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• We propose an Artificial Intelligence (AI)-augmented geographic routing approach (AGRA). Our approach uses deep learning over satellite imagery
available at the edge clouds to enable IoT-based incident-supporting applications.
• We leverage a novel repulsive forwarding technique that theoretically guarantees local minimum avoidance and approximates the shortest path

algorithm with a 3.291 path stretch bound.
• Using both large scale numerical and NS-3 event-driven simulations we show how our proposed approach outperforms classical geographic routing

algorithms performance, e.g:, goodput and enable real-time situational awareness from the IoT devices located at the disaster scene.
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a b s t r a c t

Applications that cater to the needs of disaster incident response generate large amount of data and
demand large computational resource access. Such datasets are usually collected in real-time at the
incident scenes using different Internet of Things (IoT) devices. Hierarchical clouds, i.e., core and edge
clouds, can help these applications’ real-time data orchestration challenges as well as with their IoT
operations scalability, reliability and stability by overcoming infrastructure limitations at the ad-hoc
wireless network edge. Routing is a crucial infrastructuremanagement orchestrationmechanism for such
systems. Current geographic routing or greedy forwarding approaches designed for early wireless ad-hoc
networks lack efficient solutions for disaster incident-supporting applications, given the high-speed and
low-latency data delivery that edge cloud gateways impose. In this paper, we present a novel Artificial
Intelligent (AI)-augmented geographic routing approach, that relies on an area knowledge obtained from
the satellite imagery (available at the edge cloud) by applying deep learning. In particular, we propose
a stateless greedy forwarding that uses such an environment learning to proactively avoid the local
minimum problem by diverting traffic with an algorithm that emulates electrostatic repulsive forces.
In our theoretical analysis, we show that our Greedy Forwarding achieves in the worst case a 3.291
path stretch approximation bound with respect to the shortest path, without assuming presence of
symmetrical links or unit disk graphs. We evaluate our approach with both numerical and event-driven
simulations, and we establish the practicality of our approach in a real incident-supporting hierarchical
cloud deployment to demonstrate improvement of application level throughput due to a reduced path
stretch under severe node failures and high mobility challenges of disaster response scenarios.
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1. Introduction

Providing technologies in response to a natural or man-made
disaster is challenging, due to traditional infrastructure assump-
tions that may fail given the damage made by man or natural-
caused disasters. Additionally, there is a need to handle large
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Fig. 1. During incidents caused by disasters, large dataset generated on-site needs
large computation/storage resources. Consequently, data needs to be transferred
to an edge cloud at a high constant speed through an incident-supporting wireless
edge comprising Mobile Ad-Hoc Network (MANET).

datasets from multiple incident scenes and disaster relief coor-
dination between first responder agencies such as fire, police or
hospitals.

Applications designed for disaster incident response may ben-
efit from the latest hierarchical cloud trends [1–3], i.e., core and
edge clouds. Such technologies are integrated with network vir-
tualization and dynamic on-demand access to networking, com-
putation and storage resource, wherever available. In particular,
applications that provide visual situational awareness are crucial
for first responders, as they are based on data collected in the
real-time at the incident scenes using different Internet of Things
(IoT) devices, such as sensors, wearable heads-up display devices,
bluetooth beacons, etc [3]. For example, tablets, wearable heads-
up display or smartphone devices can be used for the real-time
video conferencing with the incident commander featuring face
recognition of disaster victims [4], or to detect children in attempt
to reunite them with their guardians [5], whereas virtual beacons
can be mainly used to track their location.

In Fig. 1 we illustrate our ‘‘Panacea’s Cloud’’ system deploy-
ment, i.e., a hierarchical cloud setup that leverages a IoT-based
incident-supporting application to provide real-time situational
awareness e.g., medical triage communications for paramedics and
other first responders [6–8]. For an effective disaster incident re-
sponse, the design of the hierarchical cloud needs to overcome the
challenges of application’s real-time datamovement requirements
and any infrastructure limitations at the network edge. To cope
with the potential loss of infrastructure in a disaster scene, amobile
ad-hoc wireless network (MANET) needs to be operational for
transferring media-rich visual information from the disaster scene
as quickly as possible to the edge cloud gateway. Such (visual)
data can be used, e.g., within a medical application context to
transfer high-definition video streams generated by paramedics’
wearable heads-up display devices from the disaster triage scene
to a dashboard located at the edge cloud, or by a first responder
for a live remote medical consultation. The incident response and
resource allocation decision making e.g., ambulance routing to
scene, medical supply replenishment tracking, requires significant
computational resources that can be augmented on demand by a
core cloud cluster (see Fig. 1).

For such edge cloud network scenarios to be operational, traf-
fic generated by the MANET needs to be handled dynamically
and with low-latency constraints. Geographic routing-based ap-
proaches are generally suitable for these applications; however,
there is a lack of incident-supporting forwarding and routing ap-
proaches in MANETs capable of providing sustainable high-speed
data delivery to the edge cloud gateway [9]. Specifically, there is
a need to design a better performant greedy-forwarding solutions
that does not suffer from the local minimum problem in presence of
(non-arbitrary) node failures and mobility. This problem is caused
by the lack of global routing knowledge of the greedy forwarding
algorithm [10–13] that may deliver packets to nodes that do not
have neighbors closer to the destination than themselves.

Existing algorithms provide only partial solutions to the local
minimum problem and can be classified into stateful or stateless

solutions. Existing stateless greedy forwarding solutions may fail
to find a path even if it exists [12,13], or they stretch such paths
significantly [11] by visiting almost all possible nodes to ‘‘desper-
ately’’ find a way. Existing stateful greedy forwarding algorithms
instead (e.g., those relying on the network topology knowledge
including spanning trees [14,15] or partial paths [16]) are sen-
sitive to frequent node failures and mobility [16–18], a typical
scenario within regions and infrastructures hit by a natural or
man-made disaster. Consequently, such algorithms lead to poor
or unacceptable performance in incident-supporting applications
that need constant high-speed data transfer to provide crucial real-
time situational awareness.

Our contributions. To cope with the above geographic routing
limitations, in this paper we leverage the latest advances in the
Artificial Intelligence (AI) area and present a novel AI-augmented
geographic routing approach (AGRA). The main contributions of
our AGRA are as follows:

• Our main design contribution lays in our AGRA approach
that utilizes a knowledge about physical obstacles presence
in a geographic area obtained by deep learning [19,20]
from the satellite imagery (maps) available at the system’s
dashboard (see Section 3). In addition to widely adopted
geographic coordinates, the obtained geographical obstacle
knowledge is then used to build a conceptually different
greedy forwarding approach that avoids the local minima
problem while supporting high-speed data delivery, e.g., of
high-definition data streams and multi-modal data, across
large disaster incident scene areas.
• Our main theoretical contribution lays in our results per-

taining to a geographic routingmodel that guarantees a local
minimum avoidance as well as the shortest path approxi-
mation in (mobile) ad-hoc networks (see Section 4). Specifi-
cally, our stateless greedy forwarding approach builds upon
electrostatics principles such as the Green’s function [21]
to model packets as charges immersed in an electrostatic
potential field from the source to the destination, and we
steer their route by charging regions containing obstacles
accordingly, hence guaranteeing local minimum avoidance.
Moreover, when packets are forwarded using gradient de-
scent on the Green’s function potential field (along lines
of electrical force), we show a 3.291 path stretch approx-
imation bound. To our knowledge, this is the first greedy
forwarding algorithm that has theoretical guarantees on
the path stretch length without any strong assumptions on
wireless ad-hoc network such as symmetrical links or unit
disk graphs.
• Our main algorithmic contribution lays in our two novel al-

gorithms, viz. Attractive Repulsive Greedy Forwarding (ARGF)
andAttractive Repulsive Pressure Greedy Forwarding (ARPGF).
Both algorithms use the notion of electrostatic repulsion to
enhance greedy forwarding (see Section 5). ARGF does not
theoretically guarantee the localminimumavoidance due to
the complexity of computing the exact theoretical potential
field on multiple obstacles of arbitrary shape and due to
discrete node distribution. For this reason, we extend ARGF
with a known pressure recovery technique (ARPGF) to guar-
antee delivery at expense of a small path stretch.

We evaluate our algorithms using numerical simulations with
asymmetrical connectivity and obstacles of complex convex shape,
and with an event-driven simulations obtained considering an
actual incident-supporting hierarchical cloud deployment.1 We

1 The source code of both our simulators is publicly available under a GNU license
at https://github.com/duman190/AGRA.

https://github.com/duman190/AGRA


D. Chemodanov et al. / Future Generation Computer Systems 92 (2019) 1051–1065 1053

found that our ARGF and ARPGF algorithms outperform related
stateless greedy forwarding solutions such as Greedy Forward-
ing [12], Greedy Perimeter Stateless Routing (GPSR) [13] (face
routing representative), and Gravity Pressure Greedy Forward-
ing (GPGF) [11] (pressure forwarding representative). Particularly,
ARPGF outperforms GPGF under practical Time To Live (TTL) con-
straints. Moreover, we show that when the packet TTL ≤ 128
and under legitimate assumptions, ARPGF data could fit in the
available IP packet header space, hence it has minor overhead. At
the same time, we found that GPSR performs worse than the ARGF
algorithm due to the former’s unrealistic assumptions on the un-
derlaying network graph, i.e., unit disk or planar graph. Finally, our
NS-3 [22] event-driven simulations also confirm superior ARGF
(and hence ARPGF) goodput performance compared to GPSR and
other stateful reactive routing protocols, such as Ad-hoc On-
demand Distance Vector (AODV) [23] and IEEE 802.11 s standard
Hybrid Mesh Network Protocol (HWMP) [24], especially in chal-
lenging disaster response conditions of severe node failures and
high mobility.

Paper organization. In Section 2, we discuss related work. In
Section 3, we motivate the local minimum problem and describe
how deep learning can be applied to derive physical obstacle
information from the satellite imagery available at the edge cloud.
In Section 4, we introduce our theoretical electro-static-based for-
warding model to include physical obstacle knowledge, and show
how the repulsive field guarantees the shortest path approxima-
tion as well as the local minimum avoidance. Section 5 describes
our practical approximation of the theoretical model. Section 6
presents our evaluation methodology, performance metrics and
results that showeffectiveness of our proposed approach. Section 7
concludes the paper.

2. Related work

Edge routing and IoT. Recent advances in the IoT have brought
challenges in storage, networking and computation management
and under several scenarios, including mobile edge comput-
ing [3,25], wireless sensor networking [26,27] or cognitive net-
working [28,29]. Among the most severe IoT challenges for data
marshaling, we have seen scarce energy, high mobility and fre-
quent failures [16,29]. To overcome some of these challenges in
bridging IoT devices with the gateway, edge and core clouds,
recent advances in the Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) have been adopted [3,25].
For example, a control plane has been used to dynamically find
low-latency and high bandwidth paths that satisfy IoT-based ap-
plication demands [3,30]. Existing solutions that leverage data
transfer to a gateway commonly require knowledge of the network
topology such as spanning trees [14,15] or network clusters [27].
In this paper, we consider a special case of data delivery from the
disaster incident scenes to the gateway over MANETs, that is in
contrast to typical wireless sensor network scenarios. Because of
the high node mobility (i.e., due to use of MANETs) and severe
node failures (e.g., due to intermittent energy supply), solutions
that rely on a logically centralized network control [3,25] or on
the network topology knowledge [15–17,27] can be inadequate.
Our approach copes with the above limitations in disaster incident
scenarios via a stateless greedy forwarding protocol that finds high
bandwidth and low-latency paths by improving packets delivery
and minimizing path stretch. Moreover, our approach does not
directly address energy scarceness of the IoT devices, but copes
with it in a best effortmanner by using stateless greedy forwarding
that avoids usage of routing protocols that can drain a battery of IoT
devices relatively fast.

Physics in computer networks. Applying physics laws to solve
computer network problems is not a novelty. The first successful

attempt, to our knowledge is the popular result by Shannon, who
created the basics of information theory relying on the entropy
definition fromphysics [31]. To justify network effects newmodels
such as the ‘‘small world’’ effect, cluster models, network corre-
lation, random graph model, network growth model and many
others have been developed. All these models rely on physics to
some extent. A survey of these models can be found in [32].

Narrowing our attention to routing and forwarding schemes
using potential fields, we found a few routing and forwarding
schemes using potential fields similar to our approach [33–35].
Their solution is aimed at balancing thenetwork loadby thenatural
property of electrostatic lines of force to be geo-spatially dispersed.
In [33], authors use the aforementioned property to select a path
trajectory so that a greedy forwarded packet can reach the des-
tination without facing a local minimum. In [34], authors use nu-
merical calculations to optimize network load for one-to-many and
many-to-many communication patterns. However, both schemes
do not address the local minimum problem due to presence of
obstacles directly and can benefit from using our approach. In [35],
the authors use a potential field to repulse traffic in excess from
heavy loaded sensors to reduce congestion. Our proposed approach
can be used similarly to directly deal with congestions and other
disaster incident-supporting geographic routing problems.

Geographic routing and MANET. The literature on geographic
routing and greedy forwarding is also vast, and here we focus on
the most valuable works that help to highlight our contributions.
Many geographic routing algorithms that can recover from a local
minimum have been proposed. One of the first geographic rout-
ing solutions which guarantees delivery were Greedy Perimeter
Stateless Routing (GPSR) [13] and GFG [36]. To recover from a
local minimum, both protocols use face routing which requires
strong assumptions such as unit disk and planar graphs. However,
planar graphs can be disconnected when graphs have arbitrary
shapes, nodes are mobile and real physical obstacles appear [37].
Kim et al. [37] propose a solution which overcomes planar graph
limitations in practice by introducing Cross-Link Detection Proto-
col (CLDP) complication. As later works have show [15,17], CLDP
requires expensive signaling to detect and remove crossed edges.
Authors in [15] proposed Greedy Distributed Spanning Tree Rout-
ing (GDSTR) which requires less expensive distributed spanning
tree construction (to maintain one or several spanning trees) to
guarantee delivery and recover from a local minimum. GDSTR is
also extended to a 3D case [38]. Kleinberg et al. [14] use span-
ning trees for greedy embedding, i.e., for an assignment of virtual
coordinates to greedy forward a packet without facing a local
minimum. More recent works [16–18] show that spanning trees
are sensitive to dynamic topologies and mobility. Moreover, most
of the aforementioned solutions were designed for static sensor
networks which are limited in dynamics. Our approach obtains
better path stretch results, also works in 3D spaces, but does
not require the time and space complexity of a spanning trees
construction.

More recent protocols such as MTD and WEAVE [16,17] can
cope with topology dynamics to some extent. For example MTD
requires construction of Delaunay triangulation (DT) graphs for
localminimumrecovery.When topology changes, nodesmay loose
their Delaunay neighbors which are needed for recovery from a
local minimum. Contrary to ours, all of the aforementioned pro-
tocols are stateful — i.e., they rely on global or partial topology
knowledge and therefore their performance degrades under node
mobility or failures — common for disaster scenarios. Moreover, all
these algorithms build around greedy forwarding and hence, they
can benefit from using our repulsive field to proactively avoid local
minima created by obstacles. To our knowledge, we are the first to
introduce a theoretical solution to the local minimum avoidance
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that approximates with a bound the shortest path in ad-hoc net-
works by creating conceptually different forwarding decision rules.

Geographic routing and the Internet. Geographic routing has
been also proposed for the Internet [11,18,39] that is less dynamic
than wireless ad-hoc networks. The authors in [11] build upon
the work of Kleinberg et al. [14] and show that due to inaccurate
greedy embedding caused by topology dynamics, packets can get
stuck in a local minimum. To this aim, they propose the Gravity
Pressure Greedy Forwarding (GPGF) [11] protocol which is shown
to have guaranteed packet delivery on graphs of an arbitrary shape.
To recover from local minimum, GPGF counts the number of node
visits (storing that information in packet headers) to press packets
from local minima until greedy forwarding can resume. The key
idea beyond pressure recovery is a greedy forwarding gradient
descent property — once a packet reaches a location closer to the
destination, there is no way how the packet can be forwarded
back to the previous location of a local minimum. However, such a
recovery needs expensive packet header space [18] and can stretch
path significantly to undesired levels.

AGRA: AI-augmented geographic routing. In this paper, we use
a conceptually different repulsive field for geographic routing to
benefit from a static physical obstacle knowledge obtained by us-
ing deep learning-based detectors [19,20] over any available edge
satellite maps. The proposed approach based on the electrostatic
potential of Green’s function theoretically guarantees avoidance of
a local minimum as well as the shortest path approximation. The
electrostatic field guiding packets has a gradient descent property,
withminimumat the destination. Thismeans that greedy forward-
ing can be also complemented with the gravity pressure mode of
GPGF for a local minimum avoidance. Our proposed algorithms,
i.e. Attractive Repulsive Greedy Forwarding (ARGF) and Attractive
Repulsive Pressure Greedy Forwarding (ARPGF) use both repulsive
and attractive fields to greedy forward a packet (in 2D or 3D
Euclidean spaces). As shown in our simulations, such a greedy
forwarding synergy enhances the path stretching property of GPGF
and hence the delivery ratio (limited by the packet’s Time To
Live), making ARPGF suitable for the incident-supporting wireless
edge (i.e., ad hoc) networks. Due to the static obstacle knowledge,
proposed algorithms can cope betterwith highmobility and severe
node failures, which results in an overall greater goodput during
disaster scenarios, crucial for most of the incident-supporting situ-
ational awareness applications. In the absence of obstacles knowl-
edge or with obstacle location miscalculations by deep learning,
the performance of such proposed algorithms degrades with re-
spect to their respective predecessor performances, i.e., ARGF to
GF [12] and ARPGF to GPGF [11].

3. Problemmotivation and AI relevance

In the highly mobile and frequent node failure conditions dur-
ing a disaster-incident response, we cannot rely on the network
topology knowledge such as routing tables, spanning trees, etc.
Thus, most of the geographic routing solutions designed for static
sensor networks and available for MANETs today are poorly appli-
cable for the disaster-incident case. On the other hand, local min-
imum of the geographic routing often appears near large physical
obstacles (especially, of concave shapes) such as man-made (e.g.,
buildings) or natural (e.g., close to lakes or ponds). Figs. 2(a) and
2(b) illustrate these potential physical obstacles.

Fortunately, due to the design of our ‘‘Panacea’s Cloud’’ sys-
tem [6–8], we have satellite maps available (pre-uploaded) at the
edge cloud which contain information about the disaster-incident
area. Fig. 3 showsmaps of Joplin, MO area before and after tornado
damages that occurred on May 22nd, 2011. The tornado response
imagery of Joplin, MO is available at [40].We can see how informa-
tion (e.g., size and location) of the Joplin High School (see Figs. 3(a)

and 3(b)) and the Joplin Hospital (see Figs. 3(c) and 3(d)) buildings
(and other physical objects) are slightly impacted by the tornado
disaster incident. Thus, we can benefit even from currently avail-
able maps of the disaster incident area by addressing the following
problems— (i) how to extract information about potential physical
obstacles (e.g., buildings, lakes, etc.) from the available maps of
the disaster scene; and (ii) how to use this knowledge within
geographic routing to improve its goodput (i.e., application layer
throughput) sufficient for the real-time visual situational awareness.

3.1. Obstacle detector architecture

The first problem can be solved by manually labeling all poten-
tial obstacles on themap.However, due to any given disaster-scene
scale and due to the fact that time is critical for first responders,
labeling physical obstacles on themap all the time (i.e., themanual
approach) can be intractable. Thus, we adopt an approach that
involves automation of that process.

The artificial intelligence, and more specifically the pattern
recognition areas today are ideally suited for such automation
processes. The pattern recognition field today includes many ap-
proaches related to an object detection (finding the object location
and its size) in the given image (e.g., satellite imagery). These
approaches include: Support Vector Machines, Nearest Neighbor,
Deep Learning and other techniques. However, the most accurate
detectors rely on deep learning approaches [19,20]. For example,
the You Only Look Once (YOLO) [19] deep-learning detector pre-
dicts objects in images using only a single neural network com-
posed by 26 layers, an easier task for the edge cloud. At the same
time, it can haveworse performance thanmore sophisticated deep
learning detectors [20]. Note that alternatives to object detection
include also geographical object-based image analysis [41] that
relies on the spectral information extracted from image pixels that
may require additional and more expensive LiDAR hardware [3]
not necessarily available during incident response scenarios.

However, the deep learning object detectors may not find ob-
stacles or misclassify them in some cases. Thus, they still require
some human interaction i.e., labeling of some of the detected and
correctly classified or misclassified samples. To cope with deep
learning complexity, in our ‘‘Panacea’s Cloud’’ architecture shown
in Fig. 4, we move deep learning to the core cloud due to limited
edge cloud storage and computation resources. Further,we assume
that training samples are collected and partly labeled during the
previous incident responses at the edge cloud. These samples are
then used for supervised or semi-supervised deep learning [42]
to enhance performance of the detector in future. The up-to-date
detector version then can be pre-uploaded to the edge cloud and
used off-line during disaster-incident response activities within a
lost infrastructure region. Once detected, physical obstacles are
then propagated to the MANET through a gateway.

Note that in this paper, we do not focus on finding the best
(i.e., the most accurate) approach for the obstacle detection on the
satellite maps. Instead, we address the second problem — how
to utilize obtained physical obstacle knowledge in the geographic
routing to support real-time visual situational awareness under
challenging disaster-incident conditions.

4. Repulsive field model

In this section, we describe a theoretical solution that can be
used to incorporate the physical obstacle’s knowledge extracted
from the maps within the geographic routing. We will use an ap-
proximation of this theory as a design principle for our algorithms
described in subsequent sections.

Let us consider a wireless network with nodes uniformly dis-
tributed over the continuous R2 (or R3 in 3-dimensional case)
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(a)

(b)

Fig. 2. Satellite imagery examples of various physical obstacles which can be used for training purposes including both man-made e.g., buildings (a) and natural e.g., lakes
or ponds (b).

(a) (b)

(c) (d)

Fig. 3. Satellite imagery of Joplin, MO area including Joplin High School (top row)
and Joplin Hospital (bottom row) buildings before (a, c) and after (b, d) tornado
damages on May 22nd, 2011: we can see how captured on satellite images infor-
mation about size and location of buildings (and other physical objects) was slightly
impacted by the disaster incident.

plane, with limited radio range. Let us also assume that our wire-
less network is static and does not have any obstacles (voids).
In a greedy forwarding algorithm, nodes need to be aware of
the (euclidean) coordinates of the destination as well as of all
their neighbors [11,13,15–17]. Packets are then forwarded to the
neighbor closest to the destination.

We model greedy forwarding based on an analogy from the
electrostatics literature: specifically, we model a packet as a pos-
itive electric charge (or test charge) and its movement from the
source with an electrostatic field created by the destination (with
point negative charge). Packets are forwarded towards lines of
force of the electrostatic field till they reach the destination. The
potential field ϕ generated by the negative charge at the destina-
tion on the test charge is modeled as:

ϕ = −
Q
r

(1)

where r is a distance between the node which currently holds a
packet and the charge located at the destination, and Q represents

Fig. 4. To cope the deep learning complexity of the obstacle detectorwe aremoving
deep learning to the core cloud. The up-to-date detector version then can be pre-
uploaded to the edge cloud and used off-line during disaster-incident response
activities within a lost infrastructure region to enhance geographic routing.

the intensity of such a charge. Following the laws of electrostatics,
each node forwards its packets to the neighbor with the lowest
electrostatic energy i.e., the node with the lowest electrostatic
potential. When there are no obstacles between the source and
destination, nodes always forward packets to the node closer to the
destination. In this paper, we refer to this potential field generated
with Eq. (1) as the attractive field.

In presence of obstacles, to generate the repulsive potential, we
first ground each obstacle region making its surface equipotential
(zero potential) by generating additional charges within this re-
gion. We then sum to the main potential described in Eq. (1), an
additional potential created by each induced charge. In the rest of
this section we first show how nodes would compute a potential
for a single grounded spherical obstacle region. We then extend
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Fig. 5. Electrical images method: a single negative point charge induces a single
positive point charge (image) inside a grounded sphere making its surface equipo-
tential (zero potential).

our computation to a network with multiple obstacles of arbitrary
shapes. We finally show how our proposed repulsive field model
approximates the shortest path.

4.1. Electrical images solution for a single spherical obstacle

To ‘‘ground’’ a single spherical obstacle we use the electrical
images method [21]. In particular, we induce a single positive
point charge inside the obstacle as shown in Fig. 5. The potential
field generated by such point charge is modeled by the following
equation:

ϕ = −
Q
r
+−

q

|r⃗ − b⃗+ a⃗|
(2)

where b⃗ is a vector modeling the distance between the center of
the sphere and the destination node, and a⃗ is a vectormodeling the
distance between the center of the sphere and the induced charge.
The value of the induced charge q is then: q = R

bQ , where R is the
radius of the sphere. The final location of the induced charge a⃗ is
instead: a⃗ = R2

b2
b⃗.

4.2. Green’s function solution for obstacles of arbitrary shape

Let us now consider amore general case of a networkwithmul-
tiple obstacles of arbitrary shape. To model the positive potential
generated by such scenario, we use the Green’s function [21]:

G = −
Q
r
+ χ (3)

where χ is the potential induced by the charges on the obstacles
within the network graph. We assume the origin of the coordinate
system at the destination node. The effect of such a positive poten-
tial is then summed to the negative potential field generated by
the point negative charge at the destination to generate the line of
force, and hence the trajectory of the packet. In this paper, we refer
to the potential field generated with Eq. (3) (or its approximation)
as the repulsive field. Thus, we have the following result:

Fact 1. Given a network with a system of grounded conductors and
a single point charge at the destination, we can emulate a unique
potential field without a local minimum.

Proof. Let us assume by contradiction that we have a local min-
imum created by the Green’s function potential field for several
grounded obstacle surfaces and a negative point charge located
at the destination. Moreover, let us assume by contradiction that
this potential field is also not unique. Having a local minimum
implies that all lines of force have to be directed inwards of the
local minimum, which is possible if and only if there is a point
or a surface that creates an additional negative potential field

Fig. 6. A potential field has a local minimum if there is a point or a surface
which creates an additional negative potential field somewhere else besides the
destination, so that the lines of force are directed inwards the local minimum.

besides the destination (see Fig. 6). From the Green’s Reciprocation
Theorem [21] we derive the closed-form expression for a potential
between any point a located on the grounded surface and a single
point charge located at the destination as follows:

ϕ(a) = −
∮

S
ϕS∇⃗G(a) dS (4)

where ϕS is the potential on the surface S and ϕ is the potential
generated by a point charge located at the destination. Note that
Eq. (4) can be rewritten in a discrete form as: ϕ(a) = −

∑n
j=1ϕjSqjS .

From Eq. (4) and its discrete form we conclude that the potential
field created by some obstacle of arbitrary shape has always an
opposite sign of the potential field created by the point charge.
This means that an additional potential field is always positive
when the point charge located at the destination is negative. In
addition, based on the Green’s function Uniqueness Theorem [21]
such solution is unique. ■

Corollary 1. Repulsive greedy forwarding always avoids local mini-
mum.

Proof. Within a repulsive field, each node forwards packets to
the neighbor with minimum emulated potential energy. Based on
Fact 1, the line of force of such potential function can lead only to
the destination, or to infinity in case of a disconnected network.
Hence, if a path between the source and the destination exists, then
packet delivery by repulsive greedy forwarding is guaranteed. ■

4.3. Path stretch approximation bound

The goal of this subsection is to show a bound on the path
stretch obtained using repulsive greedy forwarding. To this aim, we
first show that the maximum path stretch arises only in presence
of a single spherical obstacle; we then estimate such stretch upper
bound using properties of the electrostatic potential field.

Fact 2. Themaximum path stretch of repulsive forwarding arise when
both source and destination are located at the two extreme points of
a single obstacle’s diameter.

Proof. Since the potential field created by an obstacle is inversely
proportional to the distance r to this obstacle (Eq. (2)), the closer
the shortest path lies to an obstacle region, the greater the strength
of the obstacle’s potential field on such packet. This means that
the path stretch is as high as the path gets closer to the obstacle.
In the worst-case, the shortest path length equals to half of the
obstacle’s perimeter, e.g., when the source and the destination are
located on the opposite sides of the obstacle’s diameter. From the
Green’s function [21] we know that the potential field generated
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(a) (b)

Fig. 7. (a) Potential field in presence of a single grounded sphere in polar coordinate
system: when the destination locates very close to the surface of a sphere, the
induced charge creates a potential field of a point dipole. (b) Using electrostatic
potential field properties and numerical calculations we estimated the worst-
case repulsive greedy forwarding (RGF) stretch of the shortest path (SP) as ≈
3.2907221± 10−7 .

by the grounded obstacle is directly proportional to its volume.
This means that the greater is the obstacle’s volume (or area)
and the shorter is its perimeter, the higher is the possible path
stretch. Finally, the more obstacles we have in the forwarding
region, the weaker will be their potential fields due to secondary
induced charges, since the obstacle potential fields weaken each
other. Due to this fact and based on the isoperimetric property of
a sphere (circumference) [43], we conclude that repulsive greedy
forwarding shows amaximum path stretch only in the presence of
a single spherical obstacle, when both source and destination are
located at opposite sides of the obstacle’s diameter. ■

Corollary 2. Repulsive forwarding has a 3.291 path stretch approxi-
mation bound with respect to the shortest path.

Proof. Based on Fact 2, the repulsive greedy forwarding maxi-
mum path stretch arise when a single spherical obstacle has both
source and destination located at opposite sides of its diameter.
The Green’s function (see Eq. (3)) of this obstacle is G = q

r1
−

Q
r2

as shown in Fig. 7(a), where Q is a point charge located at the
destination; q = RQ

R+ l
2
is a point induced charge located within the

obstacle (see Eq. (2)), and l is the distance between them. Since
l ≪ r , using the cosine theorem and the Taylor series expansion
on lwe have:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r1 =

√
r2 +

l
4

2

− rl cosφ = r −
l
2
cosφ + O(l2)

r2 =

√
r2 +

l
4

2

+ rl cosφ = r +
l
2
cosφ + O(l2)

(5)

Similarly, q can be written as q = Q − l
2RQ + O(l2), and hence,

using Eq. (5) the Green’s function G in its first l approximation can
be rewritten in polar coordinates as:

G(r, φ) =
Q − l

2RQ

r − l
2 cosφ

−
Q

r + l
2 cosφ

=
Ql(cosφ − r

2R )
r2

(6)

Note that when r ≪ R, the potential field in Eq. (6) becomes
a potential field of a point dipole. Moreover, on the obstacle’s
circumference (e.g., when r = 2Rcosφ), Eq. (6) equals to 0, which is
also expected since a grounded conductor (an obstacle) has a zero-
potential surface.

Initially, packets are repelled away from the obstacle along the
source–destination line until they reach the minimum potential
point, which we can find by differentiating Eq. (6) with respect to
r and subsumed φ = 0 as following:
dG(r, 0)

dr
= −

2Ql
r3
+

Ql
2Rr2

= 0 (7)

Solving Eq. (7) gives us r = 4R, and hence, initially packets are
repelled away from the obstacle on L0 = 2R distance. If we
model a path with the closed-form of packet trajectory obtained
by repulsive greedy forwarding,we can find its residual length from
the gradient symmetry of the electrostatic potential field [21]:

dr
∇rG(r, φ)

=
rdφ

∇φG(r, φ)
(8)

Further, by subsuming Eq. (6) to Eq. (8) we obtain the following
differential equation:

ṙ + r
1

2R sinφ
− 2ctgφ = 0 (9)

where ṙ = dr
dφ . Moreover, r(0) = 4R (see Eq. (7)).

As both shortest path and repulsive greedy forwarding path
lengths are proportional to the obstacle’s size, without loss of gen-
erality we can assume unitary obstacle diameter. Hence, solving
Eq. (9) with R = 1

2 gives us the following packet trajectory closed-
form:

r =
2φ

tg φ

2

− 2 (10)

The maximum path stretch is then equal to L
πR =

2L
π

where L =∫ φ2
φ1

(r2 + ṙ2)
1
2 dφ + L0 is a length of the found trajectory. Note that

φ1 = 0, and φ2 ≈
3π
4 which can be found by subsuming r = 0 to

Eq. (10), i.e., by solving φ = tg φ

2 .
Solving the integral using numerical calculations, we estimated

the length of the trajectory to be L = 5.1690541 ± 10−7. The
maximum path stretch is then≈ 3.2907221± 10−7 (see Fig. 7(b)).
We then conclude that — repulsive greedy forwarding is an approx-
imation algorithm for the shortest path. ■

In the rest of this paper, we first present a practical algorithms
which incorporates repulsive field model. Using numerical and
event-driven simulations, we then show how a path stretch min-
imization with proposed algorithms improves an overall network
goodput.

5. Practical repulsive forwarding

In the previous section, we have shown how to use physical
obstacle information within geographic routing to avoid the local
minima by greedy forwarding packets as if they are hypothetically
immersed in a potential field generated by a point charge at the
destination. Obstacles were modeled as conductors with zero po-
tential surface resulting in additional repulsing fields. Herein, we
describe how we approximate the Green’s function to capture the
potential field generated by multiple randomly shaped obstacles.
We first compute our approximation assuming global knowledge
of all obstacles at every node. Next, we extend our solution to a
local knowledge case: nodes are only aware of obstacles present at
some specified distance called ‘‘repulsion zone’’. Then, we discuss
how our forwarding algorithm can be coupled with existing state-
less local minimum recovering scheme called ‘‘Pressure’’ proposed
in [11] for a guarantee delivery.2

Why do we need an approximation? Our repulsion field builds
upon the continuous R2 (or R3) plane; a discrete node distribution
instead creates discontinuity of potential fields which can form
artificial local minima. For example, nodes may be scattered in
a way of creating artificial voids (i.e., not radio-covered space
without physical obstacles). Moreover, to find a closed-form of
the potential induced on every node on the network, the Green’s

2 As we show later guaranteed delivery is possible only if there is no path length
limit such as e.g., Time To Live (TTL).
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function requires an integration over the obstacles’ surface with
respect to every other obstacle, including the impact of secondary
charges. Solving such an integral (at every forwarding decision)
may be unfeasible, due to complex obstacle shapes or by the dy-
namic nature of the network. Themirror effect further complicates
the computation of the repulsive potential field induced by the
obstacles: when an object is located between two mirrors, infinite
number of images (induced charges) appear. Similarly, secondary
charges recursively induce progressively weaker additional fields,
to be included in the Green’s function solution.

Next, we show the impact of the secondary charges by approxi-
mating any obstacle shape to a circle (a sphere) with a point charge
located on its center ofmass. For our approximation of the obstacle
electrostatic field we require:

Sign: the potential induced by each obstacle region has to be
positive, i.e., each obstacle is replaced with a positive point charge
to repulse a packet.

Direction: the potential induced has to be greater inside, and
smaller outside than a potential field created by a negative point
charge located at the destination. This is necessary to correctly
drive the packet in direction of the destination.

Intensity: the total potential field must be equal to 0 at∞.
The above requirements allow the greedy forwarding algorithm

to use a gradient descent on the repulsion field to converge to
the destination by forwarding packets to the neighbor whose
electrostatic energy is minimum. We describe the local minima
recovering mechanism in Section 5.3.2.

Obstacles’ shape approximation. We approximate the potential
field of an obstacle by circumscribing it to a circle (or sphere) j to
capture the worst path stretch it can cause (see Fact 2). Having the
set of obstacle’s pixels the detector (see Section 3) computes the
center and the radius of the circumscribing circle. We locate the
center of the circle with the center of mass of such an obstacle.
To locate the coordinates of the center of mass Cj we average the
coordinates of the N pixels Si of the obstacle as follows:⎧⎪⎪⎨⎪⎪⎩

xCj =
∑N

i=1 xSi
N

yCj =
∑N

i=1 ySi
N

(11)

We then assign to the radius of the circumscribing circle Rj, the
distance between the center Cj and the furthest (border) pixel,
which can be computed as follows:

Rj = max
i= ¯1,N

dist(Cj, Si). (12)

Remark. Note that instead of using an AI-based obstacle detec-
tors over satellite imagery at edge clouds, the proposed Repulsive
field can be used in conjunction with existing dynamic obstacle
detection algorithms (e.g., localization techniques based on node’s
signal strength) running in MANETs [44]. To this aim, Eqs. (11)
and (12) can use coordinates of obstacle’s border nodes. The cons
of a dynamic obstacle detection is the overhead as well as the
dependency on the network awareness, which can be aggravated
by the geographic routing performance under node failure and
mobility conditions.

Obstacle’s Potential Approximation. Toneglect the impact of self-
induced charges we approximate the potential field of the obstacle
with a decaying potential whose strength magnitude is a parame-
ter n. To approximate the potential field of the circumscribed circle,
we place a positive point charge qj in the obstacle center Cj. We

Fig. 8. Use of border conditions in A to find values qjln−1 .

approximate the potential field generated by the obstacle with a
potential whose strength diminishes with the rnj :

ϕj =
qjln−1

rnj
(13)

where ln−1 is a normalizing constant with units of length elevated
to the power of n − 1. To minimize the impact of the secondary
induced charges in presence of several obstacles, we could use
n ≥ 1. Note how a potential of a negative point charge located at
the destination always depends merely on the distance rd (n = 1).

5.1. Computing electrostatic potential with obstacles global knowl-
edge

Let us assume that all nodes are aware of both the center and
the radius of each obstacle j, ⟨Cj, Rj⟩. This assumption is suitable
for routing schema in which the global knowledge of the topology
is available, or in the case of a static known man-made or natural
obstacle, such as a building or a pond. With such information, we
can compute the electrostatic potential at any node e as:

ϕe = −
Q

|r⃗d − r⃗e|
+

M∑
j=1

qjln−1

|r⃗j − r⃗e|
n (14)

where r⃗d is a radius vector directed towards the destination, r⃗j is
a radius vector directed towards the obstacle’s center Cj, and r⃗e
is a radius vector directed towards the node e. To compute qjln−1
we equate the electrical fields created by the obstacle j and the
destination d on the obstacle’s border, so that they are equal in
magnitude and opposite in direction, i.e., ∇⃗ϕd = −∇⃗ϕj, where:⎧⎪⎪⎨⎪⎪⎩
∇⃗ϕd = −

Q

|r⃗d − r⃗A|
3 (r⃗d − r⃗A)

∇⃗ϕj =
nqjln−1

|r⃗j − r⃗A|
n
+ 2

(r⃗j − r⃗A)
(15)

From Eq. (15) we derive the dependence of qjln−1 by Q (see Fig. 8):

qjln−1 =
QRn+1

j

n(|r⃗d − r⃗j| + Rj)2
(16)

5.2. Computing electrostatic potential without global knowledge of
obstacles’ location

In this section we describe a simple method to compute for-
warding decisions based solely on local knowledge of obstacles’
location. This ismotivated by the need to reduce network overhead
and to optimize memory and storage needed to deal with the
propagation and storage of obstacles information (especially in
case of large-scale networks). In our evaluation section, we quan-
tify how such local knowledge is enough for a performant greedy
forwarding strategy with minimum path stretch. Note how, since
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Fig. 9. Attractive/Repulsive Greedy Forwarding (ARGF) example: ARGF starts in
Attraction mode until it reaches the repulsion zone; at node b (located outside the
repulsion zone), ARGF returns back to its Attractionmode. ARGF can again switch to
the Repulsionmodewith guaranteed progress towards destination. At node d, ARGF
returns to the Attractionmode and continue forwarding in thismode to destination.

the electrostatic field intensity diminishes with distance, when
computing the potential, forwarding nodes do not need to consider
obstacles ‘‘far away’’.

To find the distance at which the obstacle’s contribution to the
total potential field is still significant, i.e., the obstacle’s repulsion
zone Rz , we first decompose the second term of Eq. (14) with a
Taylor series expansion obtaining:

f (R) =
qjln−1

Rn −
nqjln−1

Rn+1 (r − R)+ O((r − R)2) (17)

and then we neglect the first two terms of higher order and substi-
tute Rz to r in Eq. (17). The radius of repulsion zone is therefore:

Rz =

(
1+

1
n

)
R (18)

Thus, nodes need only to store obstacles located closer than Rz .
Once a node moves further away from an obstacle’s Rz , it can
remove its states concerning that obstacle. On contrary, when
a new node arrives within the obstacle’s repulsion zone Rz , the
information about such obstacle should not be used. As we show
in Section 6, such information can be exchanged among neighbors
during their regular position beaconing communication with neg-
ligible additional overhead (i.e., using the same packet).

5.3. Greedy forwarding algorithms

Note how, due to discrete node distribution and since we ap-
proximate the Green’s function of the real obstacles to a potential
of spherical regions, Eqs. (14) and (16) do not guarantee avoidance
of a local minimum. To this end, we first propose a solution that
alternates forwarding in both attractive and repulsive fields, viz.
Attractive Repulsive Greedy Forwarding (ARGF), to increase the
chance of escaping or avoiding all local minima and deliver a
packet with the minimum path stretch. To guarantee 100% packet
delivery, we then extend ARGF with stateless Pressure local min-
imum recovery scheme proposed in [11]. The resulting Attractive
Repulsive Pressure Greedy Forwarding (ARPGF) applies recovery
when in pressure mode to both attractive and repulsive fields
(details in Section 5.3.2).

5.3.1. Attractive/Repulsive Greedy Forwarding
Algorithm 1 outlines how each node forwards packets using

the Attractive Repulsive Greedy Forwarding (ARGF) strategy, when
either local or global information about obstacles are known. Fig. 9
illustrates the following forwarding process: upon receiving a
packet to be forwarded, node e checks if the packet should proceed
further in Repulsion mode or in Attractive mode. To this end, ARGF
first check that e in repulsion zone Rz and that previously found
potential in Repulsionmode attached to the packet P_ϕrep (which is

initially set tomax value) is greater than current potential of e (line
3). This statement is important to ensure that packets progress
in Repulsion mode towards the destination without possibility of
returning to previous local minimum of repulsive field. Thus, if
P_ϕrep > ϕtotal(e, P, e.C⃗, e.R⃗), e stores its potential in packet header
(line 4) and computes neighbors Nbrs potential ϕtotal (line 5) using
its information about known obstacle centers e.C⃗ and their radius
e.R⃗ via Eqs. (14) and (16).

If no neighbor n found has a potential ϕtotal lower than node
e potential, or if e is not in Rz , e switches to an Attraction mode,
where it computes its neighbors’ potential ϕd using Eq. (1) (line
12). If both Repulsion and Attractive modes are unavailable to find
next hop, ARGF returns a potentially detected obstacle condition
and terminates.

Algorithm 1: Attractive/Repulsive Greedy Forwarding
/* Upon receiving a packet P at node e */

1 if e ̸= dst then
2 next ← NIL
3 if e ∈ Rz and P_ϕrep > ϕtotal(e, P, e.C⃗, e.R⃗) then

/* Repulsion mode */
4 P_ϕrep ← ϕtotal(e, P, e.C⃗, e.R⃗)
5 n← argmin

n∈Nbrs(e)
ϕtotal(n, P, e.C⃗, e.R⃗)

6 if ϕtotal(n, P, e.C⃗, e.R⃗) < ϕtotal(e, P, e.C⃗, e.R⃗) then
7 next ← n
8 forward(P, next)
9 end

10 end
11 if next == NIL then

/* Attraction mode */
12 n← argmin

n∈Nbrs(e)
ϕd(n, P)

13 if ϕd(n, P) < ϕd(e, P) then
14 next ← n
15 forward(P, next)
16 else
17 exception (‘‘ARGF faced a local minimum")
18 alert (‘‘Potentially unknown obstacle detected")
19 terminate
20 end
21 end
22 else
23 terminate
24 end

5.3.2. A/R Pressure Greedy Forwarding
Although empirically (as we show in Section 6) our ARGF

outperforms traditional Greedy Forwarding in terms of packet
delivery, it does not theoretically guarantee 100% packet deliv-
ery. To this end, we devised Attractive Repulsive Pressure Greedy
Forwarding (ARPGF), which builds upon a known Gravity-Pressure
scheme that has been shown to provide guarantee packet deliv-
ery [11].

Algorithm 2 outlines how each node forwards packets using
Attractive Repulsive Pressure Greedy Forwarding (ARPGF): the
algorithm also starts by alternating Repulsive and Attractive fields
in ARGF, when it needs to forward packets. However, similarly to
the last known potential of Repulsion field ϕrep, it also saves the
last known potential in the Attractive field variable ϕattr (line 12) to
ensure in a possibility of the progress in Attractive mode e.g., after
resuming from Pressure mode. When both Attractive and Repulsive
forwarding fail to find next node for forwarding, ARPGF switches
to Pressuremode (line 21).

The key idea behind recovery in Pressure mode is to forward
packet to the closest to the destination neighbor among the least
visited neighbors (line 23).



1060 D. Chemodanov et al. / Future Generation Computer Systems 92 (2019) 1051–1065

Algorithm 2: Attractive/Repulsive Pressure Forwarding
/* Upon receiving a packet P at node e */

1 if e ̸= dst then
2 next ← NIL
3 if e ∈ Rz and P_ϕrep > ϕtotal(e, P, e.C⃗, e.R⃗) then

/* Repulsion mode */
4 P_ϕrep ← ϕtotal(e, P, e.C⃗, e.R⃗)
5 n← argmin

n∈Nbrs(e)
ϕtotal(n, P, e.C⃗, e.R⃗)

6 if ϕtotal(n, P, e.C⃗, e.R⃗) < ϕtotal(e, P, e.C⃗, e.R⃗) then
7 next ← n
8 forward(P, next)
9 end

10 end
11 if next == NIL and P_ϕattr > ϕd(e, P) then

/* Attraction mode */
12 P_ϕattr ← ϕd(e, P)
13 n← argmin

n∈Nbrs(e)
ϕd(n, P)

14 if ϕd(n, P) < ϕd(e, P) then
15 next ← n
16 forward(P, next)
17 else
18 alert (‘‘Potentially unknown obstacle detected")
19 end
20 end
21 if next == NIL then

/* Pressure mode */
22 visitsmin ← min

n∈Nbrs(e)
P_visits(n)

23 Candidates← {n ∈ Nbrs(e) and P_visits(n) == visitsmin}

24 n← argmin
n∈Candidates

ϕtotal(n, P, e.C⃗, e.R⃗)

25 P_visits(n)← P_visits(n)+ 1
26 next ← n
27 forward(P, next)
28 end
29 else
30 terminate
31 end

6. Evaluation results

In this section, we establish the practicality of our electro-
statics-based approach by evaluating its performance in several
scenarios that result into the following salient findings:
(i.a) Local obstacles knowledge is enough. Our repulsive greedy for-
warding approach is not affected by a lack of global knowledge on
obstacles’ position.
(i.b) Local obstacles introduce negligible storage and no network
overhead. To maintain a local knowledge on obstacles, our routing
protocols only requires < 0.25 KB of storage space, and hence,
that information can be piggybacked and propagated with the
keep-alive beaconing message to update their position at no (or
negligible) additional network overhead.
(ii) Our ARPGF outperforms related stateless greedy forwarding solu-
tions [11,13] in terms of delivery ratio, and the required information
to run it, which can fit in available IP packet header space with 99%
probability (i.e., its overhead is extremely low).
(iii) The repulsive field (and hence both ARGF and ARPGF) improve
network’s goodput in challenged disaster incident wireless edge net-
works.3 By reducing a path stretch due to a physical obstacles
knowledge, ARGF (and hence ARPGF) results into a higher network
throughput than related solutions. The first two results emerge
from our numeric simulations, while we found our third result
analyzing using more realistic ns-3 event-driven simulations (see
Sections 6.1 and 6.2).

3 Improvement were observed when both coordinates and radius of physical
obstacles are known (see Section 6.2).

6.1. Performance tuning under static obstacles of complex concave
shapes

Simulation Settings. Our Java-based simulation environment is
composed by an Ubuntu OS GNU/Linux x86_64 machine with an
Intel(R) Xeon(R) processor with CPU 2.1 GHz and 1 GB RAM. We
generate a 1 km2 area and place nodes into each 10 × 10 m
cell (for a total of 10K nodes). To remove the ‘‘Unit Disk’’’’ graph
assumption, we set the radio range of each node from 50 to 40
m, unless stated differently. We then applied the random graph
generation model G(n, 1 − p) [11,17] with probability p = 0.05.
With this parameters when two nodes are within the reciprocal
radio range, there is a 5% probability that one of these nodes
is not detected by the other. We refer to this condition as lack
of symmetrical link assumption, that in turn leads to a network
asymmetrical connectivity.

We generate circular obstacles with a radius ranging from 10
to 100 m in random locations. When overlapping, such obstacles
create complex concave shapes, which stress greedy forwarding to
the limit [16]. We run our simulations with 0, 10, 30, 50 and 100
obstacles that occupy≈0%, 10%, 25%, 40% and 60% of the available
routing space, respectively.

Remark. Note that some of the recent similar solutions demon-
strate valuable performance degradation after only 30% of obsta-
cles occupancy [17]. In a disaster scenario, this would be common
and such performance degradation unacceptable.

After setting up the environment, we attempt to deliver traffic
among 1000 randompairs ⟨src, dst⟩. In this scenario, ourmain goal
is to stress our greedy forwarding algorithms with obstacles of
complex concave shapes, and hence, we do not use node mobility,
as it leads to a frequent network partitioning under high obstacle
occupancy which hides greedy forwarding algorithms’ potential.4
For the same reason, we do not generate obstacles at the area
edges. All our results show 99% confidence interval over 50 trials,
and our randomness lies in both the source–destination pairs and
the formed network topologies.

ComparisonMethods andMetrics. To empirically evaluate which
potential field best approximates an obstacle of arbitrary shape,we
tested the performance of both ARGF and ARPGF under different
potential field attenuation orders n. We then leverage our finding
(n = 2 for ARGF and n = 1 for ARPGF) in our other experiments.

We compare our ARGF and ARPGF algorithms with three other
stateless greedy forwarding exiting approaches, that is, the orig-
inal Greedy Forwarding (GF) algorithm (also known as compass
routing [12]), a face routing algorithm, GPSR [13] and a gravity
pressure forwarding algorithm GPGF [11]. In addition, we also
compare ARGF algorithm coupled with GPSR using a face routing
recovery policy, which we call ARPSR. The related solutions are
compared across two metrics: the packet delivery success ratio,
i.e., the number of delivered packets divided by the total number
of attempted delivery (counting only cases in which a path for
⟨src, dst⟩ pair exists), and the average path stretch, calculated as
the average path length ratio of delivered packets and the shortest
paths computed with a simple Breadth-First Search algorithm.
Finally, we also compare packet header sizes, which are dynamic
for ARPGF and GPGF.

(i.a) Local obstacle knowledge is enough. During the potential
field formation w.r.t. the different attenuation order n, we found

4 Note how mobility does not affect stateless greedy forwarding under the
assumption that t1 ≪ t2 , where t1 is time needed to greedy forward a packet to
the next hop, and t2 is time needed for the node to move out of its neighbor radio
range. To convince the reader that this is a practical assumption, we later apply
(high) mobility in our event-driven simulations.
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(a) (b)

(c) (d)

Fig. 10. Ignoring the obstacle mutual electrostatic influence during a potential
field computation leads to a lower (a) success ratio and/or (b,d) higher path stretch
(attenuation order n < 2). Performance of both ARGF and ARPGF does not improve
for attenuation order n ≥ 2.

that based on local obstacles knowledge, both ARGF and ARPGF
perform similarly (aside from a better path stretch for n ≤ 2)
to the case when all obstacles are known a priori (Figs. 10(a),
10(b), 10(c) and 10(d)). A path stretch difference under n ≤ 2 is
due to a potential field approximation inaccuracy: we ignore an
obstacle’s mutual influence by disregarding the secondary induced
charges (creating artificial local minima), while local obstacles
knowledge mitigates this problem. We can see how both global
and local versions of ARGF show the lowest path stretch and the
highest success ratio for n = 2, which match with the attenuation
order of a point dipole, and therefore in line with our theoretical
model (see Eq. (6)). At the same time, the local version of ARPGF
shows the lowest path stretch when n = 1, as in this case we
gain the best ratio between secondary induced charges mitigation
and the radius of repulsion zone, which achieves maximum length
decreasing the number of Attractive/Repulsive field alternations
during the Pressure recovery mode. We use n = 2 for ARGF and
n = 1 for ARPGF results for the rest of experiments.

(i.b) Local obstacles introduce no network overhead. To main-
tain information about local obstacles for our repulsive field, we
need to store them and periodically exchange with the neighbors.
The (3D) GPS coordinates of the obstacle location in the worst case
(i.e., without converting them to grid coordinates) takes no more
than 12 bytes (4 bytes for each coordinate). To store obstacle radius
we need no more than 4 bytes. Finally, to distinguish obstacles we
can also store its id which takes no more than 2 bytes (up to 65K
unique obstacles). To exchange that information we can use the
following packet payload structure shown in Table 1. Fig. 11(a)
shows how maintenance of the local knowledge for both ARGF
(with n = 2) and ARPGF (with n = 1) on obstacles requires low
amount of the node storage space, i.e., even in rear cases of storing
7 unique obstacles as shown in Fig. 11(b) we need 7 · 18 < 256 B
(or < 0.25 KB). Thus, local obstacle information can be exchanged
during a periodical node’s neighbors beaconing to update their
position at no additional network overhead (i.e., within a single
packet).

(ii) ARPGF can fit its data in the available IP header space.
Our simulations show how all pressure forwarding algorithms (i.e.,
GPGF and ARPGF) have a guaranteed packet delivery when there

Table 1
Obstacle data exchange packet payload.

Obstacle Center Radius
ID coordinates

2·n bytes 12·n bytes 4·n bytes

(a) (b)

Fig. 11. Local knowledge on obstacles maintenance for both ARGF (with n = 2) and
ARPGF (with n = 1 — the largest repulsion zone) requires low storage (a); even for
≤1% of nodes for the (worst-case) 40% obstacles occupation (b) which store up to 7
unique obstacles the storage space needed is 7 · 18 < 256 B.

(a) (b)

Fig. 12. (a) All pressure forwarding algorithms (i.e., GPGF and ARPGF) have a
guaranteed packet delivery when there is no TTL policy. Due to the asymmetrical
links and no Unit Disk graph guarantees, ARGF (without local minimum recovery)
outperformsGPSR—known face routing algorithm. These results are confirmed also
by our event-driven simulations. (b) Recovering from a local minimum in GPGF and
ARPGF may stretch path significantly; however, applying a Repulsion field to GPGF
(using ARPGF algorithm) shows a halved path stretch.

is no path length restrictions, such as a set time to leave (TTL) —
see Fig. 12(a). However, both ARPGF and GPGF lead to large path
stretches when obstacles occupy most of the available space, i.e.,
the ARPGF and GPGF average path lengths are ≈3 and 6 times
larger than a shortest path, respectively (Fig. 12(b)). Although Re-
pulsive field usage allows ARPGF to have a halved path stretch than
GPGF (paths are 2x shorter), these path stretches may force large
end-to-end delays and network congestions that may jeopardize
applications usage. We can also see how the packet delivery of
the face routing algorithms (i.e., GPSR and EPSR) degrades due to
asymmetrical links and variation of the nodes’ radio range, lead-
ing to disconnected planar graphs (these results are in line with
previous works [37]. Surprisingly, ARGF without a local minimum
recovery outperforms GPSR with the local minimum recovery.
These results are in line with our event-driven simulations in ns-3
(Section 6.2).

In the last two simulated scenarios, where 100 obstacles are
present on ≈60% of the area, we first limit the path length setting
different TTL policies (for a maximum of 256 path length) having
fixed the average node degree (nodes’ radio range ranging from 50
to 40 m). We then set TTL to 128, and we vary the average node
degree by reducing an interval of node’s radio range distribution
by 10m, until all nodes have aminimal network connectivity radio
range of 10 m. As expected, the repulsion field usage allows ARPGF
to achieve the best packet delivery≈90% (Fig. 13(a)) that gradually
decreases as the network become less dense (see Fig. 13(c)). We
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(a) (b) (c) (d)

Fig. 13. Success ratio and header size. (a, c) In presence of 100 obstacles (≈60% of obstacles occupancy) and under various TTL path length restrictions as well as for various
network densities (with TTL = 128) ARPGF outperforms related greedy forwarding algorithms by showing the highest success ratio. (b, d) Under the same conditions and
under some legitimate assumptions, all algorithms may utilize the available space in the IP packet header to use greedy forwarding.

Table 2
ARGF packet header.

Source Destination Repulsive
coordinates coordinates potential

3 bytes 3 bytes 4 bytes

can also see how in 99% of the cases, both GPGF and ARPGF
fits their required data for greedy forwarding in the available IP
packet header space, as long as the TTL ≤128 (see Figs. 13(b) and
13(d)). We computed the packet header sizes under the following
assumptions:

• 2D or 3D node coordinates have total size of 3 bytes; this
can be achieved by e.g., converting GPS coordinates into
coordinates of a finite grid which spans regions covered by
the network as in [16].
• Both node ID and number of nodes visits have size of 1 byte.

As the path length is limited by the TTL, we cannot visit
more than TTL-1 nodes during the Pressure packet recovery
phase. Hence, it is possible to find a hash function of e.g.,
an IP address to map a node’s ID between 0 and 255, with
a minimum collision probability. When operating in same
subnetwork, we can just use the last byte of an IP address as
a node ID.

Let us now analyze the overhead of ARGF and ARPGF; with the
above assumption, we need the total of 6 bytes (to store source
and destination coordinates) + 4 bytes (to store last potential in
Repulsionmode), so only 10 bytes an extra space for ARGF protocol
(see Table 2). ARPGF header size is then 10 bytes (as for ARGF) +
4 bytes (to store last potential in Attraction mode) + 2 · n bytes
(to node visits during Pressure recovery)= 14+ 2 · n bytes, where
n — number of unique node visits (see Table 3). Having 40 bytes
of available space in packet header allows ARPGF track up to 13
unique nodes during Pressure recovery.

6.2. Incident-supporting application case study results

Simulation Settings. To evaluate the impact of the path stretch on
the performance of higher layer protocols under potentially failing
and mobile MANET nodes, we compared two stateless greedy
forwarding algorithms — i.e., the proposed ARGF and the known
face routing GPSR protocol [13] using the NS-3 simulator [22].
We have implemented our ARGF protocol by extending the GPSR
protocol in the NS-3 with our repulsive forwarding mode (see
Sections 4 and 5). The details of the GPSR protocol implementation
can be found in [45]. Note that in this simulation we do not use
the pressure forwarding mode to evaluate impact on throughput
of the proposed repulsion field. To compare with stateful ad-hoc

routing solutions, we use the known reactive Ad-Hoc On Demand
Distance Vector (AODV) protocol [23].We also useHybridWireless
Mesh Network (HWMP) protocol of 802.11 s standard [24] which
combines reactive (with AODV) as well as proactive routing (using
the spanning tree algorithm).

We use realistic disaster scenes of damaged by tornado Joplin
High School and Joplin Hospital buildings in Joplin, MO (2011)
to evaluate the performance of stateless greedy forwarding algo-
rithms undermobility and (severe) node failures. To recreate these
disaster scenes, we used the available satellite maps of Joplin, MO,
tornado response imagery [40]. In our disaster-incident scenario,
we simulate the 5Mbps high-definition video streaming over a TCP
connection from a heads-up display device worn by a paramedic
e.g., Google Glass acting as a visual data source.

The paramedic stays for 3 min at each patient location and
moves at a jogging speed (2.8 m/s) between these locations. The
simulations are designed to cause a geographic routing to face a
local minimum when the paramedic source is near the second
(first scenario) or third (second scenario) patient locations. Aside
from the source mobility, in the node failure simulation scenario
(see Fig. 14(a)), nodes around an obstacle can fail for the next
30 s5 with a probability sampled from the interval [5%, 50%] (from
low to severe node failures). Under these failure conditions, the
goodput degrades due to losses (e.g., caused by packet collisions)
that increase with the path length or path reconstruction of the
stateful routing approaches. Note that when nodes fail for contin-
ues periods, any ‘‘store and forward’’ solution is inadequate [46,47].
We evaluate the impact of nodes mobility in a second simulation
scenario (see Fig. 14(b)), where paramedics can communicate with
the gateway only through moving vehicles on the road which
speed is sampled uniformly from the interval [5, 20]m/s (from low
≈ 10 mph to high≈ 40 mph mobility cases).

Finally, nodes are placed on a grid ranging from 50–150 m
step, each node has a radio range of 250 m, and an obstacle (a
building) is located approximately in the center of this grid. Each
node has roughly 3–10 neighbors for resilience purposes. Table 4
summarizes our simulation details.

(iii) The repulsive field improves a network’s goodput. For low
node failures (5%), ARGF delivers all packets with a TCP through-
put of ≈3 Mbps (Fig. 15(a)). GPSR instead has a 20% failure rate
in delivering packets. When GPSR enters the recovering mode it
uses planarization which, in turn, can significantly stretch paths.
As a result, GPRS shows lower TCP throughput (<2 Mbps) than
ARGF due to a lower congestion window size (see Fig. 15(e)), and
only 40% of the time it shows similar performance. Under severe

5 Such behavior is expected due to possibility of an intermittently available
power supply, or due to a physical damage caused by rescue workers near the
disaster scene.
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Table 3
ARPGF packet header.

Source Destination Repulsive Attractive Node1..n Node1..n
coordinates coordinates potential potential ID visits

3 bytes 3 bytes 4 bytes 4 bytes n bytes n bytes

Table 4
Simulation environment settings.

Topology: Physical/Link layers:
Number of nodes: 30–40 Frequency: 2.4 GHz
Grid placement: 50–150 m Tx power: 20 dBm
1st obstacle size: 600× 300 m Tx gain: 6 dB
2nd obstacle size 400× 400 m Rx gain: 0 dB
Radio range: 250 m Detection threshold: −68.8 dBm
Avg node degree: ≈3− 10 Delay prop. model: CONSTANT SPEED
Overall settings: Loss prop. model: TWO-RAY
Node failure period: ≈0.033 Hz Technology: 802.11g/s
Node failure probability: 0.05–0.5 Modulation: OFDM
Mobile nodes speed: 5–20 m/s Data rate: 54 Mbps
Time at each location: 180 s Transport/App layers:
Src speed: 2.8 m/s Transport protocol: TCP
Simulation time: 720–780 s Payload: 1448 bytes
Beaconing frequency: 1–4 Hz Application bit rate: 5 Mbps

(a) (b)

Fig. 14. AI-augmented geographic routing evaluation using recreated disaster scenes of damages by a tornado at the Joplin High School (a) and at the Joplin Hospital
(b) buildings in Joplin, MO (2011): a paramedic acts as a source sending data to the gateway (universal sink) over a resilient ad-hoc network. Video streams gathered on-site
are sent over a TCP session to the dashboard located in an edge-cloud for further data processing in conjunctionwith a core cloud. (a), we evaluate our approach under severe
failures, (b) under high mobility. We assume that the information regarding a damaged buildings (e.g., its center coordinates and radius) was provided from the edge-cloud
through a Gateway using proposed obstacle detector (see Section 3) on pre-uploaded satellite maps.

node failure conditions (nodes fail 50% of the time they receive a
packet to forward), we observe similar behaviors (Fig. 15(b)): GPSR
experiences lower TCP throughput 40% of the time compared to
ARGF, caused again by the congestion window size (see Fig. 15(f))
whenGPSR faces a localminimum.Under such severe failures, both
GPSR and ARGF fail to deliver packets≈45% and 35% of the time.

For low node mobility (5 m/s), both ARGF and GPSR deliver
all packets with a TCP throughput of ≈1–2 Mbps (Fig. 15(c)).
However, when GPSR enters the recovering mode near patient
location 3 (after≈500 s), due to its planarization (which stretches
paths), it shows lower TCP throughput (≤1 Mbps) than ARGF. That
is in line with a lower congestion window size (see Fig. 15(g)).
At the same time, 60% of the time (first 500 s) it shows similar
performance. Under high node mobility conditions (20 m/s), we
again observe similar behaviors (Fig. 15(d)): GPSR experiences
lower TCP throughput 40% of the time compared to ARGF, caused
again by the planarization when GPSR faces a local minimum. That
is confirmed by congestion window size (see Fig. 15(f)). Under
such high mobility, both GPSR and ARGF are still able to deliver
all packets, which makes geographic routing more attractive to
disaster-incident response activities which benefit from the real-
time situational awareness.

Even though both AODV and HWMP have advantages over pure
proactive stateful routing solutions, in a challenged disaster sce-
nario they do not show acceptable throughput level, leading to ser-
vice outages caused by disconnections (from 20% to 90% percent of
the time). Recent solutions in stateful greedy forwarding literature
can help cope with some disaster incident challenges [16,17]. For
example, recent stateful greedy forwarding solutions have shown
promising results under severe node failures [16]. However, we
found no stateful greedy forwarding algorithm which can cope
with both severe node failures and high mobility. The superior
performance of ARGF is due to its knowledge about a static physical
obstacle located within the disaster scene, which in most cases
allows local minima avoidance by using our proposed Repulsion
forwarding.

7. Conclusion

In this work, we addressed the lack of suitable geographic rout-
ing approaches for IoT-based incident-supporting applications in
edge computing, that can provide constant high-speed data deliv-
ery to an edge cloud gateway to enhance their scalability, reliability
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15. Time fraction of the TCP throughput (top row) and congestedwindow (CWND) size (bottom row) averaged over 1 and 15 s, respectively, under (a, e) low node failures
(5%) and (b, f) severe node failures (50%) and under (c, g) low node mobility (5 m/s) and (d, h) high node mobility (20 m/s): half of the time GPSR faces a local minimum
showing two timesworth throughput and lower CWND than ARGF due to higher path stretch caused by GPSR planarization. Both AODV andHWMP stateful routing solutions
show worse throughput level within a disaster scene, due to its challenging conditions. As expected, performance of all algorithms degrades as we increase node failures or
high node mobility.

and stability. Specifically, we presented a novel AI-augmented geo-
graphic routing approach (AGRA), which relies on the physical ob-
stacle information obtained from satellite imagery (available at the
edge cloud) by applying deep learning. We then proposed a novel
repulsive field strategy based on electrostatic potential of Green’s
function to incorporate physical obstacle knowledge within geo-
graphic routing. Our approach theoretically guarantees avoidance
of a local minima as well as shortest path approximation. Due to
inaccuracies in the obstacles’ potential field approximation and
the discrete node distribution, in practice the approach cannot
guarantee the local minima avoidance. To this end, we introduced
a novel Attractive Repulsive Greedy Forwarding (ARGF) algorithm
which can alternately forward packets in both repulsive and at-
tractive field modes, to maximize the chances of escaping from, or
avoiding local minima. Furthermore, to guarantee packet delivery,
we coupled our ARGF algorithm with a known gravity pressure
recovery algorithm. As emulating both repulsive and attractive
fields allows gradient descent to the destination, the recovery
schema can be applied to alsominimize the path stretch. Using ex-
tensive simulations, we have shown that our proposed algorithms
outperform related stateless greedy forwarding solutions in terms
of packet delivery success ratio andpath stretch. Considering an ac-
tual incident-supporting hierarchical cloud deployment scenario,
we have also analyzed how ARGF has better goodput performance
than other stateless face routing solutions (such as, GPSR) as well
as stateful reactive mesh routing (i.e., AODV and HWMP).

As part of future work, one can plan to apply our Green’s
function based approach to other known problems in wireless
networking. First, the emulated repulsive field can be used for traf-
fic engineering by inducing additional charges on heavily-loaded
nodes to repulse unbalanced network traffic, and thereby improve
the overall network utilization. Second, by inducing additional
electrostatic charges in network segments of malicious or selfish
behavior, one can improve the overall security. Finally, to improve
the overall ad-hoc wireless mesh network vitality, additional elec-
trostatic charges can be induced on nodes with low battery levels.
Moreover, our AGRA approach can be also used synergisticallywith

frequency division-based forwarding techniques [28,29] to further
improve routing energy efficiency within IoT devices.
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