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Many-body contacts in fractal polymer chains and fractional Brownian trajectories
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We calculate the probabilities that a trajectory of a fractional Brownian motion with arbitrary fractal dimension
df visits the same spot n � 3 times, at given moments t1, . . . , tn, and obtain a determinant expression for these
probabilities in terms of a displacement-displacement covariance matrix. Except for the standard Brownian
trajectories with df = 2, the resulting many-body contact probabilities cannot be factorized into a product of
single-loop contributions. Within a Gaussian network model of a self-interacting polymer chain, which we
suggested recently [K. Polovnikov et al., Soft Matter 14, 6561 (2018)], the probabilities we calculate here can
be interpreted as probabilities of multibody contacts in a fractal polymer conformation with the same fractal
dimension df . This Gaussian approach, which implies a mapping from fractional Brownian motion trajectories
to polymer conformations, can be used as a semiquantitative model of polymer chains in topologically stabilized
conformations, e.g., in melts of unconcatenated rings or in the chromatin fiber, which is the material medium con-
taining genetic information. The model presented here can be used, therefore, as a benchmark for interpretation
of the data of many-body contacts in genomes, which we expect to be available soon in, e.g., Hi-C experiments.
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What is the probability for a Brownian trajectory to visit
the same space point several times? What is the number of
points in space visited exactly n times by a single polymer
chain? These questions are of significant importance for clas-
sical polymer physics [1–4]. Indeed, it is known that confor-
mations of ideal polymer chains and Brownian trajectories
are isomorphic up to the redefinition of time: the time for
a Brownian motion is replaced by the contour length for a
polymer. As a result, the points in space visited n times by a
Brownian trajectory correspond exactly to the many-body in-
teractions in a polymer chain. Answers to the above questions
(provided that one allows for a proper coarse graining to avoid
ultraviolet divergencies) are essentially quite simple: since a
Brownian motion is a Markovian process, every loop it forms
is independent from the other. As a result, the probability of a
“rosette,” Pn(t1, . . . , tn), for the trajectory to return to a given
point at sequential time moments t1 < t2 < · · · < tn is equal
to

∏n−1
i=1 P2(t j+1 − t j ), where P2(t j+1 − t j ) is the two-body

contact probability. Interestingly, even in this case the total
number of points visited exactly n times exhibits rich and
interesting scaling behavior depending on n and the embed-
ding dimension D [5–7]. However, this simple factorization
does not hold anymore for the case of fractional Brownian
motion with the fractal dimension d f �= 2. The increments
of a fractional Brownian motion have long-ranged slowly
decaying correlations, and the probability of, say, a second
loop will essentially depend on the fact that the first loop is
formed and on its length. In this paper we study these loop
correlations and explicitly calculate the resulting multiloop
probabilities for fractal polymers with d f > 2.

Apart from the fundamental interest of our results for the
study of general properties of fractional Brownian motion and

for polymer physics, the probabilities of multibody interac-
tions are of significant importance for biophysical applica-
tions. Recently in Ref. [8] we proposed to use the fractional
Brownian motion trajectories as an analytically simple semi-
quantitative model of collapsed polymer conformations with
fractal dimension d f > 2, including polymer conformations
in topologically stabilized states, such as melts of noncon-
catenated rings and chromosomes in living nuclei. Techni-
cally, our computation of the multiloop probabilities is based
on a specific way of constructing ensembles of discretized
fractional Brownian trajectories based on a Gibbs sampling
with the quadratic Hamiltonian suggested in Ref. [8]. In the
framework of our model it is possible to calculate differ-
ent experimentally accessible static [8] and dynamic [9,10]
properties of collapsed fractal chains with a given fractal
dimension.

Modern experimental techniques of genome-wide chromo-
some conformation capture (Hi-C) [11,12] have sufficiently
deepened our understanding of chromosomes packing. The
Hi-C experiment allows one to describe a conformation of
the chromatin (the constituting fiber of the chromosome, con-
taining dsDNA with genetic information, as well as various
proteins attached to it) and is conducted in several sequential
steps, which are roughly as follows. First, the chromatin in
a living cell is cross-linked (captured) by a cross-linking
agent which forms chemical bonds between spatially adjacent
parts of the chromatin, which effectively freezes its spatial
configuration. Second, the chromatin is cut into short pieces
by restriction proteins. Third, the pieces of chromatin are
repolymerized, so that pieces which where close together
in space (and connected by a cross-linking agent) now are
adjacent along the DNA chain as well. Finally, the resulting
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new DNA chains are sequenced, which allows one to identify,
which parts of the chromatin were close to each other in space
in the original conformation. As a result, one tabulates a full
collection of in vivo pairwise contacts of the chromatin fiber
with itself. Averaging over the population of cells quantifies
the frequency of the contact event between each pair of
genomic loci.

The Hi-C data have proven hugely beneficial for our
understanding of chromosome conformations under different
conditions. A wide range of theories exist that are used to
rationalize the existing Hi-C data, including compactization
into a crumpled globule [13] due to topological interactions in
metastable chromatin [14–17], formation of reversible bonds
between loci on the chromatin and bridging proteins [18–20],
molecular crowding [21], loop extrusion [22,23], etc. How-
ever, all these models seem to agree that in a wide range
of length scales the resulting equilibrium chromatin packing
is approximately fractal with transient fractal dimension d f

lying in the interval 2 � d f � 4, d f = 3, which corresponds
to a space-filling curve for D = 3, being the most obvious
candidate for the true limiting fractal dimension in the limit
of infinitely long chains.

Additional evidence concerning chromatin conformations
should come from consideration of triple and many-body con-
tacts, which, generally speaking, contain information on the
properties of the fiber packing, which is not reducible to the
information obtained from two-loci contacts. Recent advances
in experimental techniques [24,25] allow us to expect that
soon it will be possible to capture triple contacts in Hi-C
experiments. If clusters of several (more than two) chromatin
loci are detectable in each individual cell, then, after averaging
over an ensemble of the cells, one can obtain the statistics of
triple contacts. Therefore, theoretical approaches allowing us
to make sense of these upcoming data are urgently needed.
Here we calculate the three-body and many-body contact
probabilities in the simple model of a Gaussian polymer
chain, which can be used as a basic benchmark with which to
compare the experiment data. In particular, we propose here
to measure experimentally the two-loop correlation factor
(the ratio of a three-body contact probability to the prod-
uct of the probabilities of two independent loops of the
same size) as an important characteristic of the chromatin
conformation statistics and provide concrete predictions for
the value of this factor within our fractal Gaussian polymer
model.

To begin with, define the trajectory of a discretized ran-
dom walk, or, similarly, a conformation of a polymer chain
in the D-dimensional space by a set of coordinates {X} =
{x0, x1, . . . , xN }. In the random walk terms, {X} character-
izes the position of the walker at sequential time ticks, t =
0, 1, . . . , N . In polymer terms, fixing the Gaussian transi-
tions between sequential “times” in the set {X}, we define
the standard beads-on-a-string model [3]. In what follows
we assume that N � 1, and the process is stationary in
a sense that the mean distance between x j and x j+1 is
j-independent:

〈(x j+1 − x j )
2〉 = b2. (1)

There exists a unique stationary measure P(X) over the real-
izations of the walk X which satisfies

p[(xk − xm) = y] =
∫

dXP(X)δ(xk − xm − y)

=
(

D

2πb2s2/d f

)D/2

exp

(
− Dy2

2b2s2/d f

)
,

s = |k − m| (2)

for all k, m and some fixed constant d f called the fractal
dimension of the walk. The variable s in (2) plays a role of the
time between moments k and m in the random walk language,
while for a polymer it is the contour distance along the
chain. The process described by the stationary measure P(X)
is called fractional Brownian motion. There exist numerous
equivalent definitions of this process [26], and it is often char-
acterized by the so-called Hurst exponent H = 1/d f . Clearly,
the value d f = 2 (H = 1/2), which corresponds to Brownian
motion, is the only case when the process described by (2)
is Markovian. Indeed, (2) does not respect the Chapman-
Kolmogorov relation for any d f �= 2. It follows immediately
from (2) that the mean-square spatial distance between two
points on a trajectory grows algebraically with s,

〈(xk − xm)2〉 = b2s2/d f , (3)

and the covariance,

〈(xk − xm)(xn − xm)〉 = b2

2
[s2/d f + (s′)2/d f − |s − s′|2/d f ],

(4)

where we set s′ = |n − m|.
It has been recently shown in Ref. [8] that in the limit of

large N one can approximate P(X) for the subdiffusive (d f >

2) fractal Brownian motion (fBm) by a Gibbs measure with a
simple quadratic Hamiltonian:

P(X) = 1

Z
exp[−V (X)], Z =

∫
exp[−V (X)] dX,

V (X) =
∑
i< j

Ai j (xi − x j )
2 (5)

with a proper choice of interactions coefficients Ai j (here Z
is the partition function, and we use lowercase and uppercase
bold letters to denote vectors in D-dimensional and D × N-
dimensional space, respectively). In particular, if the coef-
ficients Akm depend only on the chemical distance between
monomers |k − m| = s, so that Akm = A(s), and if for s �
1 A(s) decays algebraically,

A(s) ∼ c s−γ , (6)

with some c > 0, then depending on γ there are three possible
asymptotic regimes of polymer chain statistics:

(1) If γ � 2, all monomers (points of the trajectory)
asymptotically merge, and

〈(xk − xm)2〉 → 0 when N → ∞ (7)

regardless of s = |k − m|.
(2) If γ > 3, the interaction is irrelevant, and the large-

scale properties of the trajectory are indistinguishable from
the standard Brownian motion with d f = 2.
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FIG. 1. (a) Schematic image of the pairwise interactions (5) Vxk ,xm of the kth monomer (xk) with adjacent monomers of the chain with
coordinates xk±1, xk±2, xk±3, . . .. Elastic constants akm decay algebraically, depicted by dashed lines with increasing spacing. (b) Up: A triple
contact, made by monomers xk , xn, xm. Paths k − n and n − m are dependent, and the effective volume of the two loops is less than the product
of volumes, occupied by the loops separately. Bottom: Typical conformation of the segment.

(3) Finally, and most interestingly, if 2 < γ < 3, the rela-
tion (2) holds for 1 
 s 
 N with some renormalized b̄(c, γ )
and a nontrivial fractal dimension

d f = 2

γ − 2
. (8)

The value of γ = 3 is critical, giving rise to the logarithmic
corrections to (2). Note that the conventional beads-on-a-
string model corresponds to the choice

A(s) = D

2b2
δs,1, (9)

where b is the equilibrium bond length (mean-square distance
between monomers). However, in the case of general A(s) this
bond length depends on the whole function A(s), not just on
A(1).

In the polymer context, the quadratic interactions in (5)
can be interpreted as a set of harmonic springs of varying
rigidity connecting each pair of monomers, as shown in
Fig. 1(a). Although it may seem that such a Hamiltonian
lacks a straightforward microscopic justification, this model
suggests an analytically tractable proxy for the calculation
of different statistical properties of fractal polymer chains
coupled to their fractal dimension. Moreover, one might argue
that (5) grasps the main qualitative feature of topological
interactions by imposing a soft long-range squeeze that forces
the polymer conformations to get more compact. On the
other hand, if one thinks of a fractal polymer state stabilized
by the formation of reversible bridging bonds akin to ones
discussed in Refs. [18–20,27], the effective Hamiltonian (5)
can be seen as an annealed version of the corresponding exact
Hamiltonian of the system with reversible bridges. Indeed,
in order for a bridge to be formed between two monomers
they should first get close to each other in space, and the
probability of this happening normally decays algebraically
with contour distance between monomers. As a result, the
polymer conformation is stabilized by a set of rigid springs
which are positioned stochastically with probabilities which

are decaying algebraically with s. Assuming full annealing in
such a system, one gets back to Eqs. (5) and (6).

The Hamiltonian of type (5) has appeared in the study of
three-dimensional (3D) structures of proteins [28–30], and it
was used for the description of static and dynamic properties
of marginally compact trees with various fractal architec-
tures [31,32], as well as for phenomenological study of the
Rouse dynamics of nonideal polymer chains [9,10]. A proxy
Hamiltonian of the same type has been recently used to obtain
3D structures of chromosomes based on experimental Hi-C
contact maps [33]. A related hierarchical variational approach
for an account of volume interactions of swollen polymer
chains has been proposed in Ref. [34].

Now, we are interested in the probability of forming an n-
body contact, or, in random walk terms, in the probability for
fBm to visit the same spatial point n times. In the simplest case
of n = 2, the probability for two beads separated by chemical
distance s to be at the same space point is

P2(s) = p((xk − xm) = 0) =
(

D

2πb2s2/d f

)D/2

=
[

D

2π〈(xk − xm)2〉
]D/2

. (10)

This result, up to the numerical constant, can be easily
estimated from the following qualitative argument. If some
monomer k is fixed at a given point in space, the monomer m
is able to explore the volume of order

V (s) ∼ 〈(xk − xm)2〉D/2. (11)

If the probabilities to visit all points of this volume are the
same, we expect (up to a numerical constant) for the looping
probability the expression P2(s) ∼ V (s)−1 in a full agreement
with (10).

Standard Brownian motion is a Markovian process. Ac-
cordingly, the probability of forming many body contacts can
be constructed as a product of probabilities to form consecu-
tive loops. In particular, the probability to form a “two-loop
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rosette” with loops of contour lengths s1, s2 is

PBM
3 (s1, s2) = PBM

2 (s1)PBM
2 (s2). (12)

The relation (12) no longer holds in the non-Markovian case
of fBm. Thus, one expects

P3(s1, s2) = P2(s1)P2(s2) f2(s1, s2), (13)

where P2(s1,2) are given by (10), and f2(s1, s2) is some yet
unknown correlation function. In what follows we calculate
function f2(s1, s2) explicitly.

Triple contacts are formed by two consecutive loops, which
are, typically, correlated due to the long-range memory char-
acteristic of fractional Brownian motion. Hence, the decom-
position of the probability into the product of two probabilities
of pairwise contacts (12) is not valid anymore. One can,
however, write an explicit expression for P3 by integrating
over the Gibbs measure with the effective Hamiltonian (5)

P3(k, n, m) =
∫

P(X)δ(xk − xn)δ(xn − xm) DX, (14)

where the Gibbs distribution P(X) is given by (5) and we
assume without loss of generality that k < n < m. Equa-
tion (14) can be rewritten using the Fourier transform of the
� functions as

P3(k, n, m) = 1

(2π )2D

∫
dq

∫
dq′ G(q, q′, k, n, m),

(15)

and the Green function, G(q, q′, k, n, m), reads

G(q, q′, k, n, m) = 1

ZN

∫ N∏
i=1

dxi exp

⎡
⎣−1

2

N∑
i, j=1

ai jxix j

+ iq(xk − xn) + iq′(xn − xm)

⎤
⎦, (16)

where ZN is the full partition function of the chain with one
link fixed at a given spatial position

ZN =
∫

P(X)δ(x0) DX =
∫ N∏

i=1

dxi exp

⎛
⎝−1

2

N∑
i, j=0

ai jxix j

⎞
⎠,

(17)

The matrix A = ||ai j || is related to the coefficients of the
Hamiltonian (5) by

ai j =
{

−4Ai j, i �= j

2
∑

j Ai j i = j
. (18)

The Green function (16) is an N-dimensional Gaussian inte-
gral with the linear term BX, where components of the vector
B are

b j = iq(δ jk − δ jn) + iq′(δ jn − δ jm), (19)

and it equals therefore

G(q, q′, k, n, m) = exp

(
1

2
BTA−1B

)
. (20)

Introduce Ap and ωp (p = 1, 2, . . . N), the eigenvectors and,
respectively, eigenvalues of the interaction matrix A, ordered
from the smallest eigenvalue to the largest, and scalar (inner)
products

βββ p = 〈B|Ap〉. (21)

The quadratic form in (20) then can be rewritten as

log G(q, q′, k, n, m) = 1

2

N∑
m=1

〈Am|βββ∗
m

N∑
p=1

ω−1
p βββ p|Ap〉

= 1

2

N∑
m=1

N∑
p=1

βββ∗
mω−1

p βββ p〈Am|Ap〉

= 1

2

N∑
p=1

ω−1
p

∣∣βββ p

∣∣2
. (22)

Substituting (19) into (21) one can express β’s in terms of the
components of the eigenvectors A, giving

P3(k, n, m) = 1

(2π )2D

∫
dq

∫
dq′ exp

⎡
⎣−1

2

N∑
p=1

ω−1
p

× ∣∣q(
ak

p − an
p

) + q′(an
p − am

p

)∣∣2

⎤
⎦, (23)

where ai
p denotes the ith component of the vector Ap. The

right-hand side (23) is a double Gaussian integral, so it can be
calculated explicitly:

P3(k, n, m) = 1

(2π )D

1

(det �)D/2
, (24)

where elements of the matrix � are

σ11 =
N∑

p=1

ω−1
p

∣∣ak
p − an

p

∣∣2
, σ22 =

N∑
p=1

ω−1
p

∣∣an
p − am

p

∣∣2
,

σ12 = σ21 =
N∑

p=1

ω−1
p

(
ak

p − an
p

)(
an

p − am
p

)
, (25)

and the power D/2 in the right-hand side of (24) comes from
the fact that q, q′ are D-dimensional vectors. Interestingly, the
elements of matrix � have the meaning of the mean-square
distances between corresponding monomers. Indeed, express-
ing these distances as sums over normal coordinates up =
〈X|Ap〉 and using the equipartition theorem, which determines
the average amplitudes of the normal modes at equilibrium
(see Ref. [8] for more details), one gets 〈upus〉 = Dω−1

p δps

and, therefore,

〈(xk − xn)2〉 = Dσ11, 〈(xn − xm)2〉
= Dσ22, 〈(xk − xn)(xn − xm)〉 = Dσ12. (26)

This correspondence allows to write the probability of a triple
contact in the form suggested in (13):

P3(k, n, m) = P2(k, n)P2(n, m) f2(k, n, m), (27)
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where P2(k, n) is the probability of a double contact (10), and
the correlator f2(k, n, m) reads

f2(k, n, m) = (1 − r2)−D/2,

r(k, n, m) = 〈(xk − xn)(xn − xm)〉√
〈(xk − xn)2〉〈(xn − xm)2〉

. (28)

This result is valid for any Gaussian polymer chain with inter-
actions (11). In particular, for ideal chain (ordinary Brownian
motion) vectors (xk − xn) and (xn − xm) are uncorrelated,
thus r = 0, and one returns to the expression (12).

In the case when monomers are separated by a significant
contour distance, i.e., when s1 = |n − k| � 1 and s2 = |m −
n| � 1, only the eigenvalues with small p (p 
 N) are impor-
tant. Moreover, it is possible to further distinguish between
the cases of s1,2 ∼ N and s1,2 
 N . In the first case, only
several of the first eigenvalues are relevant and the behavior is
not universal; i.e., for example, the behavior of linear chains
and cycles is different. Meanwhile, for 1 
 s1,2 
 N it is
not just several first eigenvalues that are important but the
whole shape of the edge of the spectrum. In particular, if for
p 
 N the spectrum has the form ωp ∼ (p/N )2/ds , where ds

is called the spectral dimension of the elastic graph [31], then
the resulting equilibrium conformation is self-similar with
the monomer-monomer distance distribution given by (2) and
fractal dimension d f satisfying

2−1 = d−1
s − d−1

f . (29)

It is exactly what happens in the case of the Hamiltonian (5)
with power-law decaying coefficients (6) (see Ref. [8]). This
allows one to use (3) and (4) for the mean-square distance
between the monomers and distance-distance correlations,
respectively, resulting in the following expression for the
correlator r(k, n, m), which, as it turns out, depends in this
case on a single variable χ = s1/s2 = (n − k)/(m − n):

r(χ ) = 1
2 [(χ1/2 + χ−1/2)α − χα/2 − χ−α/2], α = 2/d f .

(30)

As one would expect, the correlation function r(χ ) is sym-
metric r(χ ) = r(1/χ ) and negative for all nonzero χ for the
subdiffusive fractional Brownian motion (d f > 2). If d f = 2,
r(χ ) ≡ 0, as it should be for normal Brownian motion.
Figure 2 (left) shows the dependence r(χ ). It is clearly seen
that correlation is the strongest (the absolute value of coeffi-
cient is the largest) for the loops of equal size, the correspond-
ing value being r(1) = 2α−1 − 1. If the loops’ lengths are very
different, χ � 1 the correlation coefficient converges to zero
as a power law

r(χ ) ∼ − 1
2χ−α/2, χ � 1. (31)

Summing up, the total probability of a triple contact in a
case of a fractional Brownian motion trajectory reads

P3(s1, s2) =
(

D

2πb2

)D

(s1s2)−D/d f f (s1, s2)

= Pnaive
3 × f (s1, s2), (32)

where

f (s1, s2) = [1 − r2(s1/s2)]−D/2; (33)

s1, s2 are contour lengths of the loops, b is a characteristic
microscopic length, and

Pnaive
3 =

(
D

2πb2

)D

(s1s2)−D/d f (34)

is a product of single-loop probabilities. Note that the naive
guess always underestimates the loop probability (because it
neglects the effective attraction of the chain units). The largest
boost in the loop probability is achieved for the loops of equal
size and equals

fmax(α) = 2−αD/2(1 − 2α−2)−D/2, (35)

meaning, e.g., that in the case α = 2/3 (d f = 3) in the
3D space (D = 3), which is the most interesting case from
the polymer physics point of view, the number of rosettes
consisting of two loops of equal size should be some 7%
larger than one would expect from the naive uncorrelated loop
assumption. Notably, this boost increases rather rapidly with
the fractal dimension (Fig. 2 right), reaching, e.g., roughly
14% for d f = 4, which is reported as a transient fractal dimen-
sion in some polymer systems, e.g., ideal randomly branched
polymers [35–37]. In turn, for the triple rosettes formed with
loops of very different size one expects the boost factor

f (χ ) = 1 + D

8
χ−α + o(χ−α ). (36)

We expect that with the development of many-body Hi-C
techniques it will become possible to experimentally measure
this excess formation of triple contacts as compared to the
product of the probabilities of two independent loops. This
prediction is characteristic of the Gaussian model we use here:
indeed, in the system with hard-core short-range interactions
one expects the formation of triple loops to be suppressed,
not boosted. Thus, if it is indeed observed experimentally, it
would be a nice new argument in support of the Gaussian
formalism. Also, Eqs. (35) and (36) allow new alternative
ways of measuring α and, therefore, the effective fractal
dimension d f of chromatin packing, which can be further
compared to the results obtained by different methods.

In conclusion, let us briefly discuss the generalization of
the formalism developed above for the calculation of the
probabilities of many-body contacts. The probability Pk for
a polymer interacting with itself via the potential (5) to form a
(k − 1)-rosette made of loops anchored by a set of monomers
with numbers {n1, n2, . . . , nk} can be written as

Pk (n1, . . . , nk )

=
∫

P(X)
k−1∏
i=1

δ(yi ) DX = 1

(2π )D(k−1)

∫ k−1∏
i=1

dqi

× exp

⎡
⎣−

∑
p

1

4Nκp

∣∣∣∣∣
k−1∑
i=1

qi(e
2iπ pni

N − e
2iπ pni+1

N )

∣∣∣∣∣
2
⎤
⎦, (37)

where we introduced the notation yi = xni − xni+1 . Proceeding
in the same way as above one can express the integral on the
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FIG. 2. Left: Correlation coefficient r(χ ) between two loops of lengths s1 and s2 as a function of the ratio of their sizes χ = s1/s2 as given
by (30) for various values of df : 2.5 (black), 3 (gray), 4 (light gray). Right: The maximal boost of the two-loop probability fmax(α) in the
three-dimensional embedding space (D = 3) for the case of equal loop sizes s1 = s2 as compared to loops being independent (35).

right-hand side of (37) in the following way, which is a direct
generalization of (24):

Pk (n1, . . . , nk ) =
(

1

2π

)D(k−1)/2

(det �k−1)−D/2, (38)

where �k−1 ia a covariance matrix of vectors connecting
successive monomers in the cluster: (�k−1)i j = 〈yiy j〉. These
expressions can be further simplified; for example, for the
probability of four-body contacts one gets

P4(n1, . . . , n4)

= P2(n1, n2)P2(n2, n3)P2(n3, n4) f3(n1, n2, n3, n4), (39)

where the function f3 equals

f3(n1, n2, n3, n4) = (
1 − r2

12 − r2
23 − r2

13 + 2r12r23r13
)−D/2

,

ri j = 〈yiy j〉√〈
y2

i

〉〈
y2

j

〉 . (40)

Summing up, the main results of our work are the formu-
las (27) and (28) for the triple contacts and (38) for multiple

contacts in a Gaussian polymer with Hamiltonian (5). It is
known that for long polymer chains with interaction coeffi-
cients decaying as (6) the conformations of such polymers are
statistically the same as trajectories of fractional Brownian
motion, leading to the result (30) for the correlation coef-
ficient, and formulas (32) and (33) for three-body contacts.
We believe that these results constitute a basic benchmark
for interpretation of the experimental data on many-body
contacts in fractal polymer conformations with d f > 2, in
particular, the packing of chromosomes, which we expect to
be available soon. On the other hand, from the random walk
theory point of view, we expect our result to be essential for
the understanding of the localization phenomena of random
walks with long-ranged memory, e.g., adsorption of such a
walker on a pointlike potential well.
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