨
(U
[]
h̄ ). Its image under the equivalence of Theorem 1.15 is the regular sheaf

AC×
R ∈ DGO�C×(GrG) isomorphic to

⊕

λ∈Λ+ IC(GrλG)⊗ (V λ)∗. The quasiclassical

analogs are DG
∨
(Sym[](g∨)) � C[T ∗G∨][] = Sym[](g∨) ⊗ C[G∨] �→ AR ∈

DGO
(GrG). One can check that the image of �h̄D

[]
h̄ (G

∨) ∈ DG
∨
(U
[]
h̄ ) under

the equivalence of Theorem 1.15 is the dualizing sheaf ωGrG ∈ DGO�C×(GrG).
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It follows that the convolution algebra of equivariant Borel–Moore homology

H
GO�C

×
• (GrG) = H •GO�C×(GrG,ωGrG) is isomorphic to the quantum open Toda

lattice Th̄ = �right
h̄ � left

h̄ Dh̄(G
∨) of Example 1.3.2.1.

Note that the regular sheaf AC
×
R is equipped with an action of G∨. Further-

more, the dg-algebra RHomDGO�C× (GrG)(A
C
×
R ,A

C
×
R ) is formal, and we have a

G∨-equivariant morphism of dg-algebras U []h̄ → RHomDGO�C× (GrG)(A
C
×
R ,A

C
×
R )

(corresponding to the right action of U []h̄ on D
[]
h̄ (G

∨)). Similarly, the dg-algebra
RHomDGO (GrG)(AR,AR) is formal, and we have a G∨-equivariant morphism of

dg-algebras Sym[](g∨) → RHomDGO (GrG)(AR,AR) (corresponding to the right

action of Sym[](g∨) on C[T ∗G∨][]). Hence for any F ∈ DGO�C×(GrG), the

complex RHomDGO�C× (GrG)(A
C
×
R ,F) carries a structure of G∨-equivariant dg-

module over U []h̄ .

Thus the functors RHomDGO�C× (GrG)(A
C
×
R , •), RHomDGO (GrG)(AR, •) may be

viewed as landing respectively intoDG
∨
(U
[]
h̄ ), D

G∨(Sym[](g∨)). We will also need
their versions

Φh̄ := RHomDGO�C× (GrG)(1GrG,CGA
C
×
R 	 •) ∼−→ RHomDGO�C× (GrG)(DA

C
×
R , •)

∼−→ RHomDGO�C× (GrG)(CGrG,A
C
×
R

!⊗ •),

and

Φqc := RHomDGO (GrG)(1GrG,CGAR 	 •) ∼−→ RHomDGO (GrG)(DAR, •)
∼−→ RHomDGO (GrG)(CGrG,AR

!⊗ •).

The following lemma is proved in [15].

Lemma 1.16

(a) The functors RHomDGO�C× (GrG)(A
C
×
R , •) : DGO�C×(GrG) → DG

∨
(U
[]
h̄ ) and

RHomDGO (GrG)(AR, •) : DGO
(GrG) → DG

∨
(Sym[](g∨)) are canonically iso-

morphic to Ψ−1
h̄ and Ψ−1

qc respectively.

(b) The functors Φh̄ : DGO�C×(GrG) → DG
∨
(U
[]
h̄ ) and Φqc : DGO

(GrG) →
DG

∨
(Sym[](g∨)) are canonically isomorphic to CG∨ ◦ Ψ−1

h̄ and CG∨ ◦ Ψ−1
qc

respectively.
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1.4 Motivation II: What do We (as Mathematicians) Might
Want from 3d N = 4 SUSY QFT? (Naive Approach)

1.4.1 Some Generalities

In this section we would like to introduce some language related to 3-dimensional
N = 4 super-symmetric quantum field theories. The reader should be warned from
the very beginning: here we are going to use all the words from physics as a “black
box”. More precisely, we are not going to try to explain what such a theory really
is from a mathematical point of view. Instead we are going to review the relevant
“input data” (i.e. to what mathematical structures physicists usually attach such a
QFT) and some of the “output data” (i.e. what mathematical structures one should
get in the end). This will be largely extended in Sect. 1.7, where we partly address
the question “what kind of structures these 3d N = 4 SUSY QFTs really are from
a mathematical point of view?”. Also it will be important for us to recall (in this
section) what one can do with these theories: i.e. we are going to discuss some
operations which produce new quantum field theories out of old ones.

The reader should be warned from the very beginning about the following: both
in this section and in Sect. 1.7 we are only going to discuss algebraic aspects of
the above quantum field theories (such as e.g. algebraic varieties or categories
one can attach to them). In principle “true physical theory” is supposed to have
some interesting analytic aspects (such as e.g. a metric on the above varieties).
These analytic aspects will be completely ignored in these notes. Essentially, this
means that we are going to study quantum field theories up to certain “algebraic
equivalence” but we are not going to discuss details in these notes.

1.4.2 Higgs and Coulomb Branch and 3d Mirror Symmetry

A 3d N = 4 super-symmetric quantum field theory T is supposed to have a
well-defined moduli space of vacua. This should be some complicated (though inter-
esting) space. This space is somewhat too complicated for our present discussion.
Instead we are going to discuss some “easy” parts of this space. Namely, the above
moduli space of vacua should have two special pieces called the Higgs and the
Coulomb branch of the moduli space of vacua; we shall denote these by MH(T)

and MC(T). They are supposed to be Poisson (generically symplectic) complex
algebraic varieties.4 They should also be hyper-kähler in some sense, but (to the
best of our knowledge) this notion is not well-defined for singular varieties, we are
going to ignore the hyper-kähler structure in these notes. So, in this section we are

4In fact, this is already a simplification: non-algebraic holomorphic symplectic manifolds should
also arise in this way, but we are not going to discuss such theories.
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going to think about a theory T in terms of MH(T) and MC(T). Of course, this is
a very small part of what the actual “physical theory” is, but we shall see that even
listing the structures that physicists expect from MH(T) and MC(T) will lead us to
interesting constructions.

One of the operations on theories that will be important in the future is the
operation of “3-dimensional mirror symmetry”. Namely, physicists expect that for
a theory T there should exist a mirror dual theory T∗ such that MH(T

∗) = MC(T)

and MC(T
∗) =MH(T).

1.4.3 More Operations on Theories

In what follows we shall use the following notation: for a symplectic varietyX with
a Hamiltonian G-action we shall denote by X///G the Hamiltonian reduction of X
with respect to G.

Then the following operations on theories are expected to make sense (in the next
subsection we shall start considering examples):

1.4.3.1 Product

If T1, · · · ,Tn are some theories then one can form their product T1 × · · · × Tn. We
have

MH(T1 × · · · × Tn) =MH(T1)× · · · ×MH(Tn),

and

MC(T1 × · · · × Tn) =MC(T1)× · · · ×MC(Tn).

1.4.3.2 Gauging

Let T be a theory and let G be a complex reductive group. Then there is a notion of
G acting on T. Physicists say in this case thatG maps to the flavor symmetry group
of T, or that we are given a theory T with flavor symmetryG.

Assume that we are given a theory T with flavor symmetry G. Then there is a
new theory T/G obtained by “gauging” G. The origin of the notation is explained
in Sect. 1.4.3.3.

1.4.3.3 Result of Gauging on the Higgs Branch

Let us now address the following question: what kind of structures does a G-
action on T imply on MH(T) and MC(T) and how to construct the Higgs and
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Coulomb branch of T/G? It turns out that the answer for the Higgs branch is quite
straightforward but for the Coulomb branch it is much trickier. In this subsection we
are going to discuss the Higgs branch and we shall postpone the discussion of the
Coulomb branch till the next subsubsection.

Namely, an action of G on the theory T should give rise to a Hamiltonian action
of G on MH(T). Moreover, we have MH(T/G) = MH(T)///G. Of course, the
notion of Hamiltonian reduction can be understood in several different ways, so we
need to talk a little about what we mean by ///G here. Recall that the Hamiltonian
reduction is defined as follows. Let X be any Poisson variety endowed with a
Hamiltonian action of G. Then we have the moment map μ : X → g∗. Then we
are supposed to have X///G = (μ−1(0))/G. Here there are two delicate points.
First, the map μmight not be flat, so honestly we must take μ−1(0) in the dg-sense.
Second, we must specify what we mean by quotient by G. In these notes we shall
mostly deal with examples when X is affine and we shall be primarily interested in
the algebra of functions on X///G. For these purposes it is enough to work with the
so called “categorical quotient”, i.e. we set

C[X///G] = (C[μ−1(0)])G.

Note that according to our conventions this might be a dg-algebra.

1.4.3.4 Ring Object

Given T and G as above (assuming that G is connected and reductive) one can
construct a ring object AT in DGO

(GrG) (sometimes we shall denote it by AT,G

when we need to stress the dependence onG). The !-stalk of AT at the unit point of
GrG is C[MC(T)] and H ∗GO

(AT) = C[MC(T/G)]. In fact, the object AT should
also have a Poisson structure (which will induce a Poisson structure on C[MC(T)]
and on MC(T/G)) but we are going to ignore this issue for now.

Let us as before denote by i the emebedding of the point 1 in GrG. Then
i !AT can be regarded as a ring object of the equivariant derived category DG(pt).
Its equivariant cohomology H ∗G(pt, i !AT) is a graded algebra over H ∗G(pt,C) =
C[g]G = C[t]W whose (derived) fiber over 0 is equal to C[MC]. Thus flavor
symmetry G is supposed to define a (Poisson) deformation of MC over the base
t/W . In particular, by base change we should have a Poisson deformation of MC

over t.

1.4.3.5 Ring Object for a Subgroup

Let H be a subgroup of G. Then AT,H is equal to the !-restriction of AT,G to GrH .
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1.4.3.6 A Theory T[G]

For a reductive groupG there is a theory T[G] such that

(a) T[G] has flavor symmetryG.
(b) MH(T[G]) = Ng,MC(T[G]) = Ng∨ ; here g = Lie(G) and Ng is its nilpotent

cone.
(c) AT[G∨] = AR (our “regular representation” sheaf on GrG).
(d) T[G]∗ = T[G∨].

1.4.3.7 S-Duality

For a theory T with flavor symmetry G there should exist another (S-dual) theory
T∨ with flavor symmetry G∨ (it is defined via S-duality for 4-dimensional N = 4
super-symmetric gauge theory). Gaiotto and Witten [20] claim that

T∨ = ((T × T[G])/G)∗ (1.2)

(here the gauging is taken with respect to diagonal copy ofG).
In particular, the RHS of (1.2) has an action of G∨ (which a priori is absolutely

non-obvious). Here is an example: take T to be the trivial theory with trivial G-
action (in this case MH = MC = pt, but the structure is still somewhat non-trivial
as we remember the group G). Then T × T[G] = T[G]. Now T[G]/G is the
theory whose (naive, i.e. not dg) Higgs branch is pt and whose Coulomb branch
is isomorphic to G∨ × t/W = Spec(H ∗GO

(GrG,AR)). Since the mirror duality
interchanges MH and MC we see that MH(T

∨) has an action of G∨.
More generally, it follows that

C[MH(T
∨)] = H ∗GO

(GrG,AT

!⊗AR) (1.3)

(this follows from Sect. 1.4.3.5). In particular, it has a natural action of G∨.
Let us now pass to examples.

1.4.4 Basic Example

This is in some sense the most basic example. Let M be a connected symplectic
algebraic variety over C. Then to M there should correspond a theory T (M) for
which MH = M and MC = pt. In fact, this is true only if dg-structures are
disregarded. However, in these notes we shall mostly care about the case when M
is just a symplectic vector space and in this case it should be true as stated (cf.
Sect. 1.7.11 for more details).
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1.4.5 Gauge Theories

Let G be a reductive group. Then an action of G on T (M) should be the same as a
Hamiltonian action of G on M.5 Then we can form the theory T (M)/G.

Assume that M is actually a symplectic vector space and that the action of G
on M is linear. Then the theory T (M)/G is called gauge theory with matter M. In
the case when M = N ⊕ N∗ = T ∗N for some repesentation N of G, the Coulomb
branch of these theories together with the corresponding objects AT was rigorously
defined and studied in [13–15]. Unfortunately, at this point we don’t know how to
modify our constructions so that they will depend on M rather than on N (but we
can check that different ways of representing M as T ∗N (in the cases where it is
possible) lead to the same MC). We shall sometimes denote the theory T (M)/G
simply by T (G,N).

Here is an interesting source of pairs (G,N) as above. Let Q be an oriented
quiver (a.k.a. finite oriented graph) with set of vertices I . Let V and W be two
finite-dimensional I -graded vector spaces over C. Set

G =
∏

i∈I
GL(Vi), N = (

⊕

i→j
Hom(Vi, Vj ))⊕ (

⊕

Hom(Vi,Wi)).

Theories associated with such pairs (G,N) are called quiver gauge theories. In the
case whenQ is a quiver of finite Dynkin type the corresponding Coulomb branches
are studied in detail in [14]; we review some of these results in Sect. 1.6.

1.4.6 Toric Gauge Theories

Let T ⊂ (C×)n be an algebraic torus. We set TF = (C×)n/T (this is also an
algebraic torus). Then T acts naturally on Cn, so we can set N = Cn, G = T in the
notation of the previous subsection.

Note that the torus T ∨F also naturally embeds to (C×)n (by dualizing the quotient
map (C×)n → TF ). It is then expected that the mirror dual to the theory associated
to (T ,Cn) is equal to the theory associated with (T ∨F ,Cn). Note that this implies
that the Coulomb branch of the former must be isomorphic to T ∗Cn///T ∨F (since
this is the Higgs branch of the latter). As was mentioned earlier, in the next
section we are going to give a rigorous definition of Coulomb branches for gauge
theories of cotangent type and the above expectation in the toric case is proven in
Example 1.5.4.1.

5By Hamiltonian action we mean a symplectic action with fixed moment map.
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1.4.7 Sicilian Theories

Let Σ be a Riemann surface obtained from a compact Riemann surface Σ by mak-
ing n punctures. Let also G be a reductive group. To this data physicists associate
a theory T (Σ,G) (“Sicilian theory”) with an action of Gn. The construction is by
“compactifying” certain 6-dimensional theory (attached to G) on Σ × S1.

One of the key statements from physics is that the theory associated to a sphere
with n-punctures and the groupG∨ is

((T[G] × · · · × T[G])
︸ ︷︷ ︸

n times

/G)∗. (1.4)

Here we are gauging the diagonal action ofG. It has an action of (G∨)n for reasons
similar to Sect. 1.4.3.7. There should be in fact a simpler statement (when you start
with a theory corresponding to any surface and make an additional puncture), but
we are a little confused now about what it is. In particular, it says that functions on

the Higgs branch (for anyG) of (1.4) isH ∗GO
(GrG,AR

!⊗ · · · !⊗AR
︸ ︷︷ ︸

n times

) (which is what

we knew before for G of type A). More precisely, for G = GL(r) the theory T[G]
is a quiver theory of type Ar+1 and then the theory (T[G] × · · · × T[G])/G

︸ ︷︷ ︸

n times

is the

corresponding star-shaped quiver theory. Interested reader can consult [15, Section
6] for more details.

1.4.8 S-Duality vs. Derived Satake

Let T be a theory with G-symmetry and let AT,G be the corresponding ring object
on GrG. We would like to describe the corresponding data for the S-dual theory
T∨. Let Ψ−1

qc denote the derived geometric Satake functor going from D(GrG) to
the derived category of G∨-equivariant dg-modules over Sym(g∨[−2]) (see Theo-
rem 1.14). Then the cohomology h∗(Ψ−1

qc (AT,G)) with grading disregarded can be
viewed as a commutative ring object in the cateogory of G∨-equivariant modules
over Sym(g∨). In other words, Spec(h∗(Ψ−1

qc (AT,G))) is a G∨-scheme endowed
with a compatible morphism to (g∨)∗.

It follows from the results of the previous section that

MH(T
∨) = Spec(h∗(Ψ−1

qc (AT,G))).

Another (categorical) relationship between the assignment T �→ T∨ and
geometric Langlands duality will be discussed in Sect. 1.7.16.
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1.5 Coulomb Branches of 3-Dimensional Gauge Theories

In this section we explain how to define Coulomb branches (and some further
structures related to flavor symmetry) for gauge theories of cotangent type.

1.5.1 Summary

Let us summarize what is done in this section. Let G be a complex connected
reductive group and let N be a representation of it. In this section we are going
to define mathematically the Coulomb branch MC(G,N) of the gauge theory
T(T ∗N)/G. These Coulomb branches will satisfy the following (non-exhaustive)
list of properties:

(1) MC(G,N) is a normal, affine generically symplectic Poisson variety (conjec-
turally it is singular symplectic but we don’t know how to prove this).

(2) Let T be a maximal torus in G and let W be the Weyl group of G. Then
MC(G,N) is birationally isomorphic to (T ∗T ∨)/W . This birational isomor-
phism is compatible with the Poisson structure. In particular, dim(MC(G,N) =
2 rankG.

(3) There is a natural “integrable system” map π : MC(G,N) → t/W which has
Lagrangian fibers.

(4) MC(G,N) is equipped with a canonical quantization; the map π also gets
quantized.

1.5.2 General Setup

Let N be a finite dimensional representation of a complex connected reductive group
G. We consider the moduli space RG,N of triples (P, σ, s) where P is a G-bundle
on the formal disc D = SpecO; σ is a trivialization of P on the punctured formal
disc D∗ = SpecK; and s is a section of the associated vector bundle Ptriv

G×N on
D∗ such that s extends to a regular section of Ptriv

G×N on D, and σ(s) extends to
a regular section of PG×N on D. In other words, s extends to a regular section of
the vector bundle associated to the G-bundle glued from P and Ptriv on the non-
separated formal scheme glued from 2 copies of D along D∗ (raviolo). The group
GO acts on RG,N by changing the trivialization σ , and we have an evident GO-
equivariant projection RG,N → GrG forgetting s. The fibers of this projection are
profinite dimensional vector spaces: the fiber over the base point is N ⊗ O, and all
the other fibers are subspaces in N ⊗ O of finite codimension. One may say that
RG,N is a GO-equvariant “constructible profinite dimensional vector bundle” over
GrG.
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1.5.2.1 Example: Affine Steinberg Variety

If N is the adjoint representation G � g, then RG,N is isomorphic to the union
⋃

λ∈Λ+ T ∗GrλG
GrG of conormal bundles to the GO-orbits in GrG.

The GO-equivariant Borel–Moore homology HGO• (RG,N) is defined via the
following limiting procedure.

We define R≤λ as the preimage of GrλG in R := R(G,N). It suffices to

define theGO-equivariant Borel–Moore homologyHGO• (R≤λ) along with the maps
H
GO• (R≤λ) → H

GO• (R≤μ) for λ ≤ μ. For a fixed λ and d � 0, R≤λ is
invariant under the translations by zdNO, and we denote the quotient by Rd≤λ, so

that R≤λ = lim← Rd≤λ. For fixed λ, d , and e � 0, the action of GO on Rd≤λ factors

through the action of GO/zeO. Finally,

HGO• (R≤λ) := H−•GO/zeO
(Rd≤λ,ωRd≤λ

)[−2 dim(NO/z
dNO)].

The cohomological shift means that we are considering the “renormalized” Borel–
Moore homology, i.e. the cohomologyH−•GO

(R,ωR[−2 dim NO]).
The GO-equivariant Borel–Moore homology HGO• (RG,N) forms an associative

algebra with respect to the following convolution operation. We consider the
diagram

× p̃
p−1( × )

q̃
q(p−1( × ))

m̃

i×Id i i

× p
G × q

G
G× m

,

⏐
⏐

⏐
⏐

⏐
⏐

⏐
⏐

� � � �

�

� �
�

�
� (1.5)

Here T := GK

GO× NO, and we have an embedding T ↪→ GrG × NK such that
R = T ∩ (GrG × NO). The embedding R ↪→ T is denoted by i. The maps in the
lower row are given by

(

g1, [g2, s]
) q�→ [

g1, [g2, s]
] m�→ [g1g2, s],

(

g1, [g2, s]
) p�→ ([g1, g2s], [g2, s]

)

,

and all the squares are cartesian (i.e. the upper row consists of closed subvarietes in
the lower row, and all the maps in the upper row are induced by the corresponding
maps in the lower row). We have the following group actions on the terms of the
lower row preserving the closed subvarieties in the upper row:

GO ×GO � T × R; (g, h) · ([g1, s1], [g2, s2]) = ([gg1, s1], [hg2, s2]) ,
GO ×GO � GK × R; (g, h) · (g1, [g2, s]) =

(

gg1h
−1, [hg2, s]

)

,
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GO � GK

GO× R; g · [g1, [g2, s]] = [gg1, [g2, s]] ,
GO � T; g · [g1, s] = [gg1, s].

The morphisms p, q,m (and hence p̃, q̃, m̃) are equivariant, where we take the first
projection pr1 : GO ×GO → GO for q .

Finally, given two equivariant Borel–Moore homology classes c1, c2 ∈ HGO• (R),
we define their convolution product c1 ∗ c2 := m̃∗(q̃∗)−1p̃∗(c1 ⊗ c2).

This algebra is commutative, finitely generated and integral, and its spectrum
MC(G,N) = SpecHGO• (RG,N) is an irreducible normal affine variety of dimension
2 rk(G), the Coulomb branch. It is supposed to be a (singular) hyper-Kähler
manifold [46].

Let T ⊂ G be a Cartan torus with Lie algebra t ⊂ g. LetW = NG(T )/T be the
corresponding Weyl group. Then the equivariant cohomology H •GO

(pt) = C[t/W ]
forms a subalgebra of HGO• (RG,N) (a Cartan subalgebra), so we have a projection
� : MC(G,N)→ t/W .

1.5.2.2 Example

For the adjoint representation N = g considered in Sect. 1.5.2.1, we get
MC(G, g) = (T ∨ × t)/W . For the trivial representation, we get MC(G, 0) =
ZG

∨
g∨ = {(g ∈ G∨, ξ ∈ Σ) : Adg ξ = ξ}, the universal centralizer of the

dual group. Compare with Proposition 1.13 where the spectrum of the equivariant
cohomology of the affine Grassmannian is computed.

Finally, the algebra HGO• (RG,N) comes equipped with quantization: a C[h̄]-
deformation Ch̄[MC(G,N)] = HGO�C

×
• (RG,N) where C× acts by loop rotations,

and C[h̄] = H •
C×(pt). It gives rise to a Poisson bracket on C[MC(G,N)] with

an open symplectic leaf, so that � becomes an integrable system: C[t/W ] ⊂
C[MC(G,N)] is a Poisson-commutative polynomial subalgebra with rk(G) gen-
erators.

1.5.3 Monopole Formula

Recall that RG,N is a union of (profinite dimensional) vector bundles overGO-orbits
in GrG. The corresponding Cousin spectral sequence converging to HGO• (RG,N)

degenerates and allows to compute the equivariant Poincaré polynomial (or rather
Hilbert series)

P
GO
t (RG,N) =

∑

θ∈Λ+
tdθ−2〈ρ∨,θ〉PG(t; θ). (1.6)
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Here deg(t) = 2, PG(t; θ) = ∏

(1 − tdi )−1 is the Hilbert series of the equivariant
cohomologyH •StabG(θ)

(pt) (di are the degrees of generators of the ring of StabG(θ)-
invariant functions on its Lie algebra), and dθ = ∑

χ∈Λ∨G max(−〈χ, θ〉, 0) dim Nχ .
This is a slight variation of the monopole formula of [17]. Note that the series (1.6)
may well diverge (even as a formal Laurent series: the space of homology of
given degree may be infinite-dimensional), e.g. this is always the case for unframed
quiver gauge theories. To ensure its convergence (as a formal Taylor series with the
constant term 1) one has to impose the so called ‘good’ or ‘ugly’ assumption on the
theory. In this case the resulting N-grading onHGO• (RG,N) gives rise to a C×-action
on MC(G,N), making it a conical variety with a single (attracting) fixed point.

1.5.4 Flavor Symmetry

Suppose we have an extension 1 → G → G̃ → GF → 1 where GF
is a connected reductive group (a flavor group), and the action of G on N is
extended to an action of G̃. Then the action of GO on RG,N extends to an
action of G̃O, and the convolution product defines a commutative algebra structure

on the equivariant Borel–Moore homology HG̃O• (RG,N). We have the restriction

homomorphism H
G̃O• (RG,N) → H

GO• (RG,N) = H
G̃O• (RG,N) ⊗H •GF (pt) C. In

other words, MC(G,N) := SpecHG̃O• (RG,N) is a deformation of MC(G,N) over
SpecH •GF (pt) = tF /WF .

We will need the following version of this construction. Let Z ⊂ GF be a torus
embedded into the flavor group. We denote by G̃Z the pullback extension 1 →
G→ G̃Z → Z → 1. We define MZ

C(G,N) := SpecH
G̃Z

O• (RG,N): a deformation of
MC(G,N) over z := SpecH •Z(pt).

Since MC(G,N) is supposed to be a hyper-Kähler manifold, its flavor deforma-
tion should come together with a (partial) resolution. To construct it, we consider
the obvious projection π̃ : RG̃,N → GrG̃ → GrGF . Given a dominant coweight

λF ∈ Λ+F ⊂ GrGF , we set R
λF

G̃,N
:= π̃−1(λF ), and consider the equivariant

Borel–Moore homology H
G̃Z

O• (R
λF

G̃,N
). It carries a convolution module structure

over H
G̃Z

O• (RG,N). We consider ˜M
Z,λF
C (G,N) := Proj(

⊕

n∈NH
G̃Z

O• (R
nλF

G̃,N
))

�−→
MZ
C(G,N). We denote �−1(MC(G,N)) by ˜M

λF
C (G,N). We have ˜M

λF
C (G,N) =

Proj(
⊕

n∈NH
GO• (R

nλF

G̃,N
)).

More generally, for a strictly convex (i.e. not containing nontrivial subgroups)

cone V ⊂ Λ+F , we consider the multi projective spectra ˜M
Z,V
C (G,N) :=

Proj(
⊕

λF∈VH
G̃Z

O• (R
λF

G̃,N
))

�−→ MZ
C(G,N) and ˜MV

C(G,N) := Proj(
⊕

λF∈VH
GO•

(R
λF

G̃,N
))

�−→MC(G,N).
The following proposition is proved in [13].
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Proposition 1.17 Assume that the flavor group is a torus, i.e. we have an exact
sequence 1 → G → G̃ → TF → 1. Then the Coulomb branch MC(G,N) is the
Hamiltonian reduction of MC(G̃,N) by the action of the dual torus T ∨F .

1.5.4.1 Example: Toric Hyper-Kähler Manifolds

Consider an exact sequence

0→ Z
d−n α−→ Z

d β−→ Z
n → 0

and the associated sequence

1 → G = (C×)d−n α−→ G̃ = (C×)d β−→ TF = (C×)n→ 1 (1.7)

Let N = Cd considered as a representation of G via α. By Proposition 1.17, the
Coulomb branch MC(G,N) is the Hamiltonian reduction of MC((C

×)d,Cd ) by
the action of T ∨F . It is easy to see that MC((C

×)d ,Cd ) =MC(C
×,C)d � A2d , and

hence MC(G,N) is, by definition, the toric hyper-Kähler manifold associated with
the dual sequence of (1.7) [7].

In particular, if N is a 1-dimensional representation of C× with the character
qn, then MC(C

×,N) is the Kleinian surface of type An−1 given by the equation
xy = wn. If N is an n-dimensional representation of C× with the character nq , then
the Coulomb branch MC(C

×,N) is the same Kleinian surface of type An−1.

1.5.5 Ring Objects in the Derived Satake Category

Let π stand for the projection R → GrG. Then AC
× := π∗ωR[−2 dim NO] is an

object ofDGO�C×(GrG), andH •
GO�C×(R,ωR[−2 dim NO]) = H •GO�C×(GrG,A).

One can equip AC
×

with a structure of a ring object in DGO�C×(GrG) so that the

resulting ring structure onH •
GO�C×(GrG,AC

×
) coincides with the ring structure on

H
GO�C

×
• (R) introduced in Sect. 1.5.2. If we forget the loop rotation equivariance,

then the resulting ring object A of DGO
(GrG) is commutative.

Similarly, in the situation of Sect. 1.5.4, we denote R̃ := R(G̃,N), and consider
the composed projection π̃ : R̃ → GrG̃ → GrGF . We define a ring object AC

×
F :=

Ind(GF )O�C
×

G̃O�C× π̃∗ωR̃
[−2 dim NO] ∈ D(GF )O�C×(GrGF ), where Ind(GF )O�C

×
G̃O�C× is the

functor changing equivariance from G̃O�C× to (GF )O�C×. If we forget the loop
rotation equivariance, we obtain a commutative ring object AF ∈ D(GF )O(GrGF ).
We will also need the fully equivariant ring object ÃC

×
F := π̃∗ωR̃

[−2 dim NO] ∈
DG̃O�C×(GrGF ).
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The ring Ch̄[MC(G,N)] is reconstructed from the ring object ÃC
×
F by

the following procedure going back to [3]. For a flavor coweight λF we
denote by iλF the embedding of a TF -fixed point λF into GrGF . Then
Ext•D

G̃O�C× (GrGF )
(1GrGF

, ÃC
×
F ) = i !0ÃC

×
F � H •

G̃O�C×(R,ωR[−2 dim NO]) by

the base change. Given x, y ∈ Ext•D
G̃O�C× (GrGF )

(1GrGF
, ÃC

×
F ), we consider x 	 y ∈

Ext•D
G̃O�C× (GrGF )

(1GrGF
	 1GrGF

, ÃC
×
F 	 ÃC

×
F ), and then apply the isomorphism

1GrGF
� 1GrGF

	 1GrGF
and the multiplication morphism m : ÃC

×
F 	 ÃC

×
F → ÃC

×
F

in order to obtain m(x 	 y) ∈ Ext•D
G̃O�C× (GrGF )

(1GrGF
, ÃC

×
F ). It is proved in [15]

that the resulting ring structure on Ext•D
G̃O�C× (GrGF )

(1GrGF
, ÃC

×
F ) = HG̃O�C

×
• (R)

induces the one introduced in Sect. 1.5.2 on HGO�C×• (R). Moreover, a similar
construction defines a multiplication i !λF Ā

C
×
F ⊗ i !μF ĀC

×
F → i !λF+μF Ā

C
×
F for

λF ,μF ∈ Λ+F . Here ĀC
×
F = ResGO�C

×
G̃O�C× Ã

C
×
F is obtained from ÃC

×
F applying the

functor restricting equivariance from G̃O �C× toGO �C×. In particular, we get a

module structure i !0ĀC
×
F ⊗ i !λF ĀC

×
F → i !λF Ā

C
×
F . Note that i !0ĀC

×
F � HGO�C

×
• (R).

1.5.5.1 Example: The Regular Sheaf in Type A

Let G = GL(CN−1) × GL(CN−2) × . . . × GL(C1), G̃ = (G × GL(CN))/Z,
where Z � C× is the diagonal central subgroup. Hence GF = PGL(CN).
Furthermore, N = Hom(CN,CN−1)⊕Hom(CN−1,CN−2)⊕ . . .⊕Hom(C2,C1).
It is proved in [15] that AC

×
F is isomorphic to the regular sheaf AC

×
R ∈

DPGL(CN)O�C×(GrPGL(CN)) of Sect. 1.3.6.

1.5.6 Gluing Construction

Let AC
×

1 , . . . ,AC
×
n be the ring objects inDGO�C×(GrG). We denote the ring objects

ofDGO
(GrG) obtained by forgetting the loop rotation equivariance by A1, . . . ,An.

Let iΔ : GrG ↪→ ∏n
k=1 GrG be the diagonal embedding. The following proposition

is proved in [15].

Proposition 1.18 AC
× := i !Δ(�AC

×
k ) is a ring object in DGO�C×(GrG). If the

ring objects A1, . . . ,An are commutative, then A := i !Δ(�Ak) ∈ DGO
(GrG) is a

commutative ring object. In particular, the ring H •GO
(GrG,A) is commutative.

Proof We have �m : (�Ak) 	 (�Ak) = �(Ak 	Ak)→ �Ak from m : Ak 	Ak →
Ak . Then we apply i !Δ. We claim that there is a natural homomorphism

i !Δ(�Ak) 	 i
!
Δ(�Ak)→ i !Δ (�(Ak 	Ak)) ,
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hence its composition with i !Δ(�m) gives the desired multiplication homomorphism
of i !Δ(�Ak). We prove the claim by comparing the convolution diagrams (1.1) for
GrG and

∏

k GrG. Since p, q are smooth, p∗, q∗ commute with i !Δ. The last part of
the convolution diagram for G and

∏

k G is

GrG×̃GrG
m

GrG

iΔ iΔ

k GrG×̃GrG = Gr
k G×̃Gr

k G
k m

Gr
k G = k GrG,−−−−→

⏐
⏐
�

⏐
⏐
�

�
�

where we denote the diagonal embedding of the left column by i ′Δ to distinguish
it from the right column. Let �(Ak�̃Ak) denote the complex on Gr∏

k G
×̃Gr∏

k G

obtained in the course of the convolution product for
∏

k G. We define the
homomorphism as

m∗i ′!Δ(�(Ak�̃Ak)) = m∗
!

⊗

(Ak�̃Ak)→
!

⊗

m∗(Ak�̃Ak) = i !Δ(
∏

k

m)∗ � (Ak�̃Ak)).

��
Recall the regular sheaf AC

×
R of Sect. 1.3.6. It is equipped with an action

of G∨ � U
[]
h̄ . Hence for any ring object AC

× ∈ DGO�C×(GrG), the product

AC
×
R ⊗! AC

×
is also equipped with an action of G∨ � U

[]
h̄ . The cohomology ring

H •
GO�C×(GrG,AC

×
R ⊗! AC

×
) is also equipped with an action of G∨ � U

[]
h̄ . The

following proposition is proved in [15] (recall that the autoequivalence CG∨ was
defined in Sect. 1.3.5.1):

Proposition 1.19 For ring objects AC
×

1 ,AC
×

2 ∈ DGO�C×(GrG), we have

H •GO�C×(GrG,A
C
×

1

!⊗ AC
×

2 )

� H •
GO�C×(GrG,AC

×
R

!⊗ AC
×

1 )⊗ CG∨H
•
GO�C×(GrG,AC

×
R

!⊗ AC
×

2 )///ΔG∨

(quantum Hamiltonian reduction). If the ring objectsA1,A2 ∈ DGO
(GrG) obtained

by forgetting the loop rotation equivariance are commutative, then we have a similar
isomorphism of commutative rings:

H •GO
(GrG,A1

!⊗ A2) � H •GO
(GrG,AR

!⊗ A1)⊗CG∨H
•
GO
(GrG,AR

!⊗ A2)///ΔG∨
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Proof By rigidity, we have

H •GO�C×(GrG,A
C
×

1

!⊗ AC
×

2 ) = Ext•DGO�C× (GrG)(DA
C
×

1 ,AC
×

2 )

= Ext•DGO�C× (GrG)(1GrG,CGA
C
×

1 	AC
×

2 )

= Ext•
DG

∨
(U
[]
h̄ )

(

U
[]
h̄ ,CG∨Ψ

−1
h̄ (AC

×
1 )⊗

U
[]
h̄

Ψ−1
h̄ (AC

×
2 )

)

= Ext•
DG

∨
(U
[]
h̄ )

(

U
[]
h̄ , Φh̄(A

C
×

1 )⊗
U
[]
h̄
CG∨Φh̄(A

C
×

2 )
)

,

(the last equality is Lemma 1.16(b)). Now it is easy to see that Ext•
DG

∨
(U
[]
h̄ )

(

U
[]
h̄ , Φh̄(A

C
×

1 )⊗
U
[]
h̄

CG∨Φh̄(AC
×

2 )
)

is the hamiltonian reduction (Φh̄(AC
×

1 ) ⊗
CG∨Φh̄(AC

×
2 ))///ΔG∨ of Φh̄(AC

×
1 ) ⊗ CG∨Φh̄(AC

×
2 ) with respect to the diagonal

action of G∨. Finally, according to Lemma 1.16, H •
GO�C×(GrG,AC

×
R

!⊗ AC
×

1,2) =
Φh̄(A

C
×

1,2). ��

1.5.7 Higgs Branches of Sicilian Theories

We denote i !Δ(A�b
R ) byAb ∈ DGO

(GrG). It is equipped with an action of b copies of

G∨ �U []h̄ . We denote by B ∈ DGO
(GrG) the quantum hamiltonian reduction of A2

by the diagonal actionG∨. We expect that B is isomorphic to π∗ωRG,g [−2 dimgO]
(see Sect. 1.5.5 and Example 1.5.2.1). Finally, we set Bg := i !Δ(B�g). Then Ab ⊗!
Bg is a commutative ring object of DGO

(GrG), and its equivariant cohomology is a

commutative ring. We denote by Wg,bG its spectrum SpecH •GO
(GrG,Ab ⊗! Bg). It

is a Poisson variety equipped with an action of (G∨)b, the conjectural Higgs branch
of a Sicilian theory.

Recall that according to [38], there is a conjectural functor from the category of
2-bordisms to a category HS of holomorphic symplectic varieties with Hamiltonian
group actions. The objects of HS are complex algebraic semisimple groups. A
morphism from G to G′ is a holomorphic symplectic variety X with a C×-action
scaling the symplectic form with weight 2, together with hamiltonian G × G′-
action commuting with the C×-action. ForX ∈ Mor(G′,G), Y ∈ Mor(G,G′′), the
composition Y ◦X ∈ Mor(G′,G′′) is given by the symplectic reduction of Y ×X by
the diagonalG-action. The identity morphism in Mor(G,G) is the cotangent bundle
T ∗G with the left and right action of G.

To a complex semisimple group G and a Riemann surface with boundary,
physicists associate a 3d Sicilian theory and consider its Higgs branch. It depends
only on the topology of the Riemann surface, and gives a functor as above. Such a
functor satisfying most of expected properties was constructed recently in [27]. It
follows from Proposition 1.19 that the aboveWg,bG is associated to the groupG∨ and
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Riemann surface of genus g with b boundary components. It is also proved in [15]
that W 0,3

PGL(2) � C2 ⊗ C2 ⊗ C2, and W 0,3
PGL(3) is the minimal nilpotent orbit of E6,

whileW 1,1
PGL(3) is the subregular nilpotent orbit of G2, as expected by physicists.

1.6 Coulomb Branches of 3d Quiver Gauge Theories

1.6.1 Quiver Gauge Theories

Let Q be a quiver with Q0 the set of vertices, and Q1 the set of arrows. An arrow
e ∈ Q1 goes from its tail t (e) ∈ Q0 to its head h(e) ∈ Q0. We choose a Q0-graded
vector spaces V := ⊕

j∈Q0
Vj and W := ⊕

j∈Q0
Wj . We set G = GL(V ) :=

∏

j∈Q0
GL(Vj ). We choose a second grading W = ⊕N

s=1W
(s) compatible with

the Q0-grading ofW . We set GF to be a Levi subgroup
∏N
s=1

∏

j∈Q0
GL(W(s)j ) of

GL(W), and G̃ := G×GF .

Remark G will be the gauge group in this section. We denote it by G since we
want to use the notationG for some other group.

Finally, we define a central subgroup Z ⊂ GF as follows: Z := ∏N
s=1Δ

(s)

C× ⊂
∏N
s=1

∏

j∈Q0
GL(W(s)j ), where C× ∼= Δ(s)

C× ⊂
∏

j∈Q0
GL(W(s)j ) is the diagonally

embedded subgroup of scalar matrices. The reductive group G̃ acts naturally on
N :=⊕

e∈Q1
Hom(Vt(e), Vh(e))⊕⊕

j∈Q0
Hom(Wj , Vj ).

The Higgs branch of the corresponding quiver gauge theory is the Nakajima
quiver variety MH(G,N) = M(V ,W). We are interested in the Coulomb branch
MC(G,N).

1.6.2 Generalized Slices in an Affine Grassmannian

Recall the slices W
λ

μ in the affine Grassmannian GrG of a reductive groupG, defined

in Sect. 1.2.1 for domimant μ. For arbitrary μ we consider the moduli space W
λ

μ of
the following data:

(a) AG-bundle P on P1.
(b) A trivialization σ : Ptriv|P1\{0} ∼−→P|P1\{0} having a pole of degree ≤ λ at 0 ∈

P
1 (that is defining a point of Gr

λ

G).
(c) A B-structure φ on P of degree w0μ with the fiber B− ⊂ G at ∞ ∈ P

1 (with
respect to the trivialization σ of P at∞ ∈ P

1). Here G ⊃ B− ⊃ T is the Borel
subgroup opposite to B, and w0 ∈ W is the longest element.
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This construction goes back to [19]. The space W
λ

μ is nonempty iff μ ≤ λ. In
this case it is an irreducible affine normal Cohen–Macaulay variety of dimension

〈2ρ∨, λ − μ〉, see [14]. In case μ is dominant, the two definitions of W
λ

μ agree. At

the other extreme, if λ = 0, then W
0
−α is nothing but the open zastava space

◦
Z−w0α .

The T -fixed point set (W
λ

μ)
T is nonempty iff the weight space V λμ is not 0; in this

case (W
λ

μ)
T consists of a single point denoted μ.

1.6.3 Beilinson-Drinfeld Slices

Let λ = (λ1, . . . , λN ) be a collection of dominant coweights of G. We consider the

moduli space W
λ

μ of the following data:

(a) A collection of points (z1, . . . , zN ) ∈ AN on the affine line A1 ⊂ P1.
(b) AG-bundle P on P1.
(c) A trivialization σ : Ptriv|P1\{z1,...,zN }

∼−→P|P1\{z1,...,zN } with a pole of degree

≤∑N
s=1 λs · zs on the complement.

(d) A B-structure φ on P of degree w0μ with the fiber B− ⊂ G at ∞ ∈ P1 (with
respect to the trivialization σ of P at∞ ∈ P1).

W
λ

μ is nonempty iff μ ≤ λ := ∑N
s=1 λs . In this case it is an irreducible affine

normal Cohen–Macaulay variety flat over AN of relative dimension 〈2ρ∨, λ − μ〉,
see [14]. The fiber over N · 0 ∈ AN is nothing but W

λ

μ.

1.6.4 Convolution Diagram Over Slices

In the setup of Sect. 1.6.3 we consider the moduli space ˜W
λ

μ of the following data:

(a) A collection of points (z1, . . . , zN ) ∈ AN on the affine line A1 ⊂ P1.
(b) A collection ofG-bundles (P1, . . . ,PN) on P1.
(c) A collection of isomorphisms σs : Ps−1|P1\{zs }

∼−→Ps |P1\{zs} with a pole of
degree≤ λs at zs . Here 1 ≤ s ≤ N , and P0 := Ptriv.

(d) A B-structure φ on PN of degree w0μ with the fiber B− ⊂ G at∞ ∈ P
1 (with

respect to the trivialization σN ◦ . . . ◦ σ1 of PN at∞ ∈ P
1).

A natural projection � : ˜Wλ

μ → W
λ

μ sends (P1, . . . ,PN, σ1, . . . , σN) to

(PN, σN ◦ . . . ◦ σ1). We denote�−1(W
λ

μ) by ˜W
λ
μ. Then we expect that� : ˜Wλ

μ→
W
λ

μ is stratified semismall.
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1.6.5 Slices as Coulomb Branches

Let now G be an adjoint simple simply laced algebraic group. We choose an
orientationΩ of its Dynkin graph (of typeADE), and denote by I its set of vertices.
Given an I -graded vector spaceW we encode its dimension by a dominant coweight
λ := ∑

i∈I dim(Wi)ωi ∈ Λ+ of G. Given an I -graded vector space V we encode
its dimension by a positive coroot combination α :=∑

i∈I dim(Vi)αi ∈ Λ+. We set
μ := λ − α ∈ Λ. Given a direct sum decomposition W = ⊕N

s=1W
(s) compatible

with the I -grading of W as in Sect. 1.6.1, we set λs := ∑

i∈I dim(W(s)i )ωi ∈ Λ+,
and finally, λ := (λ1, . . . , λN ).

Recall the notations of Sect. 1.5.4. Since the flavor group GF is a Levi subgroup
of GL(W), its weight lattice is naturally identified with ZdimW . More precisely, we
choose a basisw1, . . . , wdimW ofW such that anyWi, i ∈ I , andW(s), 1 ≤ s ≤ N ,
is spanned by a subset of the basis, and we assume the following monotonicity
condition: if for 1 ≤ a < b < c ≤ dimW we have wa,wb ∈ W(s) for certain s,
then wb ∈ W(s) as well. We define a strictly convex cone V = {(n1, . . . , ndimW)} ⊂
Λ+F ⊂ ZdimW by the following conditions: (a) if wk ∈ W(s), wl ∈ W(t), and s < t ,
then nk ≥ nl ≥ 0; (b) if wk,wl ∈ W(s), then nk = nl . The following theorem is
proved in [14, 16] by the fixed point localization and reduction to calculations in
rank 1:

Theorem 1.20 We have isomorphisms

W
λ

μ
∼−→MC(G,N), W

λ

μ
∼−→MZ

C(G,N), ˜W
λ

μ
∼−→ ˜M

Z,V
C (G,N), ˜Wλ

μ
∼−→ ˜MV

C(G,N).

1.6.6 Further Examples

Let now Q be an affine quiver of type ÃD̃Ẽ; the framing W is 1-dimensional
concentrated at the extending vertex; and the dimension of V is d times the
minimal imaginary coroot δ. Then it is expected that MC(G,N) is isomorphic to the
Uhlenbeck (partial) compactificationUdG(A

2) [12] of the moduli space ofG-bundles
on P2 trivialized at P1∞, of second Chern class d . This is proved for G = SL(N)
in [43].

Furthermore, letQ be a star-shaped quiver with b legs of lengthN each, and with
g loop-edges at the central vertex. The framing is trivial, and the dimension of V
along each leg, starting at the outer end, is 1, 2, . . . , N −1, N (with N at the central
vertex). Contrary to the general setup in Sect. 1.6.1, we define G as the quotient of
GL(V ) by the diagonal central subgroup C× (acting trivially on N). Then according
to [15], MC(G,N) is isomorphic toWg,bPGL(N) of Sect. 1.5.7.
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1.7 More Physics: Topological Twists of 3d N = 4 QFT
and Categorical Constructions

The constructions of this section are mostly conjectural. The main idea of this
section is given by Eq. (1.10) which is due to T. Dimofte, D. Gaiotto, J. Hilburn
and P. Yoo. We discuss some interesting corollaries of this equation.

1.7.1 Extended Topological Field Theories

Physical quantum field theories usually depend on a choice of metric on the
space-time. The theory is called topological if all the quantities (e.g. corelation
functions) are independent of the metric (however, look at the warning at the end
of the next subsection). Mathematically, the axioms of a topological QFT were
first formulated by Atiyah (cf. [4]). Roughly speaking, a topological quantum field
theory in dimension d consists of the following data:

(a) A complex number Z(Md) for every compact oriented d-dimensional manifold
Md ;

(b) A vector space Z(Md−1) for every compact oriented (d − 1)-dimensional
manifoldMd−1;

(c) A vector in Z(∂M) for every compact oriented d-dimensional manifoldM with
boundary ∂M .

These data must satisfy certain list of standard axioms; we refer the reader to [4] for
details. In addition, one can consider a richer structure called extended topological
field theory. This structure in addition to (a), (b) and (c) as above must associate
k-category Z(Md−k−1) to a compact oriented manifold Md−k−1 of dimension
d − k − 1. It should also associate an object of the k-category Z(∂M) to every
compact oriented manifoldM of dimension d−k; more generally, there is a structure
associated with every manifold with corners of dimension ≤ d . We refer the reader
to [34] for details about extended topological field theories. In the sequel we shall
be mostly concerned with the case d = 3. In this case one is supposed to associate
a (usual) category to the circle S1. Physicists call it the category of line operators.

1.7.2 Topological Twists of 3d N = 4 Theories

Physical quantum field theories are usually not topological. However, sometimes
physicists can produce a universal procedure which associates a topological field
theory to a physical theory with enough super-symmetry. Since in these notes we
are not discussing what a quantum field theory really is, we can’t discuss what a
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topological twist really is. Physicists say that any 3d N = 4 theory with some mild
additional structure6 must have two topological twists (we’ll call them Coulomb
and Higgs twists, although physicists often call them A and B twists by analogy
with similar construction for 2-dimensional field theories). These twists must be
interchanged by the 3d mirror symmetry operation mentioned in Sect. 1.4.

1.7.3 Warning

The twists are topological only in some weak sense. Namely, in principle as was
mentioned above in a topological field theory everything (e.g. correlators) should be
independent of the metric (i.e. only depend on the topology of the relevant space-
time). In a weakly topological field theory everything should be metric-independent
only locally. This issue will be ignored in this section since we are only going
to discuss some pretty robust things but it is actually important if one wants to
understand some finer aspects.

1.7.4 The Category of Line Operators in a Topologically
Twisted 3d N = 4 Theory

To a 3d TFT one should be able to attach a “category of line operators” (i.e. this is
the category one attaches to a circle in terms of the previous subsection). Morever,
since the circle S1 is the boundary of a canonical 2-dimensional manifold: the 2-
dimensional disc, this category should come equipped with a canonical object. In
this section we would like to suggest a construction of these categories together
with the above object for a wide class of topologically twisted 3d N = 4 theories
(we learned the idea of this construction from T. Dimofte, D. Gaiotto, J. Hilburn and
P. Yoo who can actually derive this construction from physical considerations. To
the best of our knowledge their paper on the subject is forthcoming).

A priori the above categories of line operators should be Z2-graded. However, as
was mentioned above, in order to define the relevant topological twists one needs
to choose some mild additional structure on the theory (we explain this additional
structure in series of examples in Sect. 1.7.6). So we are actually going to think
about them as Z-graded categories (in fact, as dg-categories). But we should keep in
mind that if we choose this additional structure in a different way, then a priori we
should get different Z-graded categories but with the same underlying Z2-graded
categories.

6The nature of this additional structure will become more clear in Sect. 1.7.6.
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Since a 3dN = 4 theory is supposed to have two topological twists which we call
Coulomb and Higgs, we shall denote the corresponding categories of line operators
by CC,CH . As was mentioned above, filling the circle with a disc should produce
canonical objects FC,FH .

Remark for an Advanced Reader In principle in a true TQFT the category of line
operators should be an E2-category (cf. [35]). There is a closely related notion of
factorizable category (in the D-module sense), a.k.a. chiral category, cf. [44]. In
fact, the categories we are going to construct will be factorizable categories (and
the canonical object, corresponding to the 2d disc will be a factorizable object). The
fact that we get factorizable categories as opposed to E2-categories is related to the
warning in Sect. 1.7.7.

The relation between these structures and what we have discussed in the previous
sections is that one should have

Ext∗(FC,FC) = C[MC] (1.8)

and

Ext∗(FH ,FH ) = C[MH ]. (1.9)

Remark It can be shown that for any factorization category C and a factorization
object F the algebra Ext∗(F,F) is graded commutative.

When we need to emphasize dependence on a theory T, we shall write
CC(T),FC(T) etc. The mirror symmetry conjecture then says

Conjecture 1.21 The category CC(T) is equivalent to CH (T
∗) (and the same with C

andH interchanged). Under this equivalence the objectFC(T) goes over to FH(T
∗).

1.7.5 Generalities on D-Modules and de Rham Pre-stacks

In what follows we’ll need to work with various categories of sheaves on spaces
which are little more general than usual schemes or stacks. Namely, we need to
discuss de Rham pre-stacks and various categories of sheaves related to them. Our
main reference for the subject is [24].

Let S be a smooth scheme of finite type over C. Then one can define certain
pre-stack (i.e. a functor from C-algebras to sets) SdR which is called the de
Rham pre-stack of S. Informally it is defined as the quotient of S by infinitesimal
automorphisms. Moreover, this definition can be extended to all schemes, stacks or
even dg-stacks of finite type over C. A key property of SdR is that the category of
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quasi-coherent sheaves on SdR is the same as the category of D-modules on S.7

In addition for a target stack Y one can consider the mapping space Maps(SdR,Y).
Here are two important examples:

(1) Let Y = A1. Then Maps(SdR,Y) is the de Rham cohomology of S considered
as a dg-scheme.

(2) Let Y = pt/G where G is an algebraic group. Then Maps(SdR,Y) is the stack
of G-local systems on S (i.e. the stack classifying G-bundles on S endowed
with a flat connection).

In the sequel we’ll need to apply these constructions to S being either the formal
disc D = Spec(O) or the punctured disc D∗ = Spec(K). This is not formally a
special case of the above as some completion issues arise if one tries to spell out a
careful definition. However, with some extra care all definitions can be extended to
this case. This is done in [23].

1.7.6 Construction of the Categories in the Cotangent Case

It is expected that one can attach the above theories and categories to any symplectic
dg-stack X. It is now easy to spell out the additional structure on the theory that one
needs in order to define the two topological twists in terms of the stack X. Namely,
one needs a C×-action on X with respect to which the symplectic form ω has weight
2.

We shall actually assume that X = T ∗Y where Y is a smooth stack; in this case
the above C×-action is automatic (we can just use the square of the standard C×-
action on the cotangent fibers). We shall denote this theory by T(Y).

The following construction is due to T. Dimofte, D. Gaiotto, J. Hilburn and P. Yoo
(private communication). Namely, let us set

CC = D -mod(Maps(D∗,Y)); CH = QCoh(Maps(D∗dR,Y)). (1.10)

Let us stress that bothD-mod and QCoh mean the corresponding derived categories.
Let now πC : Maps(DdR,Y)→ Maps(D∗dR,Y) be the natural map; similarly we

define πH . Then, we set

FH = (πH )∗OMaps(DdR,Y); FC = (πC)!OMaps(D,Y). (1.11)

7Because we plunge ourselves into world of derived algebraic geometry here, it doesn’t make
sense to talk about either quasi-coherent sheaves or D-modules as an abelian category: only the
corresponding derived category makes sense.
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1.7.7 A Very Important Warning

The above suggestion is probably only an approximation of a true statement. In fact,
we believe that the suggestion is fine for CC ; however, for CH some modifications
might be necessary. Let, for example (for simplicity), Z be a dg-stack of finite type
over C. Then following [2] in addition to the category QCoh(Z) one can also study
the derived category IndCoh(Z) of ind-coherent sheaves on Z. The two categories
coincide when Z is a smooth classical (i.e. not dg) stack. But for more general
Z these categories are different. This can be seen as follows: the compact objects
of IndCoh(Z) are by definition finite complexes with coherent cohomology, while
the compact objects of QCoh(Z) are finite perfect complexes. Moreover, assume
that Z is locally a complete intersection. Then in [2] the authors define certain
stack Sing(Z) endowed with a representable map Sing(Z) → Z, which is an
isomorphism when Z is a smooth classical stack. Moreover, the fibers of this map
are vector spaces; in particular, there is a natural C×-action on the fibers whose
stack of fixed points is naturally identified with Z. Given a closed conical substack
W ⊂ Sing(Z) the authors in [2] define a category IndCohW(Z) of ind-coherent
sheaves with singular support in W. These categories in some sense interpolate
between QCoh(Z) and IndCoh(Z): namely, when W = Z (the zero section of
the morphism Sing(Z) → Z) we have IndCohW(Z) = QCoh(Z), and when
W = Sing(Z) we have IndCohW(Z) = IndCoh(Z).8

We think that suggestion (1.10) is only “the first approximation” to the right
statement. More precisely, we believe that it is literally the right suggestion for the
category CC , but for the category CH one has to be more careful. We believe that
the correct definition of the category CH in the above context should actually be
IndCohW(Maps(D∗dR,Y)) for a particular choice of W (very often W will actually
be the zero section but probably not always); at this moment we don’t know how
to specify W in the above generality. The purpose of the rest of the section will
be to explain some general picture, so in what follows we are going to ignore this
subtlety, i.e. we shall proceed with the suggestion CH = QCoh(Maps(D∗dR,Y)) as
stated. But the reader should keep in mind that in certain cases it should be replaced
by IndCohW(Maps(D∗dR,Y)) (this issue will become important when we formulate
some rigorous conjectures (cf. for example the discussion before Conjecture 1.27).

1.7.8 Remarks About Rigorous Definitions

Since the above mapping spaces are often genuinely infinite-dimensional, we need
to discuss why the above categories make sense. First, the category of D-modules
on arbitrary pre-stack is discussed in [45]. In fact, in loc. cit. the author defines two

8The reader should be warned that although we have a natural functor IndCohW(Z)→ IndCoh(Z),
this functor is not fully faithful, so IndCohW(Z) is not a full subcategory of IndCoh(Z).
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versions of this category, which are denoted by D! and D∗ (these two categories
are dual to each other). For the purposes of these notes we need to work with D∗:
for example since it is this category for which the functor of direct image is well-
defined.

The category QCoh(Z) is well-defined for any pre-stack Z; however in such
generality it might be difficult to work with. However, we would like to note
that Maps(D∗dR,Y) is typically a very manageable object. For example, when Y

is a scheme of finite type over C it follows from Conjecture 1.23 below that
Maps(D∗dR,Y) is a dg-scheme of finite type over C, so QCoh is “classical” (modulo
the fact that we have to work with commutative dg-algebras as opposed to usual
commutative algebras). When Y is a stack, the definition is a bit less explicit;
however, we claim that the definition is easy when Y is of the form S/G where
S is an affine scheme and G is a reductive group. For example, when Y = pt/G we
have Maps(D∗dR,Y) = LocSySG(D

∗): the stack of G-local systems (i.e. principal
G-bundles with a connection on D∗), and QCoh(LocSySG(D

∗)) is a well-studied
object in (local) geometric Langlands correspondence.

Here is another reason why we want Y to be of the above form. The map πH
is actually always a closed embedding, so we could write (πH )! instead of (πH )∗.
On the other hand, the functor (πC)! is a priori not well defined, at least it is not
defined for an arbitrary morphism. However, it is well-defined if the morphism πC
is ind-proper. In what follows we shall always assume that the stack Y is such that it
is the case. This condition is not always satisfied but it is also not super-restrictive
as follows from the next exercise.

Exercise

(a) Show that πC is a closed embedding if Y is a scheme.
(b) Show that if Y = S/Gwhere S is an affine scheme andG is a reductive algebraic

group then the morphism πC is ind-proper.
(c) Show that (b) might become false if we drop either the assumption that S is

affine or the assumption that G is reductive.

We shall denote the corresponding categories (1.10) and objects (1.11) simply by
CC(Y),FC(Y) etc. Note that these categories are Z-graded. The above arguments
then suggest the following

Conjecture 1.22 Let Y,Y′ be two stacks such that T ∗Y is isomorphic to T ∗Y′ as
a symplectic dg-stack. Then the corresponding Z2-graded versions of CC(Y) and
CC(Y

′) are equivalent as Z2-graded factorization categories; this equivalence sends
FC(Y) to FC(Y

′). Similar statement holds for CH .

1.7.9 Small Loops

In fact, one can demistify the category CH(Y) a little bit which makes it quite com-
putable. First of all, with the correct definition it is easy to see that Maps(DdR,Y)
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is equivalent to Y (for any Y).9 Now, given Y let us define another dg-stack LY (we
shall call it “small loops” into Y) by setting

LY = Y ×
Y×Y

Y,

where in the above equation both maps Y→ Y×Y are equal to the diagonal map.10

We have a natural map Y→ LY.

Conjecture 1.23

1. Let Y be a scheme. Then LY and Maps(D∗dR,Y) are isomorphic (and this
isomorphism is compatible with the map from Y = Maps(DdR,Y) into both).

2. Let Y be a stack. Then the formal neighbourhoods of Y = Maps(DdR,Y) in
Maps(D∗dR,Y) and in LY are equivalent.

The proof of Conjecture 1.23 will be written in a different publication. In what
follows we shall assume Conjecture 1.23.

1.7.10 Remark

If Y is a scheme then it is easy to see that both Maps(D∗dR,Y) and LY are dg-
extensions of Y (i.e. they are dg-schemes whose underlying classical scheme is Y),
so if the statement of Conjecture 1.23 holds on the level of formal neighbourhoods
then in fact we have LY = Maps(D∗dR,Y). This is not the case for stacks. Namely,
let G be a reductive algebraic group and let Y = pt/G. Then it is easy to see that
Maps(D∗dR,Y) is the stack LocSysG(D

∗) of G-local systems on D∗ (i.e. principal
G-bundles on D∗ with a connection).

Exercise Show that for Y = pt/G we have LY = G/Ad(G) (i.e. quotient of G
by itself with respect to the adjoint action). Show that G/Ad(G) is not equivalent
to LocSysG(D

∗) but the formal neighbourhoods of pt/G in both are equivalent (the
embedding of pt/G into LocSysG(D

∗) corresponds to the trivial local system).

1.7.11 An Example

The significance of Conjecture 1.23 is that it allows to use the (very explicit) stack
LY in order to compute the Ext-algebra (1.9).

9Here we see that Maps(DdR,Y) should be defined with some extra care. Namely, if we just used
the naive definition then the equivalence Maps(DdR,Y) � Y would imply that DdR = pt which is
far from being the case.
10Here we want to stress once again that all fibered products must be understood in the dg-sense!
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Assume that Y is a smooth scheme which for simplicity we shall also assume to
be affine. Then LY is just the dg-scheme Spec(SymOY

T ∗Y[1]). Since we have

Ext∗SymOY
T ∗Y[1])(OY,OY) = SymOY

(T Y[−2]),

we see that (with grading disregarded) C[MH ] = C[T ∗Y] which is what we should
have in this case. In fact, if we want to rembember the grading we see that the
homological grading on the RHS goes to grading coming from dilation of the
cotangent fibers on the LHS. Recall that writing X as T ∗Y is an additional structure
which is precisely the one required in order to make all the categories Z-graded (as
opposed to Z2-graded; note also that the grading on SymOY

(T Y[−2]) is even, so
the corresponding Z2-grading is trivial).

Let us now compute C[MC] in this case. Since Y is an affine scheme, it
follows that Maps(D,Y) is a closed subscheme in the ind-scheme Maps(D∗,Y),
so Ext∗(FC,FC) is just equal to the de Rham cohomology of Maps(D,Y). Since Y

is smooth the (evaluation at 0 ∈ D) map Maps(D,Y)→ Y is a fiber bundle whose
fibers are infinite-dimensional affine spaces. Thus it induces an isomorphism on de
Rham cohomology. Hence we get C[MC] = H ∗(Y,C) = H ∗(T ∗Y,C). So if Y is
connected, we see that MC is a dg-extension of pt; moreover, if Y is a vector space,
that MC = pt even as dg-schemes (as was promised in Sect. 1.4.4).

1.7.12 Gauge Theory

Consider now the example when Y = N/G, whereG is a connected reductive group
and N is a representation of G.

Exercise Show that in this case the LHS of (1.8) is literally the same as
H
GO• (RG,N).

So, we see that our categorical point of view recovers the definition of the
Coulomb branch we gave before. Let us look at the Higgs branch. According to
Conjecture 1.23 we need to understand the dg-stack

L(N/G) = N/G ×
N/G×N/G

N/G. (1.12)

Let us actually first assume that N is any smooth variety with a G-action. Then it
is easy to see that (1.12) is a dg-stack which admits the following description. The
action of G on N defines a natural map of locally free ON-modules

g⊗ ON → TN.
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Consider the dual map

T ∗N → g∗ ⊗ ON

and let us regard it as two step complex of coherent sheaves on N where T ∗N lives
in degree−1 and g∗⊗ON lives in degree 0. Let us denote this complex byK•. Then
SymON

(K•) is a quasi-coherent dg-algebra on N.

Exercise Show that the formal neighbourhood of N/G in L(N/G) is equivalent to
the formal neighbourhood of N/G in Spec(SymON

(K•))/G (note that when G is
trivial we just recover Spec(Sym(T ∗N)[1])) as in the previous subsection).

It now follows that the LHS of (1.9) in our case becomes equal to the G-invariant
part of

Ext∗SymON
(K•)(ON,ON). (1.13)

Assume now for simplicity that N is affine. Then it is easy to see that (1.13) is equal
to the cohomology of SymON

((K•)∗[−1]).
Exercise Show that as a Z2-graded algebra SymON

((K•)∗[−1]) is quasi-
isomorphic to the algebra of functions on the dg-scheme μ−1(0) where μ : T ∗N →
g∗ is the moment map.

The exercise implies that the LHS of (1.9) is isomorphic to the algebra of functions
on the dg-stack μ−1(0)/G.

1.7.13 Mirror Symmetry in the Toric Case

Let us assume that we are in the situation of Sect. 1.4.6. We set Y = Cn/T ,Y∗ =
Cn/T ∨F . Combining (1.10) and (1.11) with Conjecture 1.21 we already obtain a
bunch of non-trivial statements. Namely, we arrive at the following

Conjecture 1.24 For the above choice of Y and Y∗ we have equivalences of
(factorization) categories

D -mod(Maps(D∗,Y)) � QCoh(Maps(D∗dR,Y∗))

D -mod(Maps(D∗,Y∗)) � QCoh(Maps(D∗dR,Y)).

A proof of this conjecture is the subject of a current work in progress of the first
named author with Dennis Gaitsgory. Let us discuss the simplest example (which is
already quite non-trivial).

Let us take n = 1 and let T be trivial. In other words we get Y = A1. Then
Y∗ = A1/Gm. So, let us look closely at what Conjecture 1.24 says in this case.
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First, Maps(D∗dR,Y) = Maps(D∗dR,A1) = H ∗dR(D∗) = A
1 × A

1[−1]. In other
words, Maps(D∗dR,Y) = Spec(C[x, ε]) where deg(x) = 0, deg(ε) = −1 (we
consider it as a dg-algebra with trivial differential). The category CH(Y) is then
just the derived category of dg-modules over this algebra. More precisely, it is the
QCoh version of this derived category—we again refer the reader to Chapter II of
[24]. The object FH corresponds to the dg-module C[x] (on which ε acts trivially)
in degree 0.

We claim that in this case the category QCoh(Maps(D∗dR,A1)) is equivalent to
D-mod(Maps(D∗,A1/Gm)) even as a Z-graded category. We are not in a position
to give a rigorous proof here, since for this we’ll need to spell out careful definitions
of both categories, and that goes beyond the scope of these notes. Let us give some
examples of objects which go to one another under the above equivalence. First, the
object FC ∈ D-mod(Maps(D∗,A1/Gm)) is described as follows. Let in : O→ K

be the embedding which sends f to znf (here n ∈ Z). Then we have

FC(A
1/Gm) =

⊕

n∈Z
(in)∗O.

Warning To understand this object carefully one really needs to spell out the
definition. Let us mention the problem one has to fight with. It is intuitively clear that
we have a Z-action on K such that n ∈ Z sends f (z) to znf (z). On the other hand,
assume that n ≥ 0. Then znO has codimension n in O (although one is obtained
from the other by means of the Z-action). This problem is in fact not as serious as it
might seem at the first glance—it just shows that the actual definition ofD-modules
on K (or even on O) must take into account certain homological shifts.

Having the above warning in mind, it is easy to see that Ext∗(FC,FC) = C[x, y]
where deg(x) = 0, deg(y) = 2. On the other hand, we also have

Ext∗
C[x,ε](C[x],C[x]) = C[x, y],

which matches our expectations.
Here is another example. Consider the module C over C[x, ε] (i.e. we think of

it as a dg-module concentrated in degree 0, on which x acts by 1 and ε acts by
0). Then under the above equivalence it goes to the D-module δ of delta-functions
at 0 ∈ K (considered as a K∗-equivariantD-module). Note that the K∗-equivariant
Ext from δ to itself is the same asH ∗K∗(pt,C). Now, homotopicallyK∗ is equivalent
to C× × Z and we have

H ∗
C××Z(pt,C) = C[y, θ ] where deg(y) = 2, deg(θ) = 1.

On the other hand the same (dg) algebra C[y, θ ] is equal to Ext∗
C[x,ε](C,C).
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1.7.14 The Theory T[G]

Here is another expectation. Let D(GrG)Hecke denote the derived category of
Hecke eigen-modules on GrG, i.e. D-modules which are also right modules for the
algebra AR .

Conjecture 1.25 The category CC(T[G]) is the category D(GrG)Hecke and
FC = AR .

Let us combine it with (1.10). In the case when G = GL(n) the theory T[G] does
in fact come from a smooth stack Y; here

Y = (
n−1
∏

i=1

Hom(Ci ,Ci+1))/

n−1
∏

i=1

GL(i) (1.14)

(note that Y still has an action of GL(n)). So, from (1.10) we get another construction
of CC which should be equivalent to the one from Conjecture 1.25.

It is in fact easy to construct a functor in one direction. Namely, let C be a
category with a D-module action of some group G; let also F be a GO-equivariant
object. Then F defines a functor C → D-mod(GrG). Moreover, this functor sends
F to a ring object AF and the above functor can be upgraded to a functor from C to
AF-modules in D-mod(GrG). Namely, this functor sends every G to the D-module
on GrG whose !-stalk at some g is equal to RHom(Fg,G). In our case we take C to
be the category of D-modules on Maps(D∗,Y) and take F = FC . Then the above
functor sends F to AR (this is essentially proved in [15]).

Note that for G = GL(n) the theory T[G] is supposed to be self-dual (with
respect to mirror symmetry procedure). Hence it follows that in this case the
category CC should be equivalent to CH . Therefore, it is natural to expect that
the category QCoh(Maps(D∗dR,Y)) is equivalent to D(GrGL(n))

Hecke. However, we
expect that it is actually wrong as stated—the reason is the warning from Sect. 1.7.7.
However, we do believe in the following

Conjecture 1.26 Let Y be as in (1.14). Then the category IndCoh(Maps(D∗dR,Y))
is equivalent to D(GrGL(n))

Hecke.

Here is (an equivalent) variant of this conjecture. Note that the action of the group
GL(n) on Y gives rise to an action of the same group on Maps(D∗dR,Y). Hence we
can consider the category QCoh(Maps(D∗dR,Y)/GL(n)). This category admits a
natural action of the tensor category Rep(GL(n)). Note that the geometric Satake
equivalence also gives rise to an action of Rep(GL(n)) on D-mod(GrGL(n)) (the
action is by convolution with spherical D-modules on the right).

Conjecture 1.27 The categories IndCoh(Maps(D∗dR,Y)/GL(n)) and D -mod
(GrGL(n)) are equivalent as module categories over Rep(GL(n)).
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In the paper [11] we prove a weaker version of Conjecture 1.27 for GL(2) (in
particular, the version of Conjecture 1.27 proved in [11] is sufficient in order to
explain why we need IndCoh and not QCoh in the formulation).

1.7.15 G-Symmetry and Gauging

Let us now address the following question. Let T be a theory acted on by a
(reductive) algebraic group G. What kind of structures does this action imply in
terms of the categories CH ,CC?

To answer this question, we need to recall two general notions. First, given a
category C and a group ind-scheme G there is a notion strong or infinitesimally
trivial G-action on C (cf. [22]). The main example of such an action is as follows:
given a pre-stack S with a G-action, the group G acts strongly on the (derived)
category ofD-modules on S. If one replacesD-modules by quasi-coherent sheaves,
one gets the notion of weak G-action on a category C. Given a category C with
a strong G-action one can define the category of strongly equivariant objects in C

(cf. [22, page 4]); we shall denote this category by CG.
On the other hand, for a stack Z and a (dg-)category C there is a notion of “C

living over Z” (cf. [21]). This simply means that the category QCoh(Z) (which is
a tensor category) acts on C. Given a geometric point z of Z we can consider the
fiber Cz of C at z. This category always has a weak action of the group Autz of
automorphisms of the point z.

Now we can formulate an (approximate) answer to the above question. Namely,
we expect that a G-action on T should produce the following structures:

(1) A category CH (G,T) which lives over LocSysG(D
∗) endowed with an equiva-

lence

CH(G,T)Triv � CH (T ).
11

Here Triv stands for the trivial local system.
(2) A strongG(K) = Maps(D∗,G)-action on the category CC(T).

Note that G is the group of automorphisms of the trivial local system. Hence (1)
implies that a G-action on T yields a weak action of G on CH (T).

Exercise Show that this action extends to a weak action of LG (which is a dg-
extension ofG) on C.

The reader must be warned that a weak action of G or even of LG on CH(T) is a
very small amount of data: for example, it is not sufficient in order to reconstruct
CH(G,T).

11Again, the reader should keep in mind Sect. 1.7.7.
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Recall now that if a group G acts on a theory T then we can form the
corresponding gauge theory T/G. Then we expect that

CH (T/G) = C(G,T); CC(T/G) = CC(T)
G(K). (1.15)

Let us now go back to the case T = T(Y). In this case an action of G on Y

yields an action of G on T(Y). In this case we expect that T(Y)/G = T(Y/G).
Let us discuss the compatibility of this statement with above categorical structures.
First, an action of G on Y gives rise to an action of G(K) on Maps(D∗,Y), hence
a strong action onD-mod(Maps(D∗,Y)). Moreover,D-mod(Maps(D∗,Y))G(K) =
D-mod(Maps(D∗,Y/G)) which is compatible with the second equation of (1.15).
On the other hand, it is easy to see that the category QCoh(Maps(D∗dR,Y/G)) lives
over QCoh(LocSysG(D

∗)) and its fiber over Triv is QCoh(Maps(D∗dR,Y)) which
is compatible with the first equation of (1.15).

1.7.16 S-Duality and Local Geometric Langlands

This subsection is a somewhat side topic: here we would like to mention a possible
connection of the above discussion with (conjectural) local geometric Langlands
correspondence. A reader who is not interested in the subject is welcome to skip
this subsection.

The local geometric Langlands duality predicts the existence of an equivalence
LG between the (∞-)category of (dg-)categories with strong G(K)-action and
the (∞-)category of (dg-)categories over QCoh(LocSysG∨(D

∗)) (as was already
mentioned earlier in these notes we are going to ignore higher categorical structures,
which are in fact necessary in order to discuss these things rigorously).12

Let us now recall that given a theory T with aG-action one expects the existence
of the S-dual theory T∨ with a G∨-action. Thus we see that we get a category
CC(T

∨) with a strong G∨(K)-action and a category CH(T
∨/G∨) which lives over

LocSysG∨(D
∗).

Conjecture 1.28 We have natural equivalences

LG(CC(T)) � CH (T
∨/G∨); LG∨(CC(T

∨)) � CH (T/G).

Recall now formula (1.2):

T∨ = ((T × T[G])/G)∗.

12It is known that this is only an approximate conjecture. The correct conjecture (due to A. Arinkin)
requires a (rather tricky) modification of the notion category over LocSysG(D

∗) (which again has
to do with the difference between QCoh and IndCoh).
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In particular, we can apply it to T being the trivial theory; in this case we get that
the group G∨ should act on the theory (T[G]/G)∗. Let CG = CC((T[G]/G)∗).
Then this category should have a strong action ofG∨(K). On the other hand, CG =
CH(T[G]/G), so in addition it should live over LocSysG(D

∗) (these two structures
should commute in the obvious way). We expect that CG is the universal Langlands
category forG∨, i.e. that for any other category C with G∨(K)-action we have13

LG∨(C) = C ⊗
G∨(K)

CG.

In particular, ifG = GL(n) then we see that the universal Langlands categoryCGL(n)
is expected to be equivalent to QCoh(Maps(D∗dR,Y/G)) where Y is given by (1.14).
Note that in this realization the fact that this category lives over LocSysGL(n)(D

∗) is
clear, but the action of GL(n,K) is absolutely not obvious: we don’t know how to
construct it.

Again, it must be noted that the notion of universal Langlands category is
not precise since as was mentioned above the correct formulation of the local
geometric Langlands conjecture involves a modification of the notion of category
over LocSysG(D

∗). But at least we believe that the above description of the
universal Langlands category is true as stated over the locus of irreducible local
systems.

1.7.17 Quantization

Let us now discuss the categorical structures which give rise to the quantizations
(and thus to Poisson structures) of the algebras C[MH ] and C[MC]. Let us first look
at the latter one. The space Maps(D∗,Y) has a natural action of the multiplicative
group Gm (which acts on D∗ by loop rotation). Thus the category CC(Y) admits a
natural deformation: the category D-modGm(Maps(D∗,Y)) of Gm-equivariant D-
modules. The object FC deforms naturally to an object ofD-modGm(Maps(D∗,Y))
and thus we can set

Ch̄(MC) = Ext∗D -modGm(Maps(D∗,Y))(FC,FC).

Here h̄ as before is a generator ofH ∗
Gm
(pt,C).

What about the quantization of MH ? As before we need to look for a one-
parameter deformation of the pair (CH ,FH ). Here again the action of the multi-
plicative group Gm on D and on D∗ gives rise to an action of Gm on the category
CH(Y); we claim that this action is strong (this is related to the fact that we work with
maps from D∗dR rather than with maps from D∗). Thus it makes sense to consider

13Such a tensor product does make sense as long as we live in the world of dg-categories.
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the category of strongly equivariant objects in CH (Y) (cf. again [22, page 4]). The
Ext-algebra of (the natural analog of) the object FH in this category is again a non-
commutative algebra over C[h̄] which is a quantization of C[MH ].

Note that since in both cases we use the action of the multiplicative group on D∗,
it follows that the deformed categories are no longer factorisation categories, so the
corresponding Ext-algebras no longer have factorisation structure. This is why they
have a chance to become non-commutative (at least the Remark after (1.9) does not
apply here).

1.7.18 Holomorphic-Topological Twist

We have learned the main ideas of this subsection from K. Costello. So far we
discussed the two topological twists of a given theory completely independently of
each other. However, in fact in physics both the C-twist and the H -twist appear
as one-parametric families of equivalent twists. In addition, both families have
the same limiting point, where the theory is no longer topological (it becomes
holomorphic-topological, cf. [1]; roughly speaking it means that, for example, for
a 3-manifold M the partition function Z(M) is well-defined if one fixes some
additional structure on M which locally makes it look like a product of a complex
curve Σ and a 1-manifold I ). The category of line operators in the holomorphic-
topological theory is still well-defined. As a result we come to the following
conclusion:

Conclusion There should exists a factorisation category C with an object F and two
Z-gradings such that

(1) The two Z-gradings yield the same Z2-grading.
(2) The pair (CC,FC) is a deformation of the pair (C,F). This deformation

preserves the 1st grading on C.
(3) The pair (CH ,FH ) is a deformation of the pair (C,F). This deformation

preserves the 2nd grading on C.

Let us describe a suggestion for the category C(Y) and the object F(Y). We would
like to set

C(Y) = QCoh(T ∗Maps(D∗,Y)).

Here there are some technical problems: the stack T ∗Maps(D∗,Y) is very essen-
tially infinite-dimensional, so studying quasi-coherent sheaves on it is more difficult
than before. Let us assume that it is possible though and let us discuss (1)–(3) in
this case. First, we need two gradings. The first grading is simply the homological
grading on QCoh. The second grading is the combination of the homological
grading and the grading coming from C×-action on T ∗Maps(D∗,Y) (which dilates
the cotangent fibers) multiplied by two (so the two grading manifestly yield the
same Z2-grading).
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Now the category of D-modules on Maps(D∗,Y) is clearly a deformation of
QCoh(T ∗Maps(D∗,Y)). On the other hand, it is less clear how to deform the
category QCoh(T ∗Maps(D∗,Y)) to QCoh(Maps(D∗dR,Y)). We plan to address
these issues in a future publication.
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Chapter 2
Moduli Spaces of Sheaves on Surfaces:
Hecke Correspondences
and Representation Theory

Andrei Neguţ

Abstract In modern terms, enumerative geometry is the study of moduli spaces:
instead of counting various geometric objects, one describes the set of such objects,
which if lucky enough to enjoy good geometric properties is called a moduli space.
For example, the moduli space of linear subspaces of An is the Grassmannian
variety, which is a classical object in representation theory. Its cohomology and
intersection theory (as well as those of its more complicated cousins, the flag
varieties) have long been studied in connection with the Lie algebras sln.

The main point of this mini-course is to make the analogous connection between
the moduli space M of certain more complicated objects, specifically sheaves on
a smooth projective surface, with an algebraic structure called the elliptic Hall
algebra E (see Burban and Schiffmann (I Duke Math J 161(7):1171–1231, 2012)
and Schiffmann and Vasserot (Duke Math J 162(2):279–366, 2013)). We will recall
the definitions of these objects in Sects. 2.1 and 2.2, respectively, but we note that
the algebra E is isomorphic to the quantum toroidal algebra, which is a central-
extension and deformation of the Lie algebra gl1[s±1, t±1]. Our main result is
the following (see Neguţ (Hecke Correspondences for Smooth Moduli Spaces of
Sheaves. arXiv:1804.03645)):

Theorem 1 There exists an action E � KM , defined as in Sect. 2.2.6.

(KM denotes the algebraic K-theory of the moduli space M , see Sect. 2.1.6)
One of the main reasons why one would expect the action E � KM is that
it generalizes the famous Heisenberg algebra action Grojnowski (Math Res Lett
3(2), 1995) and Nakajima (Ann Math (second series) 145(2):379–388 1997) on the
cohomology of Hilbert schemes of points (see Sect. 2.2.1 for a review). In general,
such actions are useful beyond the beauty of the structure involved: putting an
algebra action on KM allows one to use representation theory in order to describe
various intersection-theoretic computations on M , such as Euler characteristics
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of sheaves. This has far-reaching connections with mathematical physics, where
numerous computations in gauge theory and string theory have recently been
expressed in terms of the cohomology and K-theory groups of various moduli
spaces (the particular case of the moduli space of stable sheaves on a surface leads
to the well-known Donaldson invariants). Finally, we will give some hints as to
how one would categorify the action of Theorem 1, by replacing the K-theory
groups of M with derived categories of coherent sheaves. As shown in Gorsky et
al. (Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology.
arXiv:1608.07308) and Oblomkov and Rozansky (Sel Math New Ser: 1–104), this
categorification is closely connected to the Khovanov homology of knots in the 3-
sphere or in solid tori, leading one to geometric knot invariants.

2.1 Moduli Spaces of Sheaves on Surfaces

The contents of this section require knowledge of algebraic varieties, sheaves and
cohomology, and derived direct and inverse images of morphisms at the level of
[10]. LetX be a projective variety over an algebraically closed field of characteristic
zero, henceforth denoted by C. We fix an embedding X ↪→ PN , meaning that
the tautological line bundle O(1) on projective space restricts to a very ample line
bundle on X, which we denote by OX(1). The purpose of this section is to describe
a scheme M which represents the functor of flat families of coherent sheaves onX,
by which we mean the following things:

• for any scheme T , there is an identification:

Maps(T ,M ) ∼=
{

F coherent sheaf on T ×X which is flat over T
}

(2.1)

which is functorial with respect to morphisms of schemes T → T ′
• there exists a universal sheaf U on M × X, by which we mean that the

identification in the previous bullet is explicitly given by:

T
φ−→M � F = (φ × IdX)

∗(U ) (2.2)

A coherent sheaf F on T × X can be thought of as the family of its fibers
over closed points t ∈ T , denoted by Ft := F |t×X. There are many reasons why
one restricts attention to flat families, such as the fact that flatness implies that the
numerical invariants of the coherent sheaves Ft are locally constant in t . We will
now introduce the most important such invariant, the Hilbert polynomial.
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2.1.1 Subschemes and Hilbert Polynomials

A subscheme of X is the same thing as an ideal sheaf I ⊂ OX, and many classical
problems in algebraic geometry involve constructing moduli spaces of subschemes
of X with certain properties.

Example 2.1 If X = PN , the moduli space parametrizing k dimensional linear
subspaces of PN is the GrassmannianGr(k + 1, N + 1).

We will often be interested in classifying subschemes ofX with certain properties
(in the example above, the relevant properties are dimension and linearity). Many of
these properties can be read off algebraically from the ideal sheaf I .

Definition 2.1 The Hilbert polynomial of a coherent sheaf F on X is defined as:

PF (n) = dimCH
0(X,F (n)) (2.3)

for n large enough. We write F (n) = F ⊗ OX(n).

In the setting of the definition above, the Serre vanishing theorem ensures that
Hi(X,F (n)) = 0 for i ≥ 1 and n large enough, which implies that (2.3) is a
polynomial in n. A simple exercise shows that if:

0→ F → G →H → 0

is a short exact sequence of coherent sheaves on X, then:

PF (n) = PG (n)− PH (n)

Therefore, fixing the Hilbert polynomial of an ideal sheaf I ⊂ OX is the same
thing as fixing the Hilbert polynomial of the quotient OX/I , if X is given.

Example 2.2 If X = PN and I is the ideal sheaf of a k-dimensional linear
subspace, then OX/I ∼= OPk , which implies that:

POX/I (n) = dimCH
0(Pk,OPk (n)) =

= dimC

{

degree n part of C[x0, . . . , xk]
}

=
(

n+ k
k

)

If I is the ideal sheaf of an arbitrary subvariety of PN , the degree of the Hilbert
polynomial POX/I is the dimension of the subscheme cut out by I , while the
leading order coefficient of POX/I encodes the degree of the said subscheme.
Therefore, the Hilbert polynomial knows about geometric properties of subschemes.
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2.1.2 Hilbert and Quot Schemes

We have already seen that giving a subscheme of a projective variety X is the same
thing as giving a surjective map OX � OX/I , and that such subschemes are
parametrized by their Hilbert polynomials.

Definition 2.2 There exists a moduli space parametrizing subschemes I ⊂ OX
with fixed Hilbert polynomial P(n), and it is called the Hilbert scheme:

HilbP =
{

I ⊂ OX such that POX/I (n) = P(n) for n� 0
}

We also write:

Hilb =
⊔

Ppolynomial

HilbP

A particularly important case in the setting of our lecture notes is when the
Hilbert polynomial P(n) is constant, in which case the subschemes OX/I are
finite length sheaves. More specifically, if P(n) = d for some d ∈ N, then HilbP
parametrizes subschemes of d points onX. It is elementary to see that Definition 2.2
is the V = OX case of the following more general construction:

Definition 2.3 Fix a coherent sheaf V on X and a polynomial P(n). There exists a
moduli space, called the Quot scheme, parametrizing quotients:

QuotV ,P =
{

V � F such that PF (n) = P(n) for n� 0
}

We also write:

QuotV =
⊔

P polynomial

QuotV ,P

Definitions 2.2 and 2.3 concern the existence of projective varieties (denoted by
Hilb and QuotV , respectively) which represent the functors of flat families of ideal
sheaves I ⊂ OX and quotients V � F , respectively. In the language at the
beginning of this section, we have natural identifications:

Maps(T ,Hilb) ∼=
{

I ⊂ OT×X, such that I is flat over T
}

(2.4)

Maps(T ,QuotV ) ∼=
{

π∗(V )� F , such that F is flat over T
}

(2.5)

where I and F are coherent sheaves on T × X, and π : T × X → X is the
standard projection. The flatness hypothesis on these coherent sheaves implies that
the Hilbert polynomial of the fibers OX/It and Ft are locally constant functions of
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the closed point t ∈ T . If these Hilbert polynomials are equal to a given polynomial
P , then the corresponding maps in (2.4) and (2.5) land in the connected components
HilbP ⊂ Hilb and QuotV ,P ⊂ QuotV , respectively.

The construction of the schemes HilbP and QuotV ,P is explained in Chapter
2 of [11], where the authors also show that (2.2) is satisfied. Explicitly, there
exist universal sheaves I on Hilb × X and F on QuotV × X such that the
identifications (2.4) and (2.5) are given by sending a map φ : T → Hilb, QuotV to
the pull-back of the universal sheaves under φ.

Example 2.3 Let us take X = P1 and consider zero-dimensional subschemes of X.
Any such subscheme Z has finite length as an OX-module, so we may assume this
length to be some d ∈ N. The ideal sheaf of Z is locally principal, hence there exist
[a1 : b1], . . . , [ad : bd ] ∈ P1 such that I is generated by:

(sa1 − tb1) . . . (sad − tbd)

where C[s, t] is the homogeneous coordinate ring of X. Therefore, length d
subschemes of P1 are in one-to-one correspondence with degree d homogeneous
polynomials in s, t (up to scalar multiple) and so it should not be a surprise that:

Hilbd ∼= P
d (2.6)

A similar picture holds when X is a smooth curve C, and the isomorphism (2.6)
holds locally on the Hilbert scheme of length d subschemes of C.

2.1.3 Moduli Space of Sheaves

If X is a projective variety, the only automorphisms of OX are scalars (elements
of the ground field C). Because of this, Hilb = QuotOX is the moduli space of
coherent sheaves of the form F = OX/I . Not all coherent sheaves are of this
form, e.g. F = Cx ⊕Cx cannot be written as a quotient of OX for any closed point
x ∈ X. However, Serre’s theorem implies that all coherent sheaves F with fixed
Hilbert polynomial can be written as quotients:

φ : OX(−n)P(n) � F (2.7)

for some large enough n, where OX(1) is the very ample line bundle on X induced
from the embedding of X ↪→ PN (the existence of (2.7) stems from the fact that
F (n) is generated by global sections, and its vector space of sections has dimension
P(n)). Therefore, intuitively one expects that the “scheme”:

MP “ := ”
{

F coherent sheaf on X with Hilbert polynomial P
}

(2.8)
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(in more detail, MP should be a scheme with the property that Maps(T ,MP ) is
naturally identified with the set of coherent sheaves F on T ×X which are flat over
t , and the Hilbert polynomial of the fibers Ft is given by P ) satisfies:

MP = QuotOX(−n)P(n),P /GLP(n) (2.9)

where g ∈ GLP(n) acts on a homomorphism φ as in (2.7) by sending it to φ ◦ g−1.
The problem with using (2.9) as a definition is that if G is a reductive algebraic

group acting on a projective variety Y , it is not always the case that there exists
a geometric quotient Y/G (i.e. a scheme whose closed points are in one-to-one
correspondence with G-orbits of Y ). However, geometric invariant theory ([15])
allows one to define an open subset Y stable ⊂ Y of stable points, such that Y stable/G

is a geometric quotient. The following is proved, for instance, in [11]:

Theorem 2.1 A closed point (2.7) of QuotOX(−n)P(n),P is stable under the action
ofGLP(n) from (2.9) if and only if the sheaf F has the property that:

pG (n) < pF (n), for n large enough

for any proper subsheaf G ⊂ F , where the reduced Hilbert polynomial pF (n) is
defined as the Hilbert polynomial PF (n) divided by its leading order term.

Therefore, putting the previous paragraphs together, there is a scheme:

MP :=
{

F stable coherent sheaf on X with Hilbert polynomial P
}

(2.10)

which is defined as the geometric quotient:

MP = Quotstable
OX(−n)P(n),P /GLP(n) (2.11)

Moreover, [11] prove that under certain numerical hypotheses (specifically, that the
coefficients of the Hilbert polynomial P(n) written in the basis

(

n+i−1
i

)

be coprime
integers) there exists a universal sheaf U on MP × X. This sheaf is supposed to
ensure that the identification (2.1) is given explicitly by (2.2), and we note that the
universal sheaf is only defined up to tensoring with an arbitrary line bundle pulled
back from MP . We fix such a choice throughout this paper.

2.1.4 Tangent Spaces

From now on, let us restrict to the case of moduli spaces M of stable sheaves over
a smooth projective surface S. Then the Hilbert polynomial of any coherent sheaf
is completely determined by 3 invariants: the rank r , and the first and second Chern
classes c1 and c2 of the sheaf. We will therefore write:

M(r,c1,c2) ⊂M
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for the connected component of M which parametrizes stable sheaves on S with
the invariants r, c1, c2. For the remainder of this paper, we will make:

Assumption A : gcd(r, c1 · O(1)) = 1 (2.12)

As explained in the last paragraph of the preceding Subsection, Assumption A
implies that there exists a universal sheaf on M × S.

Exercise 2.1 Compute the Hilbert polynomial of a coherent sheaf F on a smooth
projective surface S in terms of the invariants r, c1, c2 of F , the invariants
c1(S), c2(S) of the tangent bundle of S, and the first Chern class of the line bundle
OS(1) (Hint: use the Grothendieck-Hirzebruch-Riemann-Roch theorem).

The closed points of the scheme M are Maps(C,M ), which according to (2.1)
are in one-to-one correspondence to stable coherent sheaves F on S. As for the
tangent space to M at such a closed point F , it is given by:

TanFM =
{

maps Spec
C[ε]
ε2

Ψ−→M which restrict to Spec C
F−→M at ε = 0

}

(2.13)

Under the interpretation (2.1) of Maps(C[ε]/ε2,M ), one can prove the following:

Exercise 2.2 The vector space T anFM is naturally identified with Ext1(F ,F ).

It is well-known that a projective scheme (over an algebraically closed field of
characteristic zero) is smooth if and only if all of its tangent spaces have the same
dimension. Using this, one can prove:

Exercise 2.3 The scheme M is smooth if the following holds:

Assumption S :
{

KS
∼= OS or

KS ·O(1) < 0
(2.14)

Hint: show that the dimension of the tangent spaces Ext1(F ,F ) is locally
constant, by using the fact that the Euler correspondence:

χ(F ,F ) =
2
∑

i=0

(−1)i dimExti(F ,F )

is locally constant, and the fact that stable sheaves F are simple, i.e. their only
automorphisms are scalars (as for Ext2(F ,F ), you may compute its dimension
by using Serre duality on a smooth projective surface).
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In fact, one can even compute χ(F ,F ) by using the Grothendieck-Hirzebruch-
Riemann-Roch theorem. The exact value will not be important to us, but:

Exercise 2.4 Show that (under Assumption S):

dimM(r,c1,c2) = const + 2rc2 (2.15)

where const is an explicit constant that only depends on S, r, c1 and not on c2.

2.1.5 Hecke Correspondences: Part 1

Fix r and c1. The moduli space of Hecke correspondences is the locus of pairs:

Z1 =
{

pairs (F ′,F ) s.t. F ′ ⊂ F
}

⊂
⊔

c2∈Z
M(r,c1,c2+1) ×M(r,c1,c2) (2.16)

In the setting above, the quotient sheaf F/F ′ has length 1, and must therefore be
isomorphic to Cx for some closed point x ∈ S. If this happens, we will use the
notation F ′ ⊂x F . We conclude that there exist three maps:

1

p+
pS

p−

M S M

(F ⊂x F )

p+
pS

p−

F x F (2.17)

It is not hard to see that the maps p+, p−, pS are all proper. In fact, we have the
following explicit fact, which also describes the scheme structure of Z1:

Exercise 2.5 The scheme Z1 is the projectivization of a universal sheaf:

U

M S (2.18)

in the sense that PM×S(U ) ∼= Z1
p−×pS−−−−→M × S.

By definition, the projectivization of U is:

PM×S(U ) = ProjM×S
(

Sym∗(U )
)

(2.19)

and it comes endowed with a tautological line bundle, denoted by O(1), and with
a map ρ : PM×S(U ) → M × S. The scheme (2.19) is completely determined
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by the fact that maps Φ : T → PM×S(U ) are in one-to-one correspondence with
triples consisting of the following: a map φ : T →M × S, a line bundle L on T
(which will be the pull-back of O(1) under Φ), and a surjective map φ∗(U )� L .
However, in the case at hand, we can describe (2.19) a bit more explicitly:

Exercise 2.6 There is a short exact sequence on M × S:

0 → W → V → U → 0 (2.20)

where V and W are locally free sheaves on M × S (see Proposition 2.2 of [18]).

As a consequence of Exercise 2.6, we have an embedding:

1
∼= PM×S(U )

p−×pS

PM×S(V )

ρ

M S

ι

(2.21)

which is very helpful, since PM×S(V ) is a projective space bundle over M × S,
hence smooth. Moreover, one can even describe the ideal of the embedding ι above.
Try to show that it is equal to the image of the map:

ρ∗(W )⊗ O(−1)→ ρ∗(V )⊗ O(−1)→ O (2.22)

on PM×S(V ). Therefore, we conclude that Z1 is cut out by a section of the vector
bundle ρ∗(W ∨)⊗O(1) on the smooth scheme PM×S(V ).

Exercise 2.7 Under Assumption S, Z1 is smooth of dimension:

const + r(c2 + c′2)+ 1

where c2 and c′2 are the locally constant functions on Z1 = {(F ′ ⊂ F )} which
keep track of the second Chern classes of the sheaves F and F ′, respectively. The
number const is the same one that appears in (2.15).

Exercise 2.7 is a well-known fact, which was first discovered for Hilbert schemes
more than 20 years ago. You may prove it by describing the tangent spaces to Z1 in
terms of Ext groups (emulating the isomorphism (2.13) of the previous Subsection),
or by looking at Proposition 2.10 of [18]. As a consequence of the dimension
estimate in Exercise 2.7, it follows that the section (2.22) is regular, and so Z1 is
regularly embedded in the smooth variety PM×S(V ).
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2.1.6 K-Theory and Derived Categories

The schemes M and Z1 will play a major role in what follows, but we must first
explain what we wish to do with them. Traditionally, the enumerative geometry of
such moduli spaces of sheaves is encoded in their cohomology, but in the present
notes we will mostly be concerned with more complicated invariants. First of all,
we have their K-theory groups:

KM and KZ1 (2.23)

which are defined as the Q-vector spaces generated by isomorphism classes of
locally free sheaves on these schemes, modulo the relation [F ] = [G ] − [H ]
whenever we have a short exact sequence of locally free sheaves 0 → F → G →
H → 0.

Example 2.4 K-theory is always a ring, with respect to direct sum and tensor
product of vector bundles. In particular, we have a ring isomorphism:

KPn → Q[ξ ]
(1− ξ)n+1 , O(1) �→ ξ

Functoriality means that if f : X→ Y , then there should exist homomorphisms:

KX
f∗−⇀↽−
f ∗
KY

called push-forward and pull-back (or direct image and inverse image, respectively).
With our definition, the pull-back f ∗ is well-defined in complete generality, while
the push-forward f∗ is well-defined when f is proper and Y is smooth.

Remark 2.1 There is an alternate definition ofK-theory calledG-theory, where one
replaces locally free sheaves by coherent sheaves in the sentence after (2.23). On
a smooth projective scheme, the two notions are equivalent because any coherent
sheaf has a finite resolution by locally free sheaves. However, G-theory is not in
general a ring, but just a module for the K-theory ring. Moreover, G-theory has
different functoriality properties from K-theory: the existence of the push-forward
f∗ only requires f : X → Y to be a proper morphism (with no restriction on Y ),
while the pull-back f ∗ requires f to be an l.c.i. morphism (or at least to satisfy a
suitable Tor finiteness condition).

K-theory is a shadow of a more complicated notion, known as the derived
category of perfect complexes, which we will denote by:

DM and DZ1
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Specifically, the derived category of a projective variety has objects given by
complexes of locally free sheaves and morphisms given by maps of complexes,
modulo homotopies, and inverting quasi-isomorphisms (in other words, any map of
complexes which induces isomorphisms on cohomology is formally considered to
be an isomorphism in the derived category). There is a natural map:

ObjDX → KX

which sends a complex of locally free sheaves to the alternating sum of its coho-
mology groups. Since derived categories have, more or less, the same functoriality
properties asK-theory groups, we will not review these issues here (but we refer the
reader to [12] and [27] for more details, especially the construction of push-forward
maps of perfect complexes along l.c.i. morphisms, see Proposition 3.3.20 of [13]).
However, we will compare Example 2.4 with the following result, due to Beilinson:

Example 2.5 Any complex in DPn is quasi-isomorphic to a complex of direct
sums and homological shifts of the line bundles {O,O(1), . . . ,O(n)}. The Koszul
complex:

[

O → O(1)⊕n+1 → O(2)⊕(
n+1

2 ) → . . .→ O(n)⊕(
n+1
n )→ O(n+ 1)

]

is exact, hence quasi-isomorphic to 0 in DPn . This is the categorical version of:

(1−ξ)n+1 = 1−(n+1)ξ+
(

n+ 1

2

)

ξ2−. . .+(−1)n
(

n+ 1

n

)

ξn+(−1)n+1ξn+1 = 0

which is precisely the relation from Example 2.4.

2.2 Representation Theory

2.2.1 Heisenberg Algebras and Hilbert Schemes

Consider the Hilbert scheme Hilbd of d points on a smooth projective algebraic
surface S. A basic problem is to compute the Betti numbers:

bi(Hilbd) = dimQH
i(Hilbd,Q)

and their generating functionB(Hilbd, t) =∑

i≥0 t
ibi(Hilbd). It turns out that these

are easier computed if we consider all d from 0 to ∞ together, as was revealed in
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the following formula (due to Ellingsrud and Strømme [3] for S = A
2 and then to

Göttsche [8] in general):

∞
∑

d=0

qdB(Hilbd, t) =
∞
∏

i=1

(1+ t2i−1qi)b1(S)(1+ t2i+1qi)b3(S)

(1− t2i−2qi)b0(S)(1− t2iqi)b2(S)(1− t2i+2qi)b4(S)

(2.24)

The reason for the formula above was explained, independently, by Grojnowski
[9] and Nakajima [16]. To summarize, they introduced an action of a Heisenberg
algebra (to be defined) associated to the surface S on the cohomology group:

H =
∞
⊕

d=0

Hd, where Hd = H ∗(Hilbd,Q) (2.25)

Since the Betti numbers are just the graded dimensions of H , formula (2.24)
becomes a simple fact about characters of representations of the Heisenberg algebra.
The immediate conclusion is that the representation theory behind the action
Heis � H can help one prove numerical properties of H .

Definition 2.4 The Heisenberg algebra Heis is generated by infinitely many
symbols {an}n∈Z\0 modulo the relation:

[an, am] = δ0
n+mn (2.26)

Let us now describe the way the Heisenberg algebra of Definition 2.4 acts
on the cohomology groups (2.25). It is not as straightforward as having a ring
homomorphism Heis → End(H), but it is morally very close. To this end, let us
recall Nakajima’s formulation of the action from [16]. Consider the closed subset:

Hilbd,d+n =
{

(I, I ′, x) such that I ′ ⊂x I
}

∈ Hilbd × Hilbd+n × S (2.27)

(recall that I ′ ⊂x I means that the quotient I/I ′ is a finite length sheaf, specifically
length n, supported at the closed point x). We have three natural maps:

Hilbd,d+n

p−
pS

p+

Hilbd S Hilbd n (2.28)

While the schemes Hilbd and S are smooth, Hilbd,d+n are not for n > 1. However,
the maps p±, pS are proper, and therefore the following operators are well-defined:

Hd
An−→ Hd+n ⊗HS An = (p+ × pS)∗ ◦ p∗− (2.29)
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Hd+n
A−n−−→ Hd ⊗HS A−n = (−1)n−1 · (p− × pS)∗ ◦ p∗+ (2.30)

where HS = H ∗(S,Q). We will use the notation A±n for the operators above for
all d , so one should better think of A±n as operatorsH → H ⊗HS . Then the main
result of Nakajima and Grojnowski states (in a slightly rephrased form):

Theorem 2.2 We have the following equality of operators H → H ⊗HS ⊗HS:

[An,Am] = δ0
n+mn · IdH ⊗ [Δ] (2.31)

where in the left hand side we take the difference of the compositions:

H
Am−−→ H ⊗HS An⊗ IdS−−−−−→ H ⊗HS ⊗HS

H
An−→ H ⊗HS Am⊗ IdS−−−−−→ H ⊗HS ⊗HS IdH⊗ swap−−−−−−−→ H ⊗HS ⊗HS

and in the right-hand side we multiply by the Poincaré dual class of the diagonal
Δ ↪→ S×S inH ∗(S×S,Q) = HS⊗HS . The word “swap” refers to the permutation
of the two factors of HS , and the reason it appears is that we want to ensure that
in (2.31) the operators An, Am each act in a single tensor factor of HS ⊗HS .

We will refer to the datum An : H → H ⊗ HS , n ∈ Z\0 as an action of
the Heisenberg algebra on H , and relation (2.31) will be a substitute for (2.26).
There are two ways one can think about this: the first is that the ring HS is like
the ring of constants for the operators An. The second is that one can obtain actual
endomorphisms of H associated to any class γ ∈ HS by the expressions:

H
A
γ
n−→ H A

γ
n =

∫

S

γ · An

H
A
γ
−n−−→ H A

γ
−n =

∫

S

γ · A−n

where
∫

S : HS → Q is the integration of cohomology on S. It is not hard to show
that (2.31) yields the following commutation relation of operatorsH → H :

[Aγn ,Aγ
′
m ] = δ0

n+mn
∫

S

γ γ ′ · IdH

for any classes γ, γ ′ ∈ HS . The relation above is merely a rescaled version
of relation (2.26), and it shows that each operator An : H → H ⊗ HS
defined by Nakajima and Grojnowski entails the same information as a family of
endomorphisms of H indexed by the cohomology group of the surface S itself.

fnklberg@gmail.com



66 A. Neguţ

2.2.2 Going Forward

Baranovsky [1] generalized Theorem 2.2 to the setup where Hilbert schemes are
replaced by the moduli spaces of stable sheaves:

M =
⊔

c2∈Z
M(r,c1,c2)

from Sect. 2.1.4 (for fixed r, c1 and with Assumption S in effect). A different
generalization entails going from cohomology to K-theory groups, and this is a
bit more subtle. The first naive guess is that one should define operators:

KM
An−→ KM ⊗KS

for all n ∈ Z\0 which satisfy the following natural deformation of relation (2.31):

[An,Am] = δ0
n+m

1− qrn
1− q · IdKM ⊗ [Δ] (2.32)

where q is some invertible parameter (the reason for the appearance of r in the
exponent is representation-theoretic, in that K-theory groups of moduli spaces
of rank r sheaves yield central charge r representations of Heisenberg algebras).
However, we have already said that the “ground ring” should be KS , so the
parameter q should be an invertible element of KS (it will later turn out that q is
the K-theory class of the canonical line bundle of S) and relation (2.32) should
read:

[An,Am] = δ0
n+mIdKM ⊗Δ∗

(

1− qrn
1− q

)

(2.33)

But even this form of the relation is wrong, mostly because the Künneth formula
does not hold (in general) in K-theory: KM×S �∼= KM ⊗ KS . Therefore, the
operators we seek should actually be:

KM
An−→ KM×S (2.34)

and they must satisfy the following equality of operatorsKM → KM×S×S :

[An,Am] = δ0
n+mΔ∗

(

1− qrn
1− q · proj∗

)

(2.35)

where proj : M × S → M is the natural projection. So you may ask whether
the analogues of the operators (2.29) and (2.30) in K-theory will do the trick. The
answer is no, because the pull-back maps p∗± from (2.28) are not the right objects to
study in K-theory. This is a consequence of the fact that the schemes Hilbd,d+n are
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very singular for n ≥ 2, and even if the pull-back maps p∗± were defined, then it is
not clear what the structure sheaf of Hilbd,d+n should be replaced with in K-theory,
in order to give rise to the desired operators (2.34).

2.2.3 Framed Sheaves on A2

We will now recall the construction of Schiffmann and Vasserot, which generalize
the Heisenberg algebra action in the case when S = A2, in the setting of equivariant
K-theory (with respect to the action of the standard torus C∗ × C∗ � A2).
Historically, this work is based on the computation of K-theoretic Hall algebras
by Ginzburg and Vasserot [6], generalized by Varagnolo and Vasserot [28], and then
by Nakajima [17] to the general setting of quiver varieties (in the present context,
these Hall algebras were studied for the plane in [26] and for the cotangent bundle
to a curve in [14]] and [24]).

First of all, since the definition of moduli spaces in the previous section applies
to projective surfaces, we must be careful in defining the moduli space M when
S = A2. The correct definition is the moduli space of framed sheaves on P2:

M =
{

F rank r torsion-free sheaf on P
2,F |∞

φ∼= O⊕r∞
}

where ∞ ⊂ P2 denotes the divisor at infinity. The space M is a quasi-projective
variety, and we will denote its C∗ × C∗ equivariant K-theory group by KM . One
can define the scheme Z1 as in Sect. 2.1.5 and note that it is still smooth. There is a
natural line bundle:

L

1

whose fiber over a closed point {(F ′ ⊂x F )} is the one-dimensional space Fx/F ′
x .

The maps p± of (2.17) are still well-defined, and they allow us to define operators:

KM
Ek−→ KM , Ek = p+∗

(

L ⊗k · p∗−
)

(2.36)

for all k ∈ Z. Note that the map p∗− : KM → KZ1 is well-defined in virtue of the
smoothness of the spaces Z1 and M . The following is the main result of [26]:

Theorem 2.3 The operators (2.36) satisfy the relations in the elliptic Hall algebra.

To be more precise, [26] define an extra family of operators Fk defined by
replacing the signs+ and− in (2.36), as well as a family of multiplication operators
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Hk, and they show that the three families of operators Ek, Fk,Hk generate the
double elliptic Hall algebra. We will henceforth focus only on the algebra generated
by the operators {Ek}k∈Z in order to keep things simple, and we will find inside this
algebra the positive half of Heis (i.e. the operators (2.34) for n > 0).

Remark 2.2 Theorem 2.3 was obtained simultaneously by Feigin and Tsymbaliuk
in [5], by using the Ding-Iohara-Miki algebra instead of the elliptic Hall algebra
(Schiffmann showed in [25] that the two algebras are isomorphic). We choose
to follow the presentation in terms of the elliptic Hall algebra for two important
and inter-related reasons: the generators of the elliptic Hall algebra are suitable
for categorification and geometry, and the Heisenberg operators (2.34) can be
more explicitly described in terms of the elliptic Hall algebra than in terms of the
isomorphic Ding-Iohara-Miki algebra.

2.2.4 The Elliptic Hall Algebra

The elliptic Hall algebra E was defined by Burban and Schiffmann in [2], as a formal
model for part of the Hall algebra of the category of coherent sheaves on an elliptic
curve over a finite field. The two parameters q1 and q2 over which the elliptic Hall
algebra are defined play the roles of Frobenius eigenvalues.

Definition 2.5 Write q = q1q2. The elliptic Hall algebra E is the Q(q1, q2)

algebra generated by symbols {an,k}n∈N,k∈Z modulo relations (2.37) and (2.38):

[an,k, an′,k′ ] = 0 (2.37)

if nk′ − n′k = 0, and:

[an,k, an′,k′ ] = (1− q1)(1− q2)
bn+n′,k+k′
1− q−1

(2.38)

if nk′ − n′k = s and {s, 1, 1} = {gcd(n, k), gcd(n′, k′), gcd(n+ n′, k+ k′)}, where:

1+
∞
∑

s=1

bn0s,k0s

xs
= exp

( ∞
∑

s=1

an0s,k0s (1− q−s)
sxs

)

for any coprime n0, k0.

In full generality, the elliptic Hall algebra defined in [2] has generators an,k for
all (n, k) ∈ Z2\(0, 0), and relation (2.37) is replaced by a deformed Heisenberg
algebra relation between the elements {ans,ks}s∈Z\0, for any coprime n, k. We refer
the reader to Section 2 of [19], where the relations in E are recalled in our notation.
However, we need to know two things about this algebra:

• the operators {Ek}k∈Z of (2.36) will play the role of a1,k
• the Heisenberg operators {An}n∈N of (2.35) will play the role of an,0
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Therefore, the elliptic Hall algebra contains all the geometric operators we have
discussed so far, and more. Therefore, the next natural step is to identify the
geometric counterparts of the general operators an,k (which were first discovered
in [22] for S = A2), but the way to do so will require us to introduce the shuffle
algebra presentation of the elliptic Hall algebra.

2.2.5 The Shuffle Algebra

Shuffle algebras first arose in the context of Lie theory and quantum groups in
the work of Feigin and Odesskii [4]. Various instances of this construction have
appeared since, and the one we will mostly be concerned with is the following:

Definition 2.6 Let ζ(x) = (1−q1x)(1−q2x)
(1−x)(1−qx) . Consider the Q(q1, q2)-vector space:

∞
⊕

n=0

Q(q1, q2)(z1, . . . , zn)
Sym (2.39)

endowed with the following shuffle product for any f (z1, . . . , zn) and
g(z1, . . . , zm):

f ∗ g = Sym
⎡

⎣f (z1, . . . , zn)g(zn+1, . . . , zn+m)
1≤i≤n
∏

n+1≤j≤n+m
ζ

(

zi

zj

)

⎤

⎦ (2.40)

where Sym always refers to symmetrization with respect to all z variables. Then the
shuffle algebra S is defined as the Q(q1, q2)-subalgebra of (2.39) generated by the
elements {zk1}k∈Z in the n = 1 direct summand.

It was observed in [26] that the map E
Υ−→ S given by Υ (a1,k) = zk1 is an

isomorphism. The images of the generators an,k under the isomorphism Υ were
worked out in [21], where it was shown that:

Υ (an,k) = Sym

⎡

⎢

⎣

∏n
i=1 z

⌈

ki
n

⌉

−
⌈

k(i−1)
n

⌉

+δni −δ0
i

i
(

1− qz2
z1

)

. . .
(

1− qzn
zn−1

)

∏

1≤i<j≤n
ζ

(

zi

zj

)

(

1+ qza(s−1)+1

za(s−1)
+ q

2za(s−1)+1za(s−2)+1

za(s−1)za(s−2)
+ . . .+ q

s−1za(s−1)+1 . . . za+1

za(s−1) . . . za

)]

(2.41)
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where s = gcd(n, k) and a = n/s. Note that it is not obvious that the elements (2.41)
are in the shuffle algebra, and the way [21] proves this fact is by showing that S
coincides with the linear subspace of (2.39) generated by rational functions:

r(z1, . . . , zn)
∏

1≤i �=j≤n(zi − qzj )

where r goes over all symmetric Laurent polynomials that vanish at {z1, z2, z3} =
{1, q1, q} and at {z1, z2, z3} = {1, q2, q}. These vanishing properties are called the
wheel conditions, following those initially introduced in [4].

Formula (2.41) shows the importance of considering the following elements of E :

ek1,...,kn = Υ −1

⎛

⎝Sym

⎡

⎣

z
k1
1 . . . z

kn
n

(

1− qz2
z1

)

. . .
(

1− qzn
zn−1

)

∏

1≤i<j≤n
ζ

(

zi

zj

)

⎤

⎦

⎞

⎠ (2.42)

for any k1, . . . , kn ∈ Z.

Exercise 2.8 Show that the right-hand side of (2.42) lies in S by showing that it
satisfies the wheel conditions that we discussed previously.

Exercise 2.9 Prove the following commutation relations, for all d, k1, . . . , kn ∈ Z:

[ek1,...,kn, ed ] = (1− q1)(1− q2)

n
∑

i=1

{

∑

ki≤a<d ek1,...,ki−1,a,ki+d−a,ki+1,...,kn if d > ki

−∑

d≤a<ki ek1,...,ki−1,a,ki+d−a,ki+1,...,kn if d < ki
(2.43)

There is no summand in the right-hand side corresponding to ki = d . You may
prove (2.43) by expressing it as an equality of rational functions in the shuffle
algebra S , which you may then prove explicitly (it is not hard, but also not
immediate, so try the cases n ∈ {1, 2} first).

It is clear from relations (2.37) and (2.38) that the elements ek = a1,k generate
the algebra E , since any an,k can be written in terms of sums and products of ek’s.
Using the main result of [25], one may show that (2.43) control all relations among
the generators ek ∈ E . In fact, these relations are over-determined, but we like
them because they allow us to express linear combinations of ek1,...,kn as explicit
commutators of ek’s. Therefore, if you have an action of E where you know how
the ek act, and you wish to prove that the operators ek1,...,kn act by some formula
(∗), all you need to do is prove that formula (∗) satisfies (2.43).
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2.2.6 The Action of E on KM

We will now apply the philosophy in the previous paragraph to the setting of the
K-theory group of the moduli space M of sheaves on a smooth projective surface S
(with fixed rank r and first Chern class c1). As we have seen in Sect. 2.2.2, the way
to go is to define operators:

KM

Ek1,...,kn−−−−−→ KM×S (2.44)

for all k1, . . . , kn ∈ Z which satisfy the following analogue of relation (2.43):

[Ek1,...,kn, Ed ]

= Δ∗
(

n
∑

i=1

{

∑

ki≤a<d Ek1,...,ki−1,a,ki+d−a,ki+1,...,kn if d > ki

−∑

d≤a<ki Ek1,...,ki−1,a,ki+d−a,ki+1,...,kn if d < ki

)

(2.45)

as operators KM → KM×S×S . The left-hand side is defined as in Theorem 2.2,
taking care that each of the operators Ek1,...,kn and Ed acts in one and the same
factor of S × S. The reason why Δ∗ is the natural substitute for (1 − q1)(1 − q2)

from (2.43) is that the K-theory class of the diagonal Δ ↪→ A2 × A2 is equal to 0
in non-equivariantK-theory, but it is equal to (1− q1)(1− q2) equivariantly.

Theorem 2.4 ([20]) There exist operators (2.44) satisfying (2.45), with Ek given
by (2.36).

In particular, the operators E0,...,0 all commute with each other, and they will
give rise to the K-theoretic version of the positive half of the Heisenberg algebra
from Sect. 2.2.1. It is possible to extend Theorem 2.4 to the double of all algebras
involved (thus yielding the full Heisenberg) and details can be found in [20].

Given operators λ,μ : KM → KM×S , let us define the following operations:

λμ|Δ = composition

{

KM
μ−→ KM×S

λ�IdS−−−→ KM×S×S
IdM�Δ∗−−−−−→ KM×S

}

[λ,μ]red = ν : KM → KM×S if ν is such that [λ,μ] = Δ∗(ν)
Note that if ν as above exists, it is unique because the map Δ∗ is injective (it has a
left inverse, i.e. the projection S × S → S to one of the factors).

Exercise 2.10 For arbitrary λ,μ, ν : KM → KM×S , prove the following versions
of associativity, the Leibniz rule, and the Jacobi identity, respectively:

(λμ|Δ)ν|Δ = λ(μν|Δ)|Δ
[λ,μν|Δ]red = [λ,μ]redν|Δ + μ[λ, ν]red|Δ
[λ, [μ, ν]red]red + [μ, [ν, λ]red]red + [ν, [λ,μ]red]red = 0

fnklberg@gmail.com



72 A. Neguţ

Theorem 2.4 is an explicit way of saying that the operators (2.44) give rise to an
action of the algebra E onKM in the sense that there exists a linear map:

Φ : E → Hom(KM ,KM×S), Φ(ek1,...,kn ) = Ek1,...,kn

satisfying the following properties for any x, y ∈ E :

Φ(xy) = Φ(x)Φ(y)|Δ (2.46)

Φ

( [x, y]
(1− q1)(1− q2)

)

= [Φ(x),Φ(y)]red (2.47)

The parameters q1 and q2 act on KS as multiplication with the Chern roots of the
cotangent bundleΩ1

S . The reason why the left-hand side of (2.47) makes sense is that
for any x, y which are sums of products of the generators an,k of E , relations (2.37)
and (2.38) imply that [x, y] is a multiple of (1− q1)(1− q2).

2.3 Proving the Main Theorem

2.3.1 Hecke Correspondences: Part 2

As we have seen, the operatorsEk of (2.44) are defined by using the correspondence
Z1 and the line bundle L on it, as in (2.36). To define the operators Ek1,...,kn in
general, we will need to kick up a notch the Hecke correspondences from Sect. 2.1.5,
and therefore we will recycle a lot of the notation therein. Thus, M is still the
moduli space of stable sheaves on a smooth projective surface S with fixed r and c1,
satisfying Assumptions A and S from Sect. 2.1.4. Consider:

Z2 =
{

(F ′′ ⊂ F ′ ⊂ F )
}

⊂
⊔

c2∈Z
M(r,c1,c2+2) ×M(r,c1,c2+1) ×M(r,c1,c2)

(2.48)

We will denote the support points of flags as above by x, y ∈ S, so that the closed
points of Z2 take the form (F ′′ ⊂x F ′ ⊂y F ). Consider:

Z2 ⊃ Z•2 =
{

(F ′′ ⊂x F ′ ⊂x F ), x ∈ S
}

In other words, Z•2 is the closed subscheme of Z2 given by the condition that the two
support points coincide. These two schemes come endowed with maps:

2
π+ π−

1 1

•
2

π•+ π•−

1 1 (2.49)
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where:

π+(F ′′ ⊂F ′ ⊂ F ) = (F ′′ ⊂F ′), π−(F ′′ ⊂F ′ ⊂ F ) = (F ′ ⊂F )

The maps π•± are given by the same formulas as π±. The maps π± and π•± can be
realized as explicit projectivizations, as in (2.19). To see this, let us consider the
following coherent sheaves on Z1 × S:

W ′ = (p+ × IdS)∗(W ), V ′ = (p+ × IdS)∗(V ),

U ′ = (p+ × IdS)∗(U ) on Z1 × S
W ′• = (p+ × pS)∗(W ), V ′• = (p+ × pS)∗(V ),
U ′• = (p+ × pS)∗(U ) on Z1

More explicitly, we have:

U ′
(F ′⊂yF ′′,x) =F ′|x U ′•

(F ′⊂yF ′′) = F ′|y
and V ′,W ′,V ′•,W ′• are described analogously.

Exercise 2.11 The scheme Z2 is the projectivization of U ′, in the sense that:

PZ1×S(U ′) ∼= Z2
π−−→ Z1

Pull-backs do not preserve short exact sequences in general, because tensor
product is not left exact. As a consequence of this phenomenon, it turns out that
the short exact sequence (2.20) yields short exact sequences:

0→ W ′ → V ′ → U ′ → 0 on Z1 × S (2.50)

0→ W ′•

L ′• → V ′• → U ′• → 0 on Z1 (2.51)

where L ′• is an explicit line bundle that the interested reader can find in Proposition
2.18 of [20]. Therefore, Exercise 2.11 implies that we have diagrams:

2 ∼= P 1(U )
ι

π−

P 1×S(V )

ρ

1 × S
(2.52)
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•
2

∼= P 1(U
•
)

ι
•

π•−

P 1(V
•
)

ρ
•

1 (2.53)

The ideals of the embeddings ι′ and ι′• are the images of the maps:

ρ′∗(W ′)⊗ O(−1)→ ρ′∗(V ′)⊗ O(−1)→ O (2.54)

ρ′•∗
(

W ′•

L ′•
)

⊗ O(−1)→ ρ′•∗(V ′•)⊗ O(−1)→ O (2.55)

on PZ1×S(V ′) and PZ1(V
′•), respectively. The following Proposition, analogous to

Exercise 2.7, implies that the embeddings ι′ and ι′• are regular. In other words, the
compositions (2.54) and (2.55) are duals of regular sections of vector bundles. The
regularity of the latter section would fail if we used W ′• instead of W ′•/L ′•.

Proposition 2.1 ([20]) Under Assumption S, Z2 and Z•2 have dimensions:

const + r(c2 + c′′2)+ 2 and const + r(c2 + c′′2)+ 1

respectively, where c2 and c′′2 are the locally constant functions on the scheme Z2 =
{(F ′′ ⊂ F ′ ⊂ F )} which keep track of the second Chern classes of the sheaves F
and F ′′. Moreover, Z2 is an l.c.i. scheme, while Z•2 is smooth.

It is also easy to describe the singular locus of Z2: it consists of closed points
(F ′′ ⊂x F ′ ⊂y F ) where x = y and the quotient F/F ′′ is a split length 2 sheaf
(so isomorphic to a direct sum of two skyscraper sheaves Cx ⊕ Cx).

2.3.2 The Operators

There are two natural line bundles on the schemes Z2 and Z•2, denoted by:

L1,L2

2,
•
2
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whose fiber over a point {(F ′′ ⊂x F ′ ⊂y F )} are the one-dimensional spaces
F ′
x/F

′′
x , Fy/F ′

y , respectively. The maps of (2.17) and (2.49) may be assembled
into:

L k1 L k2 L kn−1 L kn

•
2

π•+ π•−
. . .

π•+ π•−

•
2

π•+ π•−

1

p+×pS

1 1 1

p−

M × S M

for any k1, . . . , kn ∈ Z. The above diagram of smooth schemes, morphisms and line
bundles gives rise to an operator:

KM
Ek1,...,kn−−−−−→ KM×S

by tracing pull-back and push-forward maps from bottom right to bottom left, and
whenever we reach the scheme Z1 for the i–th time, we tensor by the line bundle
L kn+1−i . In symbols:

Ek1,...,kn = (p+ × pS)∗
(

L k1 · π•+∗π•∗−
(

L k2 · π•+∗ . . . π•∗−
(

L kn−1 · π•+∗π•∗−
(

L kn · p∗−
)

. . .
)

(2.56)

and we claim that these are the operators whose existence was stipulated in
Theorem 2.4. Recall that this means that the operators Ek1,...,kn defined as above
should satisfy relation (2.45). In the remainder of this lecture, we will prove the said
relation in the case n = 1, i.e. we will show that:

[Ek,Ed ] = Δ∗
({

∑

k≤a<d Ea,k+d−a if d > k

−∑

d≤a<k Ea,k+d−a if d < k

)

(2.57)

The proof of (2.45) for arbitrary n follows the same principle, although it uses some
slightly more complicated geometry and auxiliary spaces.
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Remark 2.3 Note that even the case k = d of (2.57), i.e. the relation [Ek,Ek] = 0,
is non-trivial. The reason for this is that the commutator is defined as the difference
of the following two compositions, as in Theorem 2.2:

KM
Ek−→ KM×S

Ek�IdS−−−−−→ KM×S×S

KM
Ek−→ KM×S

Ek�IdS−−−−−→ KM×S×S
IdKM�swap−−−−−−−−→ KM×S×S

Recall that “swap” is the permutation of the two factors of S × S, and the reason
why we apply it to the second composition is that, in a commutator of the form
[Ek,Ed ], we wish to ensure that each operator acts in one and the same factor of
KS×S . However, the presence of “swap” implies that the two compositions above
are not trivially equal to each other. Their equality is claimed in (2.57).

Remark 2.4 When k1 = . . . = kn = 0, the composition (2.56) makes sense in
cohomology instead of K-theory. In this case, it is not hard to see that the resulting
operator E0,...,0 is equal to An of (2.29). Indeed, this follows from the fact that the
former operator is (morally speaking) given by the correspondence:

{

(F ′ = F0 ⊂x F1 ⊂x . . . ⊂x Fn−1 ⊂x Fn = F , length Fi/Fi−1 = 1)
}

(2.58)

between the moduli spaces parametrizing the sheaves F and F ′, while the rank r
generalization of the latter operator [1] is given by the correspondence:

{

(F ′ ⊂x F , length F/F ′ = n)
}

(2.59)

Since the correspondence (2.58) is generically 1-to-1 over the correspon-
dence (2.59), this implies that their fundamental classes give rise to the same
operators in cohomology. This argument needs care to be made precise, because the
operator E0,...,0 is not really given by the fundamental class of (2.58), but by some
virtual fundamental class that arises from the composition of operators (2.56).

2.3.3 The Moduli Space of Squares

In order to prove (2.57), let us consider the space Y of quadruples of stable sheaves:

F

x

F

y

x

F

F

y

(2.60)
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where x, y ∈ S are arbitrary. There are two maps π↓, π↑ : Y → Z2 which forget
the top-most sheaf and the bottom-most sheaf, respectively, and line bundles:

L1,L2,L
′

1,L
′

2 ∈ Pic(Y )

whose fibers are given by the spaces of sections of the length 1 skyscraper sheaves
F ′/F ′′, F/F ′, ˜F ′/F ′′, F/ ˜F ′, respectively. Note that:

L1L2 ∼= L ′
1L

′
2 (2.61)

Proposition 2.2 ([20]) The scheme Y is smooth, of the same dimension as Z2.

It is easy to see that the map Y
π↓−→ Z2 is surjective. The fiber of this map above

a closed point (F ′′ ⊂x F ′ ⊂y F ) ∈ Z2 consists of a single point unless x = y and
F/F ′′ is a split length 2 sheaf, in which case the fiber is a copy of P1 (Exercise:
prove this). Since the locus where x = y and F/F ′′ is precisely the singular locus
of Z2, it should not be surprising that Y is a resolution of singularities of Z2. The
situation is made even nicer by the following.

Proposition 2.3 ([20]) We have π↓∗ (OY ) = OZ2 andRiπ↓∗ (OY ) = 0 for all i > 0.

The Proposition above can be proved by embedding Y into PZ2(N ), where N is
the rank 2 vector bundle on Z2 with fibers given by Γ (S,F/F ′′), and the ideal of
this embedding can be explicitly described. As a consequence, one can compute the
derived direct images of π↓ directly.

Exercise 2.12 Find a map of line bundles L1
σ−→ L ′

2 on Y with zero subscheme:

Z•2 ∼=
{

x = y,F ′ = ˜F ′} ⊂ Y

2.3.4 Proof of Relation (2.57)

Consider the diagram:

π+ π−

p− p+

M

(F ⊂x F ⊂y F )

F )

π+ π−

(F ⊂x F )

p−

(F ⊂y

p+

F
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It is clear that the square is Cartesian, but in fact more is true. We know that π− and
p− are compositions of a regular embedding following by a projective bundle. But
comparing (2.21), (2.22) with (2.52), (2.54), we see that the regular embedding and
the projective bundle in question are the same for the two maps π− and p−, and this
implies that the base change formula holds:

p∗− ◦ p+∗ = π+∗ ◦ π∗− : KZ1 → KZ1

As a consequence of the formula above, one can show the following:

Exercise 2.13 Prove the equality Ek ◦ Ed = (λ+ × λS×S)∗
(

L k
1 L

d
2 · λ∗−

)

, where:

2

λ+
λS×S

λ−

M S × S M

(F ⊂x F ⊂y F )

F (x, y) F

Exercise 2.13 and Proposition 2.3 implies that:

Ek ◦Ed = (μ+ × μS×S)∗
(

L k
1 L

d
2 · μ∗−

)

Ed ◦ Ek = (μ+ × μS×S)∗
(

L ′
1
d
L ′

2
k · μ∗−

)

where the maps are as follows:

Y
μ+

μS×S

μ−

M S × S M

square (60)

F (x, y) F

Therefore, assuming d ≥ k without loss of generality, we have:

[Ek,Ed ] = (μ+ × μS×S)∗
( [

L k
1 L

d
2 −L ′

1
d
L ′

2
k
]

· μ∗−
)

(2.62)

= (μ+ × μS×S)∗
(

[

1− L1

L ′
2

]

[

L k
1 L

d
2 +L k+1

1

L d
2

L ′
2

+ . . .+L d−1
1

L d
2

L ′
2
d−k−1

]

· μ∗−
)

where the last equality is a consequence of (2.61).
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Exercise 2.14 Show that Exercise 2.12 implies that:

(μ+ × μS×S)∗
([

1− L1

L ′
2

]

·L e
1 L

f

2 L ′
1
g
L ′

2
h · μ∗−

)

= (ν+ × νS×S)∗
(

L
e+g
1 L

f+h
2 · ν∗−

)

where the latter maps are as follows:

•
2

ν+
νS

ν−

M S M

(F ⊂x F ⊂x F )

F x F

In terms of the maps (2.17) and (2.49), we have ν± = p± ◦ π•±|Z•2 .

Formula (2.62) and Exercise 2.14 imply formula (2.57).

2.3.5 Toward the Derived Category

The definition of the operators Ek1,...,kn in (2.56) immediately generalizes to the
derived category (replacing all pull-back and push-forward maps by the correspond-
ing derived inverse and direct image functors), thus yielding functors:

DM

˜Ek1,...,kn−−−−−→ DM×S

The proof of the previous Subsection immediately shows how to interpret for-
mula (2.57). Still assuming d ≥ k, it follows that there exists a natural transfor-
mation of functors:

˜Ed ◦ ˜Ek → ˜Ek ◦ ˜Ed
whose cone has a filtration with associated graded object:

d−1
⊕

a=k
Δ∗

(

˜Ea,k+d−a
)

Relation (2.45) has a similar generalization to the derived category, and the proof
uses slightly more complicated spaces instead of Y . The corresponding formula
leads one to a categorification ˜E of the algebra E , which acts on the derived
categories of the moduli spaces M . The complete definition of ˜E is still work in
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progress, but when complete, it should provide a categorification of relations (2.37)–
(2.38), and in particular a categorification of the Heisenberg algebra (2.26).
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7. E. Gorsky, A. Neguţ, J. Rasmussen, Flag Hilbert schemes, colored projectors and Khovanov-
Rozansky homology. arXiv:1608.07308

8. L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface.
Math. Ann. 286, 193–207 (1990)

9. I. Grojnowski, Instantons and affine algebras I: The Hilbert scheme and vertex operators. Math.
Res. Lett. 3(2), 1995

10. R. Hartshorne, in Algebraic Geometry. Graduate Texts in Mathematics, vol. 52 (Springer, New
York, 1977), 978-0-387-90244-9

11. D. Huybrechts, M. Lehn, in The Geometry of Moduli Spaces of Sheaves, 2nd edn. (Cambridge
University Press, Cambridge 2010). ISBN 978-0-521-13420-0

12. J. Lipman, A. Neeman, Quasi-perfect scheme-maps and boundedness of the twisted inverse
image functor. Illinois J. Math. 51(1), 209–236 (2007)

13. J. Lurie, in Derived Algebraic Geometry XII: Proper Morphisms, Completions, and the
Grothendieck Existence Theorem. http://www.math.harvard.edu/~lurie/papers/DAG-XII.pdf

14. A. Minets, in Cohomological Hall Algebras for Higgs Torsion Sheaves, Moduli of Triples and
Sheaves on Surfaces. arXiv:1801.01429

15. D. Mumford, J. Fogarty, F. Kirwan, in Geometric Invariant Theory. Ergebnisse der Mathematik
und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vo. 34, 3rd edn.
(Springer, Berlin, 1994)

16. H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann.
Math. (second series) 145(2), 379–388 (1997)

17. H. Nakajima, Quiver varieties and finite dimensional representations of quantum affine
algebras. J. Am. Math. Soc. 14, 145–238 (2001)
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Chapter 3
Notes on Matrix Factorizations
and Knot Homology

Alexei Oblomkov

Abstract These are the notes of the lectures delivered by the author at CIME in
June 2018. The main purpose of the notes is to provide an overview of the techniques
used in the construction of the triply graded link homology. The homology is the
space of global sections of a particular sheaf on the Hilbert scheme of points on the
plane. Our construction relies on existence on the natural push-forward functor for
the equivariant matrix factorizations, we explain the subtleties on the construction in
these notes. We also outline a proof of the Markov moves for our homology as well
as some explicit localization formulas for knot homology of a large class of links.

3.1 Introduction

The discovery of the knot homology [18] of the links in the three-sphere moti-
vated search for the homological invariants of the three-manifolds. Heegard-Floer
homology were discovered soon after Khovanov’s seminal work, this homology
categorifies the simplest case of WRT invariants (the invariants at the fourth root of
unity). More general WRT invariants are beyond of the reach of currently available
technique. Thus it is very important to reveal as much structure of the Khovanov
homology as it is possible.

The mathematical construction of WRT invariants relies on special properties
JW projectors at the root of unity, thus it is natural to search for the analogues
of the projectors in the knot homology theory. If the algebraic variety is endowed
with the action of the torus with the zero-dimensional locus, the algebraic geometry
offers a natural decomposition of the category of coherent sheaves into the mutually
orthogonal pieces [13], hence we have a natural analog of the JW projectors. In the
paper [25] we constructed a map from the braid group to the category of coherent
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sheaves on the free Hilbert scheme of points on the plane such that Markov moves
properties hold for the vector space of the global sections of the sheaf. Thus we have
geometric candidate for the JW projectors for such knot homology.

The quest for a geometric interpretation of JW projectors was the main moti-
vation for the author of the notes to develop the connection between sheaves on
the Hilbert scheme of points and knot homology. The localization type formulas
were first encountered by the author in the joint work with Jake Rasmussen and
Vivek Shende [28] where the homology of the torus knots were connected with the
topology of the Hilbert schemes of points on the homogeneous plane singularities
(see also [10]). However, back in 2012 it was a total mystery to the author how one
would expand the relation in [28], [10] beyond the torus knots.

The connection was demystified by Lev Rozansky who was armed with the
physics intuition as well as very deep understanding of already existing knot
homology theories. As it turned out the searched after knot homology has a natural
interpretation within the framework of the Kapustin-Saulina-Rozansky topological
quantum field theory for the cotangent bundles to the Lie algebras as targets [22].
A purely mathematical theory underlying the physical predictions is laid out in the
series of our joint papers [21, 23–26]. To provide an introduction to the technique
of these paper is the main goal of this note.

3.1.1 Main Result

Let us state a consequence of the results from the papers that requires the minimal
amount of new notations. We need some notations, though. Throughout the paper
we use notation DperG (X) for the derived category of two-periodic G-equivariant
complexes of coherent sheaves on X, where G is a group acting on X. For us
particularly important case of the pair X,G is Hilbn(C2), Tsc = C∗ × C∗ with
the scaling action of Tsc on C2. The dual B to the universal quotient bundle B∨,
B∨|I = C[x, y]/I will be used in our construction of the knot homology.

We also use notation Brn for the braid group on n strands. For an element β ∈
Brn we can form a link in the three-sphere L(β) by closing the braid in the most
natural way.

Theorem 3.1 ([25]) There is a constructive procedure that assigns to a braid β ∈
Brn an object Sβ ∈ DperTsc (Hilbn(C2)) such that

1. Sβ·FT = Sβ ⊗ det(B) where FT is the full twist on n strands
2. The triply graded vector space HHH(β) := H ∗(Sβ ⊗ Λ•B) is an isotopy

invariant of the closure L(β).
3. The character of representation of the anti-diagonal torus C∗a ⊂ Tsc on the

spaces H ∗(Sβ ⊗ΛiB) is the HOMFLYPT polynomial:

∑

i

aiχq(C
∗
a,H

∗(Sβ ⊗ΛiB)) = HOMFLYPT(L(β)). (3.1)
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3 Notes on Matrix Factorizations and Knot Homology 85

The constructive procedure in the statement of the theorem relies on the theory of
matrix factorizations and in this note we try to present a gentle introduction into the
aspects of the theory of matrix factorizations that are necessary for our theory. The
author of the notes learned theory of matrix factorizations from discussions with
Lev Rozansky, as result the exposition here is quite biased.

The first construction of the triply-graded categorification of the HOMFLYPT
invariant appeared in the seminal work of Mikhail Khovanov and Lev Rozansky
[19]. It is natural to conjecture that the homology discussed in these notes coincide
with the Khovanov-Rozansky homology.

3.1.2 Outline

After defining and motivating the category of matrix factorizations in Sect. 3.3 we
spend some time discussing the most common type of matrix factorizations, Koszul
matrix factorizations in Sect. 3.2.2. The Koszul matrix factorizations are in many
regards are analogous to the complete intersection rings and in this section we
make this analogy more precise by providing a method for constructing a matrix
factorization from a complete intersection (see Lemma 3.8).

Next we discuss Knorrer periodicity in Sect. 3.2.3 which is the most basic
equivalence relation between the categories of matrix factorizations. After that we
explain how one would perform push-forward and pull-back between the categories
of matrix factorizations, see Sect. 3.2.4. Finally, in the Sect. 3.2.5 we introduce the
equivariant matrix factorizations, in particular we explain the difference between
the strongly and weakly equivariant matrix factorizations, later we only work with
the weakly equivariant matrix factorizations since the weak equivariance allows us
to define the equivariant push-forward.

In Sect. 3.3 we explain the key point of our construction, the homomorphism
from the braid groupBrn to the category of matrix factorizations. First in Sect. 3.3.1
we introduce our main space X with a potential W and define a convolution
algebra structure 	 on the category MFGLn×B2(X ,W), here B ⊂ GLn is the
subgroup of upper-triangular matrices. There is a slightly smaller space X̄ with
the potential W such that Knorrer periodicity identifies MFGLn×B2(X ,W) with
MFB2(X̄ ,W) and it intertwines the convolution product 	 with the convolution
product 	̄, we provide details in Sect. 3.3.2. After setting notations for the ordinary
and affine braid groups in Sect. 3.3.3 we state main properties of the homomor-
phisms:

Φ : Brn→ MFB2(X̄ st ,W), Φaff :Br
aff
n → MFB2(X̄ ,W),

the pull-back along jst : X st → X intertwines these homomorphisms. We
postpone the details of the construction of homomorphismsΦ,Φaff till Sect. 3.5.
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In Sect. 3.4 we explain how one can use the homomorphism Φ to construct
the triply-graded homology. The free Hilbert scheme FHilbf reen consists of the B-

conjugacy classes FHilbf reen = F̃Hilb
f ree

n /B pairs of matrices with a cyclic vector
such that the monomials of the matrices applied to the vector span Cn. There is

an embedding of the B-cover F̃Hilb
f ree

n of the free Hilbert scheme into the stable

version of our space je : F̃Hilb
f ree → X̄ st and we define the homology group:

H
i (β) := H

∗(j∗e (Φ(β)⊗ΛiB)B),

where B is the tautological vector bundle over the free Hilbert scheme. It is shown
in [26] that the graded dimension of the total sum

HHH(β) = ⊕iH i(β),

is a triply graded knot invariant of the closure L(β). We explain in Sect. 3.4.2 why
this invariant specializes to the HOMFLYPT invariant after we forget about one of
the gradings. Here Hi(β) is Hb+i (β) with b = b(β) being some specific function
of β.

The free Hilbert scheme FHilbf reen := F̃Hilb
f ree

n /B is smooth and it contains

the usual flag Hilbert scheme FHilbn ⊂ FHilbf reen which is very singular and not
even a local complete intersection. The relation of our homology with the honest
flag Hilbert scheme is the following:

Sβ = je(Φ(β))B ∈ DperTsc (FHilbf reen ), supp
(

H (Sβ)
) ⊂ FHilbn,

where H (Sβ) is the sheaf on FHilbf reen which is the homology of the two-periodic
complex Sβ .

The most non-trivial part of the statement from [26] is the fact that the homology
HHH(β) does not change under the Markov move that decreases the number of
strands in the braid. In Sect. 3.7 we give a sketch of a proof of the Markov move
invariance, we rely in this section on the material of Sect. 3.5 where the details of
the construction of the braid group action are given.

In the Sect. 3.6 we do a simplest computation in the convolution algebra of the
category of matrix factorizations in the case n = 2. We show that in MFB2(X̄ st ,W)

we have an isomorphism

C• 	 C• � q4C• ⊕ q2C•, (3.2)

which is the geometric counter-part of the fact that the square of the non-trivial
Soergel bimodule for n = 2 is equal to the double of itself [33].
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Finally, in Sect. 3.8 we define the categorical Chern functor:

CHstloc : MFGLn×B2(X st ,W)→ D
per

Tsc
(Hilbn(C

2)).

We also discuss the properties of the conjugate functor HCstloc (see [27] for the
original construction) which is monoidal. The sheaf Sβ in the theorem 3.1 is
given by:

Sβ = CHstloc(Φ(β)).

The advantage of the sheaf Sβ over Sβ is that it is a Tsc-equivariant periodic
complex of sheaves on the smooth manifold Hilbn(C2) thus we can hope to
use Tsc-localization technique for computation of the knot homology. There are
some technical issues with using the localization method directly as we discuss
in Sect. 3.8.5. We also explain how these technical issues could be circumvented
and in particular how one can apply this technique to compute the homology
of the sufficiently positive elements of Jucy-Murphy algebra. This formula was
conjectured in [11].

3.1.3 Other Results

We also would like to mention that many relevant aspects of matrix factorizations
are not covered in these notes. The reader could consult papers the original papers of
Orlov for the connections with mirror symmetry [29] and paper [5] for some further
discussion of the foundations of the theory of matrix factorizations and of course
the seminal paper of Khovanov and Rozansky [19] where the first construction of
a triply graded homology of the links was proposed. The constructions in these
notes are motivated by the physical theory of Kapustin, Saulina, Rozansky [17], the
reader is encouraged to read wonderful, basically purely mathematical paper [16]
where the role of matrix factorizations in the theory is explained.

Let us also mention that there is a slightly different perspective on the geometric
interpretation of the knot homology due to Gorsky, Neguţ, Hogencamp and
Rasmussen [9, 11]. Their approach takes the theory of Soergel bimodules and the
corresponding link homology construction [19] as a starting point of theory, rather
than the categories of matrix factorizations discussed in these notes. Finally, let us
mention the recent work of Hogencamp and Elias on categorical diagonalization
[6–8] which provides a categorical setting for the localization in the category of
coherent sheaves.

These notes by no means were intended as a comprehensive survey of the theory
of matrix factorization or of the theory of knot homology. It is a merely is a slightly
extended version of the three lectures that the author delivered at 2018 CIME. Thus
the author asks for an apology from the colleagues whose contributions to the fields
are not covered in the notes.
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3.2 Matrix Factorizations

In this section we remind some basic facts about matrix factorizations. There are
many excellent expositions on matrix factorizations [4, 5, 29] and we choose not to
concentrate on the usual matrix factorizations, instead we aim to define equivariant
matrix factorizations and subtleties that arise in an attempt to define such. We also
discuss Koszul matrix factorizations and the (equivariant) push-forward functor
from [26].

3.2.1 Motivation and Examples

Given an affine variety Z and a function F on it we define [4] the homotopy
category MF(Z , F ) of matrix factorizations whose objects are complexes of
projective R = C[Z ]-modules M0,M1, M = M0 ⊕ M1 equipped with the
differential

D = (D0,D1) ∈ HomR(M0,M1)⊕ HomR(M1,M0)

such that D2 = F . Thus MF(Z , F ) is a triangulated category as explained in
subsection 3.1 of [29]. We first discuss the objects of this category, then discuss
various properties of the morphism spaces.

It is convenient to think about a matrix factorization (M0 ⊕ M1,D) as a two-
periodic curved complex:

. . .
D1−→ M0 D0−→ M1 D1−→ M0 D0−→ M1 D1−→ . . . , D2 = F.

Let us look at several basic examples of matrix factorizations and discuss briefly a
motivation for the definition of the matrix factorizations by Eisenbud [4].

Example 3.2 Z = C, R = C[x] and F = x5. The two-periodic complex

. . .
x2−→ R

x3−→ R
x2−→ R

x3−→ R
x2−→ . . .

is an example of an object in MF(C, x5). Here and everywhere below we underline
to indicate zeroth homological degree.

Example 3.3 Z = C
2, R = C[x, y], F = xy. The two-periodic complex

. . .
x−→ R

y−→ R
x−→ R

y−→ R
x−→ . . .

is an example of an object in MF(C2, xy).
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The last example has the following geometric interpretation. A module over a
quotient ringQ = C[x, y]/(xy), in general, does not have a finite free resolution. In
particular,M = C[x] = Q/(y) is a module overQ with an infinite free resolution:

0 ← M
y←− Q x←− Q y←− Q x←− . . . .

This resolution has a two-periodic (half-infinite) tail which is a reduction of the
matrix factorization from Example 3.3. As explained in [4] this phenomenon is more
general.

We felt obliged to mention these results on matrix factorizations to honor the
origins of the subjects. For further development of Eisenbud theory the reader is
encouraged to look at [4] as well as [29–31] where the connection with the B-model
theory is developed. However, the hypersurfaces defined by the potentials from [26]
do not have a clear geometric interpretation and it is unclear to us how to make
use of Eisenbud’s theory in our case. Instead, more elementary homological aspect
of the matrix factorizations is important to us. Roughly stated, the very important
observation is that all important homological information about the category of
matrix factorizations is contained in a neighborhood of the critical locus of the
potential. We explain more rigorous statement below.

It is a good place to define morphisms in the category of matrix factorizations.
Suppose we have two objects F1 = (M1,D1),F2 = (M2,D2) ∈ MF(Z , F ) then
we define:

Hom(F1,F2) := {Ψ ∈ HomR(M1,M2)|Ψ ◦D1 = D2 ◦ Ψ }.

Since the modulesMi are Z2-graded we have a decomposition

Hom(M1,M2) = ⊕i∈Z2 Homi (M1,M2)

where Homi (M1,M2)⊂HomiR(M1,M2) :=HomR(M0
1 ,M

i
2)⊕HomR(M1

1 ,M
i+1
2 ).

We say that an element Ψ ∈ Hom0(F1,F2) is homotopic to zero: Ψ ∼ 0 if
there is h ∈ Hom1(M1,M2) such that Ψ = h ◦ D1 + D2 ◦ h. Finally, we define
the space of morphisms as a set of equivalence classes with respect to the homotopy
equivalence:

Hom(F1,F2) := Hom0(F1,F2)/ ∼

Now that we defined the objects and morphisms between the objects we can state
Orlov’s theorem

Theorem 3.4 ([29]) MF(Z , F ) has a structure of the triangulated category.

To complete our discussion of the homological properties of category of matrix
factorizations with respect to their critical locus let us observe that an element f ∈R
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naturally gives an element of Hom(F ,F ). For simplicity let us also assume that
Z ⊂ Cm. Then we have a well-defined ideal Icrit ⊂ R generated by ∂F

∂xi
, i =

1, . . . ,m and xi are coordinates on Cm.

Proposition 3.5 For any F ∈ MF(Z , F ) and f ∈ Icrit we have:

Hom0(F ,F ) � f ∼ 0.

Proof It is enough to show the statement for f = ∂F
∂xi

. Thus the statement follows
since:

∂F

∂xi
= ∂D
∂xi
D +D∂D

∂xi
,

and ∂D
∂xi

provides the needed homotopy. ��
The last proposition implies that the category of matrix factorizations is model for

the coherent sheaves on possibly singular critical locus of the potential F . When the
potential is linear in some set of variables then there is an equivalence between with
the DG category of the critical locus (see Sect. 3.8.3 for more discussion). Another
manifestation of this principle is the shrinking lemma, see Lemma 3.16 below.

3.2.2 Koszul Matrix Factorizations

The matrix factorizations from Examples 3.3 and 3.2 are examples of so called
Koszul matrix factorizations which we discuss in this subsection. Suppose we have
a presentation of the potential as sum F =∑n

i=1 aibi . Then we define Koszul matrix
factorization K[a,b] ∈ MF(Z , F ) as

K[a,b] := (Λ•V,D), D =
∑

i

aiθi + bi ∂
∂θi
,

where V = 〈θ1, . . . , θn〉. Examples 3.2, 3.3 are K[x2, x3] and K[x, y], respectively.
Koszul matrix factorizations are tensor products of the simplest Koszul matrix

factorizations. Indeed, given two matrix factorizations F1 ∈ MF(Z , F1), F2 ∈
MF(Z , F2) the tensor product F1 ⊗ F2 ∈ MF(Z , F1 + F2) is the matrix
factorization (M1⊗M2,D1⊗1+1⊗D2). Thus we have K[a,b] = ⊗ni=1K[ai, bi].

An object of the category of matrix factorizations with the zero potential is a
two-periodic complex of coherent sheaves. We denote by Dper(Z ) the derived
category of the two-periodic complexes of coherent sheaves. Given two matrix
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factorizations F1 ∈ MF(Z , F ), F2 ∈ MF(Z ,−F) their tensor product is an
element of Dper (Z ) and Proposition 3.5 implies:

Corollary 3.6 For F1 ∈ MF(Z , F ), F2 ∈ MF(Z ,−F) homology of the two-
periodic complex F1 ⊗F2 are supported on the zero locus of Icrit .

Now let us discuss a method for constructing interesting Koszul matrix factoriza-
tions. Let us first recall some basic properties of the usual Koszul complexes. The
sequence f1, . . . , fm ∈ R is called regular if fi is not a zero-divisor in the quotient
R/(f1, . . . , fi−1) for i = 1, . . . , n. It is known that the regularity does not depend
on the order of the elements. There is an equivalent way to define regularity with
the help of Koszul complexes. The Koszul complex of f is:

K[f] = (Λ•V,D), D =
∑

i

fi
∂

∂θi
.

Proposition 3.7 The sequence (f1, . . . , fm) is regular if and only if:

Hi(K[f]) = 0, i > 0, H 0(K(f)) = R/(f1, . . . , fm).

Given a finite complex of (C•, d) of free R-modules we denote by [C•]per
the two-periodic folding of the complex. It is an element of MF(Z , 0). Suppose
F ∈ (f1, . . . , fm) and the sequence f is regular. Then the lemma below shows that
there is an essentially unique way to deform the complex [K[f]]per to an element of
MF(Z , F ). We outline a proof of the lemma to demonstrate the key deformation
theory technique that is used in many constructions of [26].

Lemma 3.8 Suppose F ∈ (f1, . . . , fm) and the sequence f is regular.Then the
Koszul complex

C• = K[f] = {C0
d+1←− C1

d+2←− . . . d
+
m←− Cm}

could be completed with the opposite differentials d−i : C• → C•+2i−1, i > 0 such
that

(C•, d+ + d−) ∈ MF(Z , F ).

Proof We will construct the differentials di iteratively. Since the sequence is regular
we have a homotopy equivalence:

(C•, d+) ∼ Q = R/(f1, . . . , fm). (3.3)

Let us also introduce notation for the graded pieces of the space of homomorphisms:

Homi (C•, C•) = ⊕jHom(Cj , C−i+j ).
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The element F is an endomorphism of (C•, d+) and because of (3.3) it is
homotopic to zero by the lemma assumptions. Thus there is a homotopy h(−1) ∈
Hom−1(C•, C•) such that F = h(1) ◦ d+ + d+ ◦ h(1). Let us set D(1) = d+ + h(1).

The differentialD(1) is the first order approximation for our desired extension. It
is not a differential of a matrix factorization if m > 1 since:

(D(1))2 = F + (h(1))2.

However the correction term (h(1))2 is actually an element of Hom−2
d+(C•, C•), that

is it commutes with the differential d+:

d+ ◦ h(1) ◦ h(1) = Fh(1) − h(1) ◦ d+ ◦ h(1) = Fh(1) + h(1) ◦ h(1) ◦ d+ − h(1)F
= h(1) ◦ h(1) ◦ d+.

Thus again by (3.3) there is a homotopy h(3) ∈ Hom−3(C•, C•) such that h(1) =
d+ ◦ h(3) + h(3) ◦ d+. We define the next approximation to the needed differential
D(3) = d+ + h(1)+ h(3). AgainD(3) is not a differential of a matrix factorization if
m > 3:

(D(1) + h(3))2 = F + (h(1))2 +D(1) ◦ h(3) + h(3) ◦D(1) + (h(3))2

= F + h(1) ◦ h(3) + h(1) ◦ h(3) + (h(3))2.

The correction term belongs to Hom<−3(C•, C•) and the degree four piece of this
term is h(1) ◦ h(3) + h(3) ◦ h(1). Let us check that h(1) ◦ h(3) + h(3) ◦ h(1) ∈
Hom−4

d+(C•, C•):

d+ ◦ h(1) ◦ h(3) = Fh(3) − h(1) ◦ d+ ◦ h(3) = Fh(3) − (h(1))3 − h(1) ◦ h(3) ◦ d+,
d+ ◦ h(3) ◦ h(1) = h(1) ◦ h(1) ◦ h(1) − h(3) ◦ d+ ◦ h(1)

= (h(1))3 − h(3)F − h(3) ◦ h(1) ◦ d+.

By the same argument as before homomorphism h(1)◦h(3)+h(3)◦h(1) is homotopic
to zero and let denote by h(5) ∈ Hom−5(C•, C•). The next approximation for our
differential is D(5) = d+ + h(1) + h(3) + h(5) and

(D(5))2 − F ∈ Hom<−5(C•, C•).

Similar method could be applied to show that correction term of degree six is
homotopic to zero and thus we have the next order correction. Clearly, this iterative
procedure terminates since our complex is of finite length. More formal proof of the
lemma is given in lemma 2.1 in [26]. ��
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Remark 3.9 The only assumption on the complex (C•, d+) that we used is that

Hom<0
d+(C•, C•) ∼ 0. (3.4)

Thus we can strengthen our lemma a little bit by replacing regularity of the Koszul
complex by condition (3.4)

It is natural to ask how canonical is the matrix factorization (C•, d+ + d−)
constructed in the previous lemma. Clearly, our method relies on existence of
various homotopies which are not unique. However, one can show that the outcome
of the iterative procedure in the proof is unique up to an isomorphism. We invite
reader to try to apply the iterative method of the previous lemma to show lemma
below, a formal proof could be found in lemma 3.7 in [26].

Lemma 3.10 Let (C•, d+) be a complex of free modules with non-trivial terms in
degrees from 0 to l ≥ 0 such that Hom<0

d+(C•, C•) ∼ 0. Suppose we have two matrix
factorizations

F = (C•, d+ + d−), F̃ = (C•, d+ + d̃−) ∈ MF(Z , F ),

where d− = ∑

i≥0 d
−
i , d̃− = ∑

i≥0 d̃
−
i , d−i , d̃

−
i ∈ Hom−2i−1(C•, C•) and

F ∼ 0 as endomorphism of (C•, d+). Then there is Ψ = 1 + ∑

i>0 Ψi , Ψi ∈
Hom−i (C•, C•) such that

Ψ ◦ (d+ + d−) ◦ Ψ−1 = d+ + d̃−.

Because of the previous lemma we will use notation KF (f1, . . . , fm) ∈
MF(Z , F ) for a matrix factorization from Lemma 3.8.

3.2.3 Knorrer Periodicity

The critical locus of the potential F = xy is a point x = y = 0 so according to
our principle we expect that the category of matrix factorizations with the potential
xy is equivalent to the category of matrix factorizations on the point. It is indeed
the case and the equivalence is known under the name Knorrer periodicity and we
explain the details below.

Let us denote the Koszul matrix factorization K[x, y] ∈ MF(C2, xy) by K. Then
there is an exact functor between triangulated categories:

Φ : MF(pt, 0)→ MF(C2, xy), (M,D) �→ (M ⊗ C[x, y],D)⊗ K.

The functor in the inverse direction is the restriction functor:

Ψ : MF(C2, xy)→ MF(pt, 0), (M,D) �→ (M|x=0,D|x=0).
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These functors are mutually inverse. Indeed, to show that Ψ ◦Φ = 1 we observe

that K|x=0 = [C[y] y←− C[y]] which is a sky-scarper at y = 0. We leave it as an
exercise to a reader to show Φ ◦ Ψ = 1.

More generally, if Z = Z0 × C2
x,y and F0 ∈ C[Z0] then there is a functor:

Φ : MF(Z0, F0)→ MF(Z , F0 + xy) given by tensoring with the Koszul complex
K[x, y].
Theorem 3.11 ([29]) The functorΦ is an equivalence of triangulated categories.

3.2.4 Functoriality

Now we will use previously developed technique to define the push-forward functor
for matrix factorizations. First we discuss a construction of the push-forward for an
embedding map j : Z0 ↪→ Z where Z = Spec(S) and Z0 = Spec(R), R = S/I .

Theorem 3.12 ([26]) Suppose we have F ∈ S, F0 = j∗(F ) and I = (f1, . . . , fm)

where fi form a regular sequence. Then there is well-defined functor of triangulated
categories:

j∗ : MF(Z0, F0)→ MF(Z , F )

Given an element F = (M,D) ∈ MF(Z0, F0) let us explain the construction
of the element j∗(F ) = ˜F ∈ MF(Z , F ). Since M = Rn for some n we can lift
it to the module ˜M = Sn as well as the differential to a Z2-graded endomorphism
˜D ∈ HomS(Sn, Sn), ˜D|Z0 = D. Since fi form a regular sequence we can form
Koszul complex K(f1, . . . , fm) = (Λ•Cn ⊗ S, dK) which is a resolution of S-
module R. The technique similar to the method of Lemma 3.8 yields

Lemma 3.13 ([26]) There are d−ij : M̃⊗ΛiCn⊗S → M̃⊗ΛjCn⊗S, i−j ∈ Z>0
such that

˜F = (Λ•Cn ⊗ S, dK + ˜D + d−) ∈ MF(Z , F )

and the element ˜F is unique up to isomorphism.

To complete proof of the Theorem 3.12 we need to show that the construction of
j∗ extends to the spaces of the morphisms between the objects and to the space of
homotopies between the morphism, it is shown in lemma 3.7 of [26] and we refer
interested reader there for the technical details.

Unlike push-forward the pull-back functor is rather elementary. Suppose we have
f : Z → Z0 a morphism of affine varieties and F = f ∗(F0), F0 ∈ C[Z0]. Since
pull-back of a free module is free, we have a well-defined functor:

f ∗ : MF(Z0, F0)→ MF(Z , F ).
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Finally, let us remark that the above defined pull-back and push-forward functors
satisfy the smooth base change relation for commuting squares of maps.

3.2.5 Equivariant Matrix Factorizations

A matrix factorization is a natural object attached to a function on the affine mani-
folds. However limiting yourself to only affine manifolds is frustrating, so one would
like to develop a theory of matrix factorizations on quasi-projective manifolds.
There are some proposals in the literature for such theory, see for example [32].

In our work [26] we chose an approach that is probably more limited than the
one from [32] but has an advantage of being computation friendly. So in [26] to
explore matrix factorizations on the manifolds that are group quotients of the affine
manifolds, we develop theory of equivariant matrix factorizations. In this section we
motivate our definitions and outline the ingredients of the construction from [26].

Suppose the affine manifold Z has an action of an algebraic group H and F ∈
C[Z ]H . Then one can say the matrix factorization F = (M,D) ∈ MF(Z , F ) is
strongly H -equivariant if M is endowed with H -representation structure and the
differentialD is H -equivariant. Let us denote the set of strongly equivariant matrix
factorizations by MFstrH (Z , F ). By requiring the morphism between the objects
and the homotopies between the morphisms to be H -equivariant we can provide
MFstrH (Z , F ) with the structure of the triangulated category.

However, the notion of strong equivariance turns out to be too restrictive. Indeed,
one of the key tools in our arsenal is the extension Lemma 3.8 together with the
push-forward functor. So we would like to have an analog of Lemma 3.8 in the
equivariant setting, for the H -equivariant ideal I = (f1, . . . , fm) with fi forming
a regular sequence. Unfortunately, the proof of the lemma fails in the strongly
equivariant setting because we can not guarantee that the homotopies in the iterative
construction of proof are equivariant. If H is reductive, we can save the proof by
averaging along the maximal compact subgroup ofH . But for a non-reductive group
we need a weaker notion of equivariance that relies on the Chevalley-Eilenberg
complex explained below.

Let h be the Lie algebra ofH . Chevalley-Eilenberg complex CEh is the complex
(V•(h), d) with Vp(h) = U(h)⊗C Λ

ph and differential dce = d1 + d2 where:

d1(u⊗ x1 ∧ · · · ∧ xp) =
p
∑

i=1

(−1)i+1uxi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xp,

d2(u⊗x1∧· · ·∧xp) =
∑

i<j

(−1)i+ju⊗[xi, xj ]∧x1∧· · ·∧ x̂i ∧· · ·∧ x̂j ∧· · ·∧xp,

Let us denote byΔ the standard map h→ h⊗ h defined by x �→ x ⊗ 1+ 1⊗ x.
Suppose V and W are modules over the Lie algebra h then we use notation
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V⊗ΔW for the h-module which is isomorphic to V ⊗ W as a vector space, the
h-module structure being defined by Δ. Respectively, for a given h-equivariant

matrix factorization F = (M,D) we denote by CEh⊗
Δ

F the h-equivariant

matrix factorization (CEh⊗
Δ

F ,D + dce). The h-equivariant structure on CEh⊗
Δ

F
originates from the left action of U(h) that commutes with right action on U(h)
used in the construction of CEh.

A slight modification of the standard fact that CEh is the resolution of the trivial

module implies that CEh⊗
Δ

M is a free resolution of the h-moduleM .
Now we about to define a new category whose objects we refer to as weakly

equivariant matrix factorizations. The objects of this category MFh(Z ,W) are
triples:

F = (M,D, ∂), (M,D) ∈ MF(Z ,W)

where M = M0 ⊕ M1 and Mi = C[Z ] ⊗ V i , V i ∈ Modh, ∂ ∈
⊕i>jHomC[Z ](Λih ⊗ M,Λjh ⊗ M) and D is an odd endomorphism D ∈
HomC[Z ](M,M) such that

D2 = F, D2
tot = F, Dtot = D + dce + ∂,

where the total differential Dtot is an endomorphism of CEh⊗
Δ

M , that commutes
with the U(h)-action.

Note that we do not impose the equivariance condition on the differential D
in our definition of matrix factorizations. On the other hand, if F = (M,D) ∈
MFstr(Z , F ) is a matrix factorization with D that commutes with h-action on M
then (M,D, 0) ∈ MFh(Z , F ).

There is a forgetful map for the objects of the categories Ob(MFh(Z , F )) →
Ob(MF(Z , F )) that forgets about the correction differentials:

F = (M,D, ∂) �→ F ' := (M,D).

Given two h-equivariant matrix factorizations F = (M,D, ∂) and F̃ =
(M̃, D̃, ∂̃) the space of morphisms Hom(F , F̃ ) consists of homotopy equivalence

classes of elements Ψ ∈ HomC[Z ](CEh⊗
Δ

M,CEh⊗
Δ

M̃) such that Ψ ◦ Dtot =
D̃tot ◦ Ψ and Ψ commutes with U(h)-action on CEh⊗

Δ

M . Two maps Ψ,Ψ ′ ∈
Hom(F , F̃ ) are homotopy equivalent if there is

h ∈ HomC[Z ](CEh⊗
Δ

M,CEh⊗
Δ

M̃)

such that Ψ − Ψ ′ = D̃tot ◦ h − h ◦ Dtot and h commutes with U(h)-action on

CEh⊗
Δ

M .
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Given two h-equivariant matrix factorizations F = (M,D, ∂) ∈ MFh(Z , F )

and F̃ = (M̃, D̃, ∂̃) ∈ MFh(Z , F̃ ) we define F ⊗ F̃ ∈ MFh(Z , F + F̃ ) as an
equivariant matrix factorization (M ⊗ M̃,D + D̃, ∂ + ∂̃).

We define an embedding-related push-forward in the case when the subvariety

Z0
j
↪−→ Z is the common zero of an ideal I = (f1, . . . , fn) such that the functions

fi ∈ C[Z ] form a regular sequence. We assume that the Lie algebra h acts on Z
and I is h-invariant. In section 3 of [26] we use technique similar to the proof of
lemma 3.8 to show that there is a well-defined functor:

j∗ : MFh(Z0,W |Z0) −→ MFh(Z ,W),

for any h-invariant elementW ∈ C[Z ]h.
For our construction of the convolution algebras we also need to define the

equivariant push-forward along a projection. Suppose Z = X × Y , both Z
and X have h-action and the projection π : Z → X is h-equivariant. Then
for any h invariant element w ∈ C[X ]h there is a functor π∗ : MFh(Z , π

∗(w))→
MFh(X , w) which simply forgets the action of C[Y ].

Finally, let us discuss the quotient map. The complex CEh is a resolution of
the trivial h-module by free modules. Thus the correct derived version of taking
h-invariant part of the matrix factorization F = (M,D, ∂) ∈ MFh(Z ,W), W ∈
C[Z ]h is

CEh(F ) := (CEh(M),D + dce + ∂) ∈ MF(Z /H,W),

where Z /H := Spec(C[Z ]h) and use the general definition for an h-module V :

CEh(V ) := Homh(CEh,CEh⊗
Δ

V ).

3.3 Braid Groups and Matrix Factorizations

In this section we explain a construction for an action of the finite and affine braid
groups on the particular categories of the matrix factorizations from [26]. First
we explain a construction for the convolution algebra on our categories of matrix
factorizations. Then we explain a categorification of the homomorphism from the
affine braid group to the finite braid group from [24].

3.3.1 Convolution Product

Let us first motivate the definition of the space that host our categories of matrix
factorizations. Somewhat abusing notations we introduce space

√
X = gln×GLn×
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n where n stands for the Lie algebra of strictly upper-triangular matrices. We omit
the sub-index since the size of the matrices is clear from the context, we also use G
and g for GLn and gln in this situation.

The space
√
X has the action of the group of upper-triangular matricesB andG:

(h, b) · (X, g, Y ) = (Adh(X), hgb,Ad−1
b Y ), (h, b) ∈ G× B.

The flag variety Fl is a quotient G/B since every full flag can be moved into
the standard flag byG-action and B is the stabilizer group of the standard flag. The
groupB acts on the tangent space to Fl at the point of standard flag and as B-module
the tangent space is equal n. Thus the B-quotient of

√
X is naturally isomorphic to

the cotangent bundle to the flag variety:

√
X /B = g× T ∗Fl

ThusG-action on
√
X induces the G-action on g× T ∗Fl.

The space T ∗Fl is symplectic and the G-action preserves the symplectic form.
Thus there is a moment map μ : T ∗Fl → g∗. The trace identifies g with g∗ and we
can think of the moment map as a g-linear B-invariant function:

μ : √X → C, μ(X, g, Y ) = Tr(XAdgY ).

Now we can define our main space where the convolution algebra dwells. The
space

√
X has B-invariant projection to the first factor and our main space is the

fibered product:

X := √X ×g

√
X = g×G× n×G× n.

The space X has a action of G × B2 that is induced from the G × B action
on
√
X , respectively the projections p1, p2 on two copies of

√
X are G × B2-

equivariant. The group B is a semi-direct product B = T � U of the torus T and
the group of upper-triangular matrices U .

We define our main category to be:

MFn := MFG×B2(X ,W), W = p∗1(μ)− p∗2(μ),

where we require the weak U2-equivariance and strong G × T 2-equivariance in
our category. The strong G × T 2-equivariance implies that all differentials in the
complexes areG×T 2-invariant. We can combine strongG×T 2-equivariance with
the weakU2-equivariance since the Chevalley-Eilenberg complex forU2 isG×T 2-
invariant.
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There is an action of Tsc = C∗ × C∗ = C∗a × C∗t on the space
√
X and the

induced action on X :

(λ, μ) · (X, g, Y ) = (λ2 ·X, g, λ−2μ2Y ).

The potential W is not Tsc-invariant, it has weight 2 with respect to the torus C∗t .
We require the differentials in a curved complex from MFn to have weight 1 with
respect to C∗t and it has weight 0 with respect to C∗a . To simplify notations we do
not use any extra indices to indicate such Tsc-equivariance. We also use notation

qktl ·F

for the matrix factorization F with the k-twisted C∗a-action and l-twisted C∗t -action.
Since the space X hasB2-action we can also twist a matrix factorization F by a

representation of this group. Given a characters χl and χr of the left and right factor
in B2, the twisted matrix factorization is denoted by

F 〈χl, χr 〉.

To define convolution product in category MFn we introduce the convolution
space Xcon which is a fibered product:

Xcon :=
√
X ×g

√
X ×g

√
X = g× (G× n)2.

There are three G × B3-equivariant maps π12, π23, π13 and the convolution
product is defined by the predictable formula:

F 	 G := π13∗(CEn(2)(π
∗
12(F )⊗ π∗23(G ))

T (2) ).

Since the projections πij are smooth we can apply the base change formula.
Hence the standard argument, that could be found in [3], implies that thus defined
product is associative.

3.3.2 Knorrer Reduction

We can apply Knorrer periodicity discussed in Sect. 3.2.3 to reduce the size of our
working space X . Indeed, the pair of space and potential:

X̄ = b×G× n, W(X, g, Y ) = Tr(XAdg(Y ))
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is B2-equivariant with respect to the action:

(b1, b2) · (X, g, Y ) = (Adb1X, b1gb2,Ad−1
b2
Y ).

Thus we can define the category of weakly U2-equivariant and strongly T 2-
equivariant matrix factorizations:

MFn := MFB2(X̄ ,W).

To illustrate some of our methods we provide a proof for the equivalence in

Proposition 3.14 There is an equivalence of categories:

Ψ : MFn → MFn.

Proof First we observe that the group G acts freely on the space X hence we can
take quotient by this group. The quotient can be implemented with help of the map:

X
q−→ X ◦ := g× n×G× n, q(X, g1, Y1, g2, Y2) = (Ad−1

g1
X,Y1, g

−1
1 g2, Y2).

The potentialW ◦(X, Y1, g, Y2) = Tr(X(Y1−AdgY2)) is the pull-backW0 = q∗(W)
and the pull-back provides an equivalence q∗ : MFn � MFB2(X 0,W0).

To complete our proof we fix notations for the truncation of a square matrix X:

X = X+ +X−−, X+ ∈ n, Xt−− ∈ b.

The potential W ◦ can be written as a sum of W and a quadratic term and thus we
can apply Knörrer periodicity:

Tr(X(Y1 − AdgY2)) = Tr((X+ +X−−)(Y1 − AdgY2)) = −Tr(X+(AdgY2))+
Tr(X−−(Y1 − AdgY2)) = −Tr(X+(AdgY2))+ Tr(X−−(Y1 − AdgY2)+).

The entries of matrices X−−, Y1 − (AdgY2)+ are coordinates in the direction
transversal to the subspace X̄ with coordinates X+, g, Y2 and Knorrer periodicity
allows us to remove the quadratic term in the last formula. ��

It is explained in [26] that the category MFn has a monoidal structure 	̄ such that
that the functor Ψ sends it to the monoidal structure 	.

3.3.3 Braid Groups

The affine braid group Br
aff
n is the group of braids whose strands may also

wrap around a ‘flag pole’. The group is generated by the standard generators σi ,
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i = 1, . . . , n− 1 and a braid Δn that wraps the last stand of the braid around the
flag pole:

σi =
i+1 i

and Δn =

The defining relations for these generators are

σn−1 ·Δn · σn−1 ·Δn = Δn · σn−1 ·Δn · σn−1,

σi ·Δn = Δn · σi, i < n− 1,

σi · σi+1 · σi = σi+1 · σi · σi+1, i = 1, . . . , n− 2,

σi · σj = σj · σi, |i − j | > 1.

The mutually commuting Bernstein-Lusztig (BL) elements Δi ∈ Br
aff
n are

defined as follows:

Δi = σi · · · σn−2σn−1Δnσn−1σn−2 · · · σi =
i

The finite braid group Brn is a subgroup of the affine braid group with the
generators σi , i = 1, . . . , n − 1. Other words, we do not allow the braids to go
around the pole.

There is a natural homomorphism fgt : Br
aff
n → Brn, geometrically it is defined

by removing the flag pole. In particular we have:

fgt(Δn) = 1, fgt(Δi) = δi, i = 1, . . . , n− 1.

The inclusion discussed above if in : Brn → Br
aff
n is a section of the flag pole

forgetting map: frg ◦ if in = 1.

3.3.4 Braid Action

In this section we outline a construction of the homomorphisms from the (affine)
braid group to our convolution algebras of matrix factorizations. For a geometric
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counter-part of the map fgt we need to introduce stable versions of our categories
of matrix factorizations.

Let us define the stable locus X̄ st,• ⊂ X̄ × V to be a set of quadruples
(X, g, Y, v) that satisfy an open condition:

C〈(Ad−1
g X)+, Y 〉v = V. (3.5)

There is a natural projection πV : X̄ ×V → X̄ and there is an open embedding
map jst : X̄ st → X̄ where X̄ st = πV (X̄ •,st ). This map induces the pull-back
map:

j∗st : MFn → MF
st

n := MFB2(X̄ st ,W).

It is shown in [26, Lemma 13.3] that the category MFn has a natural structure of
convolution algebra. The main results of the papers [24, 26] play a crucial role in
the construction of the knot invariant in the next section.

Theorem 3.15 There are homomorphisms of algebras:

Φ : Brn → (MF
st

n , 	̄), Φaff : Br
aff
n → (MFn, 	̄).

Moreover, the pull-back j∗st is the homomorphism of the convolution algebras and

j∗st ◦Φaff = Φ ◦ fgt.

The fact that the pull-back morphism is an algebra homomorphism relies on the
following shrinking lemma, for a proof see lemma 12.3 in [26].

Lemma 3.16 Suppose X is a quasi-affine variety and F = (M,D) ∈ MF(X,W),
W ∈ C[X]. The elements of C[X] act on MF(X,W) by multiplication. Let us
assume that the elements of the ideal I = (f1, . . . , fm) ⊂ C[X] act by zero-
homotopic endomorphisms on F and Z′ ⊂ X is the zero locus of I . Let Z ⊂ X be a
subvariety defined by J = (g1, . . . , gn) such that Z∩Z′ = ∅. Then F is homotopic
to F |X\Z as matrix factorization over C[X].

In particular the lemma implies that we can shrink our ambient space to any
open neighborhood of the critical locus of the potential and such operation does not
change the corresponding category of matrix factorizations.

Let us also remark that there is another construction for the affine braid group
action on the similar category of matrix factorizations in [2] but the precise relation
between our construction and result of this paper is not known to the author.
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3.4 Knot Invariants

3.4.1 Geometric Trace Operator

Let bn, nn be Lie algebras of the group of upper, respectively strictly-upper
triangular n × n matrices. The free nested Hilbert scheme FHilbf reen is a B × C∗-
quotient of the sublocus F̃Hilb

f ree

n ⊂ bn × nn × Vn of the cyclic triples

F̃Hilb
f ree

n = {(X, Y, v)|C〈X,Y 〉v = Vn},

here Vn = C
n. The usual nested Hilbert scheme FHilbn is a subvariety of FHilbf reen ,

it is defined by the condition that X,Y commute.

Remark 3.17 There is a bit of confusion in the notations, what we denote here by
FHilbn is denoted in [26] by Hilb1,n and by FHilbn(C) in [11].

The torus Tsc = C∗ × C∗ acts on FHilbf reen by scaling the matrices. We denote
by DperTsc (FHilbf reen ) a derived category of the two-periodic complexes of the Tsc-

equivariant quasi-coherent sheaves on FHilbf reen . Let us also denote by B∨ the

descent of the trivial vector bundle Vn on F̃Hilb
f ree

n to the quotient FHilbf reen .
Respectively, B stands for the dual of B∨. Below we construct for every β ∈ Brn
an element

Sβ ∈ DperTsc (FHilbf reen )

such that space of hyper-cohomology of the complex:

H
k(Sβ) := H(Sβ ⊗ΛkB)

defines an isotopy invariant.

Theorem 3.18 ([26]) For any β ∈ Brn the doubly graded space

Hk(β) := H
(k+writh(β)−n−1)/2(Sβ)

is an isotopy invariant of the braid closure L(β).

The variety F̃Hilb
f ree

n embeds inside X via a map je : (X, Y, v)→ (X, e, Y, v).
The diagonal copyB = BΔ ↪→ B2 respects the embedding je and since j∗e (W) = 0,
we obtain a functor:

j∗e : MFB2
n
(X

st
,W) = MF

st

n → MFBΔ(F̃Hilb
f ree

n , 0).
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Respectively, we get a geometric version of “closure of the braid” map:

L : MFB2
n
(X

st
,W) = MF

st

n → D
per
Tsc
(FHilbf reen ).

The main result of [26] could be restated in more geometric terms via geometric
trace map:

T r : Brn→ D
per
Tsc
(FHilbf reen ), T r(β) := ⊕kL(Φ(β)⊗ΛkB).

The above mentioned complex Sβ is the complex L(Φ(β)). The differentials
in the complex Sβ are of degree t thus the differentials are invariant with
respect to the anti-diagonal torus Ta . Hence the forgetful functor χ :
D
per
Tsc
(FHilbf reen ) → D

per
Ta
(FHilbf reen ) could be composed with K-theory functor

K : DperTa (FHilbf reen ) → KTa (FHilbf reen ). The composite functor K ◦ χ is closely
related to decategorification and the classical Ocneanu-Jones trace, we discuss the
Ocneaunu-Jones trace TrOJ and related theorem of Markov in the next subsection.

Theorem 3.19 ([26]) The composition H◦T r :Brn → D
per
Tsc
(pt) categorifies the

Jones-Oceanu trace:

TrOJ (β) = dima,q K ◦ χ ◦H ◦T r(β),

where the q-grading comes from Ta-action and a-grading from the exterior powers
of B.

3.4.2 OJ Trace and Markov Theorem

As we discussed before every link L in R3 is isotopic to the closure of some braid
L = L(β), β ∈ Brn. On the other hand it is clear that such a presentation is not
unique. Markov theorem describes the non-uniqueness explicitly and thus provides
an algebraic description of the set L of the isotopy equivalence classes of the links.

Theorem 3.20 The closure operation L identifies the set L of isotopy class of links
in S3 and the set of equivalence classes:

⋃

n

Brn/ ∼

where the equivalence relation is generated by the elementary equivalences:

α · β ∼ β · α, α, β ∈ Brn (3.6)

Brn+1 � α · σ±1 ∼ α, α ∈ Brn. (3.7)
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If we have homomorphism Tr from the braid group to some field F that respects
the relations (3.7) then the value Tr(β) ∈ F is an isotopy invariant of the closure
L(β). In practice it is hard to classify such homomorphisms, however the great
discovery of Ocneanu and Jones is that one can classify such homomorphisms if
we pass to a quotientHn of the braid group.

The Hecke algebraHn is generated by gi , i = 1, . . . , n− 1 modulo relations:

gigi+1gi = gi+1gigi+1, i = 1, . . . , n− 2,

gi − g−1
i = q − q−1, i = 1, . . . , n− 1.

There is a natural algebra homomorphism π : Brn → Hn, σi �→ gi . It is shown
in [15] that there is a unique homomorphism TrOJ :⋃n Hn→ Q(a, q) that satisfies
relations (3.7) and normalizing relation

TrOJ (1) = a − a
−1

q − q−1 .

The corresponding invariant is TrOJ (β) ∈ Q(a, q) is also known as HOMFLYPT
invariant, HOMFLYPT(β).

Thus the formula (3.1) from the introduction and Theorem 3.19 state that there is
a specialization of the graded dimension of HHH(β) that becomes a HOMFLYPT
invariant. Let us recall that the space HHH(β) up to some elementary grading shift
is equal:

H
∗(j∗e (Φ(β)⊗Λ•B)B).

This space naturally has four gradings: ∗, • and Tsc-grading. However, only three
of these gradings are invariant with respect to the Markov moves: ∗ is not preserved
by the moves. The first grading is •, we call it a-grading, since it is responsible
for the a-variable in the HOMFLYPT polynomial specializations. The other two
gradings come from Tsc-action:

deg(Xij ) = q2, deg(Yij ) = q−2t−2.

To specialize to the HOMFLYPT polynomial we need to set t = −1 or more
geometrically, we need to restrict the torus Tsc-action on the space HHH(β) to the
action of the anti-diagonal torus, we denote the specialized category by MF

st,a

n .
To be more precise, the category MFst,an is a category of matrix factorizations on

X
st

with the potentialW which are B2
n-weakly equivariant,G× T 2 × Ta-strongly

equivariant.
As we mentioned before this torus is special because under this specialization

the differentials in the curved complexes from MF
st

n become torus invariant, hence
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there is a well-defined functor:

K : MF
st,a

n → KTa (MFst,an ).

This K-theory functor turns the homotopy equivalence (3.10) into the relation:

[C+] = q−1([C‖] − [C•〈−χ1,−χ1〉]).

Thus the combination of the relations (3.2) and (3.12), (3.13) imply the quadratic
relation in the Hecke algebra.

The Markov move relations (3.7) hold for the invariant HHH(β) and in Sect. 3.7
we discuss the main idea of our proof of the Markov moves for HHH. We need
some details of the braid group action construction for the Markov move argument,
therefore we outline the construction in the next section.

3.5 Geometric Realization of the Affine Braid Group

3.5.1 Induction Functors

The standard parabolic subgroup Pk has Lie algebra generated by b and Ei+1,i ,
i �= k. Let us define space X (Pk) := b×Pk×n and let us also use notationX (GLn)
for X . There is a natural embedding īk : X (Pk) → X and a natural projection
p̄k : X (Pk) → X (GLk) × X (GLn−k). The space X (GLk) × X (GLn−k) is

equipped with a B2
k ×B2

n−k-invariant potentialW
(1)+W(2) which is a sum of pull-

backs of the potentials W along the projection on the first and the second factors.
Moreover, we have:

ī∗k (W) = p̄∗k (W(1) +W(2)). (3.8)

Since the embedding īk satisfies the conditions for existence of the push-forward
and the relation (3.8) between the potentials holds, we can define the induction
functor:

indk := īk∗ ◦ p̄∗k : MFB2
k
(X (GLk),W)×MFB2

n−k
(X (GLn−k),W)

→ MFB2
n
(X (GLn),W)

Similarly we define space X
st
(Pk) ⊂ b×Pk × n×V as an open subset defined

by the stability condition (3.5). The last space has a natural projection map

p̄k :X st
(Pk)→X (GLk)×X

st
(GLn−k)
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and the embedding īk : X st
(Pk) → X

st
(GLn) and we can define the induction

functor:

indk := īk∗ ◦ p̄∗k : MFB2
k
(X (GLk),W)×MFB2

n−k
(X

st
(GLn−k),W)

→ MFB2
n
(X

st
(GLn),W)

It is shown in section 6 (proposition 6.2) of [26] that the functor indk is a
homomorphism of the convolution algebras:

indk(F1 �F2)	̄indk(G1 � G2) = indk(F1	̄G2 �F2	̄G2).

To define the non-reduced version of the induction functors one needs to introduce
the space X ◦(GLn) = g × GLn × n × n which is the slice to GLn-action on the
space X . In particular, the potentialW on this slice becomes:

W(X, g, Y1, Y2) = Tr(X(Y1 − Adg(Y2))).

Similarly to the case of the reduced space, one can define the space X ◦(Pk) :=
g × Pk × n × n to be a subvariety of X ◦(GLn) and the corresponding maps ik :
X ◦(Pk)→X ◦(GLn), pk :X ◦(Pk)→X ◦(GLk)×X ◦(GLn−k). Thus we get a
version of the induction functor for non-reduced spaces:

indk := ik∗ ◦ p∗k : MFB2
k
(X (GLk),W) ×MFB2

n−k
(X (GLn−k),W)

→ MFB2
n
(X (GLn),W)

It is shown in proposition 6.1 of [26] that the Knörrer functor is compatible with
the induction functor:

indk ◦ (Φk ×Φn−k) = Φn ◦ indk.

3.5.2 Generators of the Finite Braid Group Action

Let us defineB2-equivariant embedding i :X (Bn)→X , X (B) := b×B×n. The
pull-back ofW along the map i vanishes and the embedding i satisfies the conditions
for existence of the push-forward i∗ : MFB2(X (Bn), 0) → MFB2(X (GLn),W).
We denote by C[X (Bn)] ∈ MFB2(X (Bn), 0) the matrix factorization with zero
differential that is concentrated only in even homological degree. As it is shown in
proposition 7.1 of [26] the push-forward

1̄n := i∗(C[X (Bn)])
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is the unit in the convolution algebra. Similarly, 1n := Φ(1̄n) is also a unit in non-
reduced case.

Let us first discuss the case of the braids on two strands. The key to our
construction of the braid group action in [26] is the following factorization in the
case n = 2:

W(X, g, Y ) = y12(2g11x11 + g21x12)g21/ det,

where det = det(g) and

g =
[

g11 g12

g21 g22

]

, X =
[

x11 x12

0 x22

]

, Y =
[

0 y12

0 0

]

Thus we can define the following strongly equivariant Koszul matrix factorization:

C̄+ := (C[X ] ⊗Λ〈θ〉,D) ∈ MFstr
B2 (X ,W),

D = g12y12

det
θ +

(

g11(x11 − x22)+ g21x12

)

∂

∂θ
,

whereΛ〈θ〉 is the exterior algebra with one generator.
This matrix factorization corresponds to the positive elementary braid on two

strands. Using the induction functor we can extend the previous definition to the
case of the arbitrary number of strands. For that we introduce an insertion functor:

Indk,k+1 : MFB2
2
(X (GL2),W)→ MFB2

n
(X (GLn),W)

Indk,k+1(F ) := indk+1(indk−1(1̄k−1 ×F )× 1̄n−k−1),

and similarly we define non-reduced insertion functor

Indk,k+1 : MFB2
2
(X (G2),W)→ MFB2

n
(X (Gn),W).

Thus we define the generators of the braid group as follows:

C̄ (k)+ := Indk,k+1(indk−1(C̄+)), C̄ (k)+ := Indk,k+1(indk−1(C+)).

Section 11 of [26] is devoted to the proof of the braid relations between these
elements:

C̄ (k+1)
+ 	̄C̄ (k)+ 	̄C̄

(k+1)
+ = C̄ (k)+ 	̄C̄

(k+1)
+ 	̄C̄ (k)+ ,

C (k+1)
+ 	 C (k)+ 	 C (k+1)

+ = C (k)+ 	 C (k+1)
+ 	 C (k)+ .
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Let us now discuss the inversion of the elementary braid. In view of inductive
definition of the braid group action, it is sufficient to understand the inversion in the
case n = 2.

Thus we define:

C− := C+〈−χ1, χ2〉 ∈ MFB2(X (GL2),W),

where χ1, χ2 are the standard generators of the character group of C∗ ×C∗ = T ⊂
B2. The definition of C̄− is similar. It could be shown that the definition of C− is
actually symmetric with respect to the left-right twisting:

C− = C+〈χ2,−χ1〉.

Theorem 3.21 ([26]) We have:

C+ 	 C− = 12. (3.9)

3.6 Sample Computation

In this section we would like to show an example of the convolution algebra
computations. But before we would expand a little bit our discussion of the basic
matrix factorizations in the case of n = 2.

3.6.1 Basic Matrix Factorizations of Rank 2

We have shown in the previous section that the potential W is a product of three
factors and we used this fact to define the matrix factorization C̄+. However, it is
clear that there are two more natural matrix factorizations for this potential:

C̄‖ := (C[X ]⊗Λ〈θ〉,D‖, 0, 0), C̄• := (C[X ]⊗Λ〈θ〉,D•, 0, 0) ∈ MFB2(X ,W),

D‖ = g21

det
θ+y12x̃0

∂

∂θ
, D• = g21

det
x̃0θ+y12

∂

∂θ
, x̃0 = g11(x11−x22)+g21x12.

One of the matrix factorizations is actually a cone of the morphism between the
other two:

[C̄‖ φ−→ C̄•〈−χ1,−χ1〉] ∼ qt · C̄+ (3.10)
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with map φ defined by

t−1 · R χ2,−χ1 R χ2,−χ1

R R 0,−χ1 ,

g21

1

g21x̃0y12x̃0

x̃0

y12

where R = C[X ]. This relation is crucial for our discussion of the connection with
the Oceanus-Jones traces

3.6.2 Details on the Convolution Product

The convolution product inside the category MFB2(X ,W) is a bit tricky to define
and we refer reader to our paper [26] where the convolution product is constructed
and used for the computations for n = 3. On the other hand the space X is bigger
than the space X but the construction of the convolution is more straightforward.
The space X ◦ :=X /GLn = g× n× GLn × n is intermediate between these two
spaces and we choose to work with this slightly bigger space to make our exposition
simpler.

The space X ◦ and the relevant potential W ◦ appeared already in the proof of
Proposition 3.14. Let us spell out the definition of the convolution structure for
elements F ,G ∈ MFB2(X ◦,W ◦):

F 	 G := π◦13∗(CE(π◦∗12 (F )⊗ π◦∗23 (G ))),

where we used the convolution space X ◦
cnv := g× n×GLn× n×GLn × n and the

B3-equivariant maps are

π◦12(X, Y1, g12, Y2, g23, Y3) = (X, Y1, g12, Y2),

π◦23(X, Y1, g12, Y2, g23, Y3) = (Adg12X,Y2, g23, Y3),

π◦13(X, Y1, g12, Y2, g23, Y3) = (X, Y1, g12g
−1
23 , Y3).

To write the versions C‖,C•,C+ of the matrix factorizations from above we
need more precise notations for the Koszul matrix factorizations. We use the matrix
notation

⎡

⎢

⎣

a1 b1 θ1
...
...
...

am bm θm

⎤

⎥

⎦
.
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for the matrix factorization from MF(X, F ) with the differential D =∑m
i=1 aiθi +

bi
∂
∂θi

acting on C[X] ⊗Λ•[θ ].
Let us also fix coordinates on the space X ◦ = g× b×G× b:

X =
[

x0 + tr/2 x1

x−1 −x0 + tr/2

]

, Yi =
[

0 yi
0 0

]

g =
[

a11 a12

a21 a22

]

,

where tr = trX. We also denote by δ1, δ2 the generators of Lie (U2), U2 ⊂ B2. We
also only indicate non-trivial actions of δi , that is if no action of δi is given then this
action is trivial.

With this conventions we have the matrix factorization of the identity braid has
the form

C‖ =
[

x−1 y1 − y2a
2
11 θ1

y2x̃0 a21 θ2

]

, δ1θ1 = −2y2a11θ2.

The blob matrix factorization has the form

C• =
[

x−1 y1 − y2a
2
11 θ1

a21x̃0 y2 θ ′2

]

, δ1θ1 = −2a21a11θ
′
2

or equivalently

C• =
[

x−1 y1 θ
′
1

−a2
11x−1 + a21x̃0 y2 θ

′
2

]

, θ ′1 = θ1 + a2
22θ

′
2, δ1θ

′
1 = 0

The matrix factorization of the positive intersection is

C+ =
[

x−1 y1 − y2a
2
11 θ1

x̃0 a21y2 θ2

]

, δ1θ1 = −2a11θ2. (3.11)

3.6.3 Computation

Now we are ready to do our sample computation.

Proposition 3.22 In the convolution algebra of MFGLn×B2(X ,W) we have:

C•〈0, χ1〉 	 C•〈0, χ1〉 = C•〈χ1, χ1〉 ⊕ C•〈χ2, χ1〉.

Proof Let us fix some notation for the coordinates on the spaces that appear in our
constructions. For the group elements in the product X ◦

conv = g× n× GL2 × n ×
GL2 × n we use notations a, b and for the non-zero elements of upper-triangular
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matrices in the product we use y1, y2, y3. We also add prime to the conjugate of X:
X′ = AdaX.

Thus the matrix factorization C ′′ = π◦∗12 (C•)⊗ π◦∗23 (C•) is the following Koszul
matrix factorization:

C ′′ =

⎡

⎢

⎢

⎢

⎣

x−1 y1 − y2a
2
11 θ1

a21(2x0a11 + x1a21) y2 θ2

x′−1 y2 − y3b
2
11 θ3

b21(2x′0b11 + x′1b21) y3 θ4

⎤

⎥

⎥

⎥

⎦

, δ1θ1 = −2a11θ2, δ2θ3 = −2b11θ4.

By making suitable linear change of θ1 �→ θ1 + 2a11θ2, θ2 �→ θ2 and θ3 �→ θ3 +
b11θ4, θ4 �→ θ4 we can make the first simplification of this matrix factorization:

C ′′ =

⎡

⎢

⎢

⎣

x−1 y1 θ1

−a2
11x−1 + a21(2x0a11 + x1a21) y2 θ2

x ′−1 y2 θ3

−b2
11x

′−1 + b21(2x ′0b11 + x ′1b21) y3 θ4

⎤

⎥

⎥

⎦

, δiθj = 0.

We use the third row to remove y2 from the other rows:

C ′′ =

⎡

⎢

⎢

⎣

x−1 y1 θ1

−a2
11x−1 + a21(2x0a11 + x1a21) 0 θ ′2

0 y2 θ3

−b2
11x

′−1 + b21(2x ′0b11 + x ′1b21) y3 θ4

⎤

⎥

⎥

⎦

, θ ′2 = θ2 − θ3.

Since θ3 is B2 invariant element, we can now remove the third row altogether and
work over the ring R′ = C[X ◦

conv]/(y2).
We can also use the relation

−b2
11x

′−1 + b21(2x
′
0b11 + x ′1b21) = −c2

11x−1 + c21(2x0c11 + x1c21)

to arrive to

C• 	 C• =
⎡

⎣

x−1 y1 θ1

−a2
11x−1 + a21(2x0a11 + x1a21) 0 θ ′2

−c2
11x−1 + c21(2x0c11 + x1c21) y3 θ4

⎤

⎦

Doing couple more simple row transformations, that change the basis in the space
〈θ1, θ

′
2, θ

′
4〉, we arrive to a simplified presentation of C• 	 C•:

C ′′ =
⎡

⎣

x−1 y1 − c2
11y3 θ

′
1

a21(2x0a11 + x1a21) 0 θ ′′2
c21(2x0c11 + x1c21) y3 θ ′4

⎤

⎦
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Now let us notice that the top and the bottom lines of the last Koszul complex
are δ2-invariant and together they form a Koszul matrix factorization π◦,∗13 (C•). On
the other hand the middle line has only one non-trivial differential and to complete
the proof we need to compute the Chevalley-Eilenberg homology

H ∗Lie (n, R
′′ f−→ R′′)T , f = −a21(2x0a11 + x1a21),

where R′ = R′′ ⊗ C[GL2] with last copy of GL2 has coordinates cij .
The space Spec(R′′) has coordinates a, y1, y2, x and the Lie algebra n only acts

on the entries of the matrix a:

δ2ai2 = −ai1, δ2ai1 = 0.

The differential in complex for H ∗Lie is exactly δ2 hence

H 0(n, R′′) = C[y1, y2, x, a11, a21, det±1],
H 1(n, R′′) = C[y1, y2, x, a, det±1]/(a11, a21),

where det = det a. Now we can extract the torus invariant part:

(H ∗(n, R′′)⊗ χ1)
Tsc = (H 0(n, R′′)⊗ χ1)

Tsc = 〈a11, a21〉.

Finally, let us observe that the function f is quadratic on a hence its induced
action on (H ∗(n, R′′)⊗ χ1)

Tsc is trivial and the statement follows. ��
Now let us derive the formula (3.2) from the above computation. For that let us

recall that the stable locus X̄ st is a union of two open subsets: Uy = {y �= 0},
Ux = {(Ad−1

g X)12 �= 0}. On the open set Uy the matrix factorization C̄• contracts
since y is one of the differentials of the curved complexes. Thus we can safely
restrict our attention to the open locus Ux but on this locus (Ad−1

g X)12 �= 0. Since

the weights of Tsc × B2 on this non-vanishing elements are:

weight((Ad−1
g X)12) = q2 · 〈0,−χ1 + χ2〉, weight(det(a)) = 〈χ1 + χ2, χ1 + χ2〉

we can trade the Borel action weight for q χ1-shifts for q-shifts:

C̄•〈χ ′ + χ1, χ
′′〉 = q2C̄•〈χ ′ − χ2, χ

′′ − 2χ2〉, (3.12)

C̄•〈χ ′, χ ′ + χ1〉 = q−2C̄•〈χ ′, χ ′′ + χ2〉. (3.13)

Finally, we refer to theorem 3.33 that implies that the pull-back j∗st turns the shifts
〈χ2, 0〉 and 〈0, χ2〉 to the trivial B2-equivariant shift.
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3.7 Markov Relations

The first Markov relation is equivalent to HHH being a trace, that is we need to show
that the functor HHH is constant on the conjugacy classes inside Brn. In fact one
can show a stronger statement. Before we state this stronger statement let us discuss
the connection with usual flag Hilbert schemes.

3.7.1 Sheaves on the Flag Hilbert Scheme

The usual flag Hilbert scheme FHilbn is a subvariety of FHilbf reen defined by the
commutativity constraint on X,Y :

[X,Y ] = 0.

It turns out that the support of the homology of the complex Sβ is contained in
FHilbn. Hence the sheaf homology of the complex is the sheaf

Sβ = S odd
β ⊕S even

β :=H ∗(FHilbf reen ,Sβ)

on Hilb1,n and we immediately have the following:

Theorem 3.23 There is a spectral sequence with E2 term being

(H∗(FHilbn,Sβ ⊗ΛkB), d)

d : Hk(FHilbn,S
odd/even
β ⊗ΛkB)→ Hk−1(FHilbn,S

even/odd
β ⊗ΛkB),

that converges to Hk(β).

The theorem follows almost immediately from the main theorem 3.18 and the
proposition 3.5. Moreover the sheaf Sβ is actually is a conjugacy invariant:

Theorem 3.24 ([26]) For any α, β ∈ Brn we have:

Sα·β � Sβ·α.

The argument could be found in the cited paper, here we illustrate the idea by
showing that

Sσiσj σk � Sσj σkσi . (3.14)

Indeed, let us introduce the space X3 ⊂ gln×(GLn×nn)
3 defined by the constraint

requiring the cyclic product of the group elements to be one. There is a natural B3-
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action and B3-equivariant projections:

pri :X3 → gln × nn, pri(X, g1, Y1, g2, Y2, g3, Y3) = (X, Yi).

Respectively, we also have projections π◦12, π
◦
23, π

◦
31 :X3 →X ◦ and

Sσiσjσk = pr1∗(C ), Sσjσkσi = pr2∗(C ),
C = CEn3(π◦∗12 (C

(i)
+ )⊗ π◦∗23 (C

(j)
+ )⊗ π◦∗31 (C

(k)
+ ))

On the critical locus of π◦∗i,i+1(W
◦) we have Yi = Adgi Yi+1 hence on the

critical locus the conjugation by g1 intertwines the projections pr1 and pr2 the
isomorphism (3.14) follows.

In the argument above we ignore the stability conditions but one can check that
the shrinking Lemma 3.16 implies that the argument above works even after we
impose the stability conditions.

3.7.2 Second Markov Move

The second Markov relation is more subtle and the proof of this relation is arguably
the most valuable result of [26]. To convey the main idea of the proof we explain
why it holds for the braids on two strands. In this case we need to compare the
homology of the closure of σ±1

1 with the homology of unknot, so let us first do the
most trivial case of the braids on one strands since L(11), 11 ∈ Br1 is manifestly
the unknot.

Indeed, for n = 1 we have X̄1 = C×C∗×0 and je embeds F̃Hilb
f ree

1 = C×1×0

inside X̄1. The groupB1 = C∗ acts trivially on F̃Hilb
f ree

1 and thus FHilb1 = C and
Se = j∗e (OX̄1

) = OC and B1 is the trivial bundle. We conclude then:

dimq,t H 0(11) = dimq,t H 1(11) = 1

1− q2 .

Now let us explore the geometry of the free Hilbert scheme FHilbf ree2 . Let us fix

coordinates on the space F̃Hilb
f ree

2 ⊂ b× n× V :

X =
[

x11 x12

0 x22

]

, Y =
[

0 y
0 0,

]

, v =
[

v1

v2

]

.

Since we have the stability condition C〈X,Y 〉v = C2 and both X,Y are upper-
triangular, we must have v2 �= 0. Thus after conjugating by the appropriate upper-
triangular matrix we could assume that v2 = 1, v1 = 0, let us denote this vector by
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v0. It is also elementary to see that

C〈X,Y 〉v0 = C
2 if and only if x12y �= 0.

Also the stabilizer of v0 is C∗ that scales x12, y and preserves x11, x22. Hence we
have shown:

FHilbf ree2 = P
1 ×C

2,

the projection p on C2 is given by the coordinates x11, x22.
Let us contrast the geometry of FHilbf ree2 with the geometry of FHilb2. The

discussion in this paragraph is not used in the proof below and is just an illustration
of difficulties of the geometry of the flag Hilbert scheme. The condition [X,Y ] = 0
is equivalent to the constraint:

y(x11 − x22) = 0.

Hence the fibers of the projection p : FHilb2 → C
2 are points outside of the

diagonal x11 = x22 and the fibers are projective lines P1 over the diagonal.
Next let us recall that the matrix factorization for the simple positive crossing is

C+ = [x̃, yg21]. Since x̃|g=1 = (x11 − x22), the pull-back je(C+) is the Koszul
complex that is homotopy equivalent to the structure sheaf of P1 × C. Finally, the
tautological vector bundle is a sum of the line bundles B∨ = O ⊕ O(−1), hence:

H 0(σ1) = H ∗(OP1×C) = C[x11],
H 1(σ1) = H ∗(B∨) = H ∗(OP1×C ⊕ OP1×C(−1)) = C[x11],
H 2(σ ) = H ∗(det(B)) = H ∗(OP1×C(−1)) = 0.

By our construction the matrix factorization for the negative crossing differs by
a line bundle twist from the one for the positive crossing. In particular, we have
j∗e (C−) = OP1×C(−1) and can compute the homology:

H 0(σ−1
1 ) = H ∗(OP1×C(−1)) = 0,

H 2(σ−1) = H ∗(det(B)⊗ O(−1)) = H ∗(OP1×C(−2)) = C[x11],
H 1(σ−1

1 ) = H ∗(B∨ ⊗ O(−1)) = H ∗(OP1×C(−1)⊕ OP1×C(−2)) = C[x11],

Thus we have shown Hk(σ) = Hk(11) and Hk+1(σ−1) = Hk(11) as we
expected.

Respectively, we can use nested nature of the scheme FHilbn to define the
intermediate map:

π : FHilbf reen → C× FHilbf reen−1 ,
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where the first component of the map π is x11 and the second component is just
forgetting of the first rows and rows of the matricesX,Y and the first component of
the vector v. Let us also fix notation for the line bundles on FHilbf reen : we denote by
Ok(−1) the line bundle induced from the twisted trivial bundle O ⊗ χk. It is quite
elementary to show

Proposition 3.25 The fibers of the map π are projective spaces Pn−1 and

1. Bn/π∗(Bn−1) = On(−1).
2. On(−1)|π−1(z) = OPn−1(−1).

We can combine the last proposition with the observation that the total homology
H ∗(Pn−1,O(−l)) vanish if l ∈ (1, n− 1) and is one-dimensional for l = 0, n:

Corollary 3.26 For any n we have:

• π∗(ΛkBn) = ΛkBn−1
• π∗(On(m)⊗ΛkBn) = 0 if m ∈ [−n+ 2,−1].
• π∗(On(−n+ 1)⊗ΛkBn) = Λk−1Bn−1[n]

The geometric version of the Markov move is the following

Theorem 3.27 For any β ∈ Brn−1 we have

H
k(β · σ1) = H

k(β), H
k(β · σ1) = H

k−1(β).

Sketch of a proof The main technical component of the proof is the careful analysis
of the matrix factorizations C̄β·σ±1MF(X̄n,W). It is shown in [26] that this curved

complex C̄β·σε1 has form:

C C ⊗ V C ⊗ Λ2V C ⊗ Λ3V C ⊗ Λ2V · · ·

(3.15)

where C ′ = p∗1(C̄β), V = Cn−2, the dotted arrows are the differentials of the
Koszul complex for the ideal I = (g13, . . . , g1n) where gij are the coordinates on
the group inside the product X̄n = bn × GLn × nn. Thus after the pull-back j∗e the
dotted arrows of the curved complex vanish and we only left with the arrows going
from the left to right.

Now we would like to compute π∗(j∗e (C̄β·σε1 ) ⊗ ΛkBn) and here we can apply
the previous corollary. Thus if ε = 1 then only the left extreme term of j∗e of
the complex (3.15) survive the push-forward π∗. Since the non-trivial arrows of j∗e
of (3.15) all are the solid arrows which are going the left to the right, the contraction
of the π∗-acyclic terms do not lead to appearance of new correction arrows thus
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conclude that

π∗(j∗e (C̄β·σ1)⊗ΛkBn) = j∗e (C̄β ⊗ΛkBn−1).

If ε = −1 then only the right extreme term of j∗e of the complex (3.15) survive
the push-forward π∗. Hence the similar argument as before implies:

π∗(j∗e (C̄β·σ−1
1
)⊗ΛkBn) = j∗e (C̄β ⊗Λk−1Bn−1).

��

3.8 Chern Functor and Localization

Theorem 3.23 provides a theoretical method for constructing a sheaf on the flag
Hilbert scheme that contains all the information about the knot homology of the
closure of the braid L(β). However, it is hard to use this method for actually
computing knot homology.

The first complication comes from the fact that the space FHilbn is very singular
and working with this space requires extra level of care and technicalities [11]. We
will explain how one can circumvent this complication with the Chern functor from
the next subsection.

The second complication comes from possible non-vanishing of the differential d
in the theorem, one would like to avoid the spectral sequence that do not degenerate
at the second step. The differential vanishes automatically if for example S odd

β

vanishes, this kind of property is probably related to the parity property in [7]
for Soergel bimodel model of the knot homology. Again the Chern functor helps
with finding braids that have the parity property, as we explain in the end of the
section.

3.8.1 Chern Functor

In the paper [25] we construct a pair of functors which we call a Chern functor and
a co-Chern functor:

MFstn D
per
Tsc

(Hilbn)

CHst
loc

HCst
loc

,

(3.16)
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where Hilbn is the Hilbert scheme of n points on C
2, while DperTsc (Hilbn) is the

derived category of two-periodic Tsc-equivariant complexes on the Hilbert scheme.
In the same paper we prove

Theorem 3.28 ([25]) For every n we have

• The functors CHst
loc and HCst

loc are adjoint.
• The functor HCst

loc is monoidal.
• The image of HCst

loc commutes with the elements Φ(β), β ∈ Brn.

As a manifestation of the categorified Riemann-Roch formula, we obtain a new
interpretation for the triply-graded homology:

Theorem 3.29 ([25]) For any β ∈ Brn we have:

HHH(β) = Hom(O,CHst
loc(Φ(β))⊗Λ•B).

Let us outline the construction of the Chern functor in the next subsection.

3.8.2 Construction of CH

First we will construct the functor between the categories MF and MFDr where the
last category is defined as a stable version of the category of equivariant matrix
factorizations:

MFDr := MFG(C ,WDr), C = g×G×g, WDr(Z, g,X) = Tr(X(Z−AdgZ)),

the group GLn acting on components of C by conjugation. The stable version of
the category is defined as category of matrix factorizations on the slightly enlarged
space:

C st ⊂ C × V, (Z, g,X, v) ∈ C st iff gv = v and C〈X,AdgZ〉v = C
n.

Both stable and unstable versions of the categories fit into the diagram:

MF• MF•
Dr

CH•

HC•

,

where • can be either st or ∅.
To lighten the exposition we explain only the construction for the functors CH

and HC, the stable version is an easy modification of the construction, see [25].
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We need two auxiliary spaces in order to define the Chern functor:

Z 0
CH = g×G× g×G× n, ZCH = g×G× g×G× b

The action of G× B on these spaces is

(k, b) · (Z, g,X, h, Y ) = (Adk(Z),Adk(g),Adk(X), khb,Adb−1(Y ))

and the invariant potential is

WCH(Z, g,X, h, Y ) = Tr(X(Adgh(Y )− Adh(Y ))).

The spaces C and X are endowed with the standardG× B2-equivariant structure,
the action of B2 on C is trivial. The following maps

πDr : ZCH → C , fΔ : Z 0
CH →X j0 : Z 0

CH → ZCH.

πDr(Z, g,X, h, Y ) = (Z, g,X), fΔ(Z, g,X, h, Y ) = (X, gh, Y, h, Y )

are fully equivariant if we restrict the B2-equivariant structure on X to the B-
equivariant structure via the diagonal embedding Δ : B → B2. Note that j0 is
an inclusion map.

The kernel of the Fourier-Mukai transform is the Koszul matrix factorization

KCH := [X − Adg−1X,AdhY − Z] ∈ MF(ZCH, π
∗
Dr(WDr)− f ∗Δ(W)).

and we define the Chern functor:

CH(C ) := πDr∗(CEn(KCH ⊗ (j0∗ ◦ f ∗Δ(C )))T ). (3.17)

We also define the co-Chern functor HC as the adjoint functor that goes in the
opposite direction: HC : MFDr → MF. Thus, the functor HC is the composition
of adjoints of all the functors that appear in the formula (3.17).

The product ZCH ×B has a B ×B-equivariant structure: for (p, g) ∈ ZCH ×B
we define

(h1, h2) · (p, g) = (h1 · p, h1gh
−1
2 )

Then the following map is B2-equivariant:

f̃Δ : Z 0
CH × B →X × B,

f̃Δ(Z, g,X, h, Y, b) = (X, gh, Y, hb,AdbY, b).
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The map f̃Δ is a composition of the projection along the first factor of ZCH and the
embedding inside X × B. The embedding is defined by the formula

AdbY1 = Y2,

so it is a regular embedding. Thus since

j0∗(KCH ⊗ π̃∗Dr(D)) ∈ MFG×B2(ZCH × B, f̃ ∗Δ(W)),

where π̃Dr : ZHC × B → C is a natural extension of map πDr by the projection
along B, we have a well-defined matrix factorization f̃Δ∗ ◦ j0∗(KCH ⊗ π∗Dr(D)) ∈
MFG×B2(X × B,π∗B(W)), where πB is the projection along the last factor. Now
we can define:

HC(D) := πB∗(f̃Δ∗ ◦ j0∗(KCH ⊗ π∗Dr(D))). (3.18)

3.8.3 Linear Koszul Duality

We need to relate the category MFstDr and the category DperTsc (Hilb). This relation is
a particular example of the linear Koszul duality. Let us discuss the linear Koszul
duality in general.

Derived algebraic geometry is explained in many places, here we explain it in the
most elementary setting sufficient for our needs.

Initial data for an affine derived complete intersection is a collection of elements
f1, . . . , fm ∈ C[X]. It determines the differential graded algebra

R = (C[X] ⊗Λ∗U,D), D =
m
∑

i=1

fi
∂

∂θi
,

where θi from a basis of U = C
m.

More generally, given a dg algebra R such that H 0(R) = OZ we say that
Spec(R) is a dg scheme with underlying scheme Z. Respectively, we define dg
category of coherent sheaves on Spec(R) as

Coh(Spec(R)) = {bounded complexes of finitely generated R dg modules}
{quasi-isomorphisms} .

Consider a potential on X × U :

W =
m
∑

i=1

fi(x)zi,
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where zi is a basis of U∗ dual to the basis θi . For the Koszul matrix factorization:

MF(X × U,W) � B = (R ⊗ C[U ],DB), DB =
m
∑

i=1

ziθi + fi ∂
∂θi
.

and for a (M,DM) dg module over R, the tensor product

KSZU(M) := M ⊗C[X]⊗Λ∗(U) B

is an object of MF(X × U,W) with the differential D = DM ⊗ 1 + 1 ⊗ DB . The
map KSZU extends to a functor between triangulated categories:

KSZU : Coh(Spec (R))→ MF(X × U,W).

The functor in the other direction is based on the dual matrix factorization:

MF(X × U,−W) � B∗ = (R ⊗ C[U ],D∗B), DB =
m
∑

i=1

ziθi − fi ∂
∂θi
,

KSZ∗U : MF(X × U,W)→ Coh(Spec (R)),

KSZ∗U(F ) := HomR(F ⊗C[X×U ] B∗,R).

Theorem 3.30 The compositions of the functors:

KSZU ◦ KSZ∗U , KSZ∗U ◦ KSZU

are autoequivalences of the corresponding categories.

Proof of this theorem could be found in [1, 14] or one can consult [25] for a more
streamlined argument.

3.8.4 Linearization

We would like to apply the linear Koszul in our situation. The complication in our
case is that we want to eliminate the group factor in the space C st but the group
is not a linear space. Thus we have to restrict ourselves to the neighborhood of the
identity and linearize the potential in this neighborhood and as we explain below it
could be done with localization.
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A coordinate substitution Y = Ug−1 on our main variety C makes the potential
tri-linear:

WDr(X,U, g) = Tr(X[U, g]) = WDr(X,Ug
−1, g).

Thus we introduce linearized categories:

MF•Dr := MFG(C
•,W lin),

where C • is obtained from C • by taking the closure of G inside g.
Since jG : C • ↪→ C • is an open embedding, the pull-back functor j∗G is a

localization functor and we denote

loc• : MF•Dr → MF•Dr

for this functor.

Proposition 3.31 ([25]) The functors locst are isomorphisms.

Since the potential W is linear as a function of g ∈ g and the scaling torus Tsc
does not act on g, we obtain a pair of mutually inverse functors:

MF•
Dr Coh•

KSZ∗

KSZ

here Cohst is the two-periodic derived category Dper(Hilb) and Coh is the DG
category of the commuting variety.

The functors that we wanted to construct are defined by the composing the
functors:

CHst
loc := CHst ◦ (locst)−1 ◦ KSZ∗g : MF• → Dper(Hilbn(C2)).

The localization functor does not seem to be invertible in the case of • = ∅,
however a construction of the functor in the opposite direction does not require
invertibility of the localization:

HC•loc := HC• ◦ loc• ◦ KSZg : Coh• → MF•.

3.8.5 Localization Formulas

The advantage of this new interpretation is that the Hilbert scheme is smooth, unlike
the flag Hilbert scheme which is a homological support of E xt(Φ(β),Φ(1)). So the
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complexes on Hilb are more manageable than their flag counter-part. In support of
this expectation, we apply the Chern functor to the Jusys-Murphy (JM) subgroup
inside Brn together with the parity property and prove an explicit localization
formula for the sufficiently positive elements of the JM subgroup.

Recall that the JM subgroup is generated by the elements

δi = σiσi+1 . . . σ
2
n−1 . . . σi+1σi .

It is not hard to see that these elements mutually commute and that the full twist
from the introduction is the product:

FT =
n−1
∏

i=1

δi .

It is expected that CHst
loc applied to the matrix factorization corresponding to the

sufficiently positive element of JM algebra is a sheaf supported in one homological
degree, we state the precise conjecture below. Modulo this geometric conjecture we
have a (conditional on the conjecture) formula for the corresponding homology of
the links.

Theorem* 3.32 For any n there are N,M > 0 such that for a vector b ∈ Zn−1

with ai+1 − ai > N, a2 > M the (q, t, a)-character of the homology of the closure
of the braid

∏

i=2 δ
bi is given by the formula

dima,Q,T HHH(
n
∏

i=2

δbi ) =
∑

T

∏

i

z
bi
i (1+ az−1

i )

1− z−1

∏

1≤i<j≤n
ζ(
zi

zj
),

where ζ(x) = (1−x)(1−QTx)
(1−Qx)(1−Tx) ,Q = q2, T = t2/q2. The last sum is over all standard

Young tableaux with zi = Qa′(i)T l′(i), a′, l′ are co-arm and co-leg of the square the
standard tableau with the square with the label i.

The proof has two components. The first component is concerned with actual
computation of the matrix factorization Φ(

∏

i=2 δ
bi
i ). This computation is an easy

consequence of our construction of Φaff :

Theorem 3.33 ([24]) For any i = 1, . . . , n we have

Φaff (Δi) = Φaff (1)〈χi, 0〉.

In particular, we show in [24] that the pull-back j∗st sends Φaff (1)〈χn, 0〉 to the
trivial line bundle. Since δi = fgt(Δi) we conclude the following
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Corollary 3.34 For any β ∈ Brn and bi,M ∈ Z we have

Φ(β ·
n
∏

i=2

δ
bi
i ) = Φ(β)〈b, 0〉,

CHst
loc(Φ(β · FTM)) = CHst

loc(Φ(β))⊗ det(B)⊗M,

where FT =∏n
i=2 δi is the full-twist braid.

Thus we can apply the first formula from the corollary and get an explicit Koszul
matrix factorization describing the desired curved complex:

Φ(

n
∏

i=2

δ
bi
i ) = C‖〈b, 0〉.

It is much harder though to compute Chern functor CH(C‖〈b, 0〉). It is expected
[11] that CH(C‖) is a celebrated Procesi vector bundle and finding an explicit
description for this vector bundle is notoriously hard [12]. So at the moment we do
not have an explicit statement for CH(C‖〈b, 0〉) but we believe the following weaker
conjecture could be proved by inductive argument from the work of Haiman.

Conjecture 3.35 ([27]) There is N > 0 such that for any a such that ai+1 − ai >
N the two periodic complex CHst

loc(C‖〈a, 0〉) is homotopy equivalent to the sheaf
concentrated in even homological degree.

On the other hand det(B) is an ample line bundle on Hilbn(C2) and hence the
assumptions of the Theorem 3.32 and Corollary 3.34 imply that CHst

loc(C‖〈b)〉 is
homotopy equivalent to the sheaf with no higher homology. The differential in the
complex C‖ has Tsc degree t, respectively by t-twisting even component of C‖ we
obtain the curved complex C ev‖ with Tsc-invariant differential. From the discussion
above we have:

H ∗(CHst
loc(C‖〈a, 0〉)) = H 0(CHst

loc(C
ev
‖ 〈a, 0〉)) = χ(CHst

loc(C
ev
‖ 〈a, 0〉))

= χ(Sev1 〈a, 0〉),
where Sev1 is the version of S1 with t-twisted even component. There is well-defined
image K(C‖) of the complex inside of the Tsc-equivariantK-theory. Thus the Euler
characteristics of the LHS of last formula can be computed within KTsc (FHilbf ree)
and here we can use the analog Negut’s theorem for the push-forward along the
fibers of the projection

Proposition 3.36 For any rational function r(Ln) ofLn=On(−1)with coefficients
rational functions of Li=Oi (−1), i < n, the K-theory push-forward is given by

π∗(r(Ln)) =
∫

r(z)

(1− z−1)

∏

i=1

ζ ′(Li/z)
dz

z
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where the contour of integration separates the set Poles(r(z))
⋃{0,∞} from the

poles of the rest of the integrant.

The K-theory class of the complex CHst
loc(C

ev
‖ ) is

∏

1≤i<j≤n(1 − qtLi/Lj ).
Hence we can apply the formula from the previous proposition iterative to obtain
the iterated residue integral formula for the desired link invariant:

∫

. . .

∫

∏

i

z
bi
i (1+ az−1

i )

1− z−1

∏

1≤i<j≤n
ζ(
zi

zj
)
dz1

z1
. . .
dzn

zn
.

The final step of the proof is a delicate analysis of the iterated residue that was done
in the work of Negut [20] in the context of K-theory of the flag Hilbert scheme.

Acknowledgements First of all I would like to thank my coathor and friend Lev Rozansky for
teaching everything that is in these notes. All results in these notes are contained in our joint
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