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DUAL QUADRANGLES IN THE PLANE

IRINA BUSJATSKAJA AND YURY KOCHETKOV

Abstract. We consider quadrangles of perimeter 2 in the plane with marked
directed edge. To such quadrangle Q a two-dimensional plane Π ∈ R

4 with
orthonormal base is corresponded. Orthogonal plane Π⊥ defines a plane quad-
rangle Q◦ of perimeter 2 and with marked directed edge. This quadrangle is
defined uniquely (up to rotation and symmetry). Quadrangles Q and Q◦ will
be called dual to each other. The following properties of duality are proved:
a) duality preserves convexity, non convexity and self-intersection; b) duality
preserves the length of diagonals; c) the sum of lengths of corresponding edges
in Q and Q◦ is 1.

1. Introduction

We follow the work [1] (see also the bibliography there). Let Q be a quadrangle
with perimeter 2 and with marked directed edge in plane R

2. It means that we
indicate the first vertex and the direction of going around of Q.

Remark 1.1. If perimeter of a quadrangle is not 2, then we made a dilation with
some positive α.

Let Q = ABCD and A be the first vertex. Vectors AB, BC, CD and DA we will
consider as complex numbers z1, z2, z3 and z4, respectively. Then

z1 + z2 + z3 + z4 = 0, and |z1|+ |z2|+ |z3|+ |z4| = 2.

Remark 1.2. The above complex description of Q is invariant with respect to a
translation.

In what follows we will consider only non degenerate quadrangles (with one excep-
tion in Section 4), i.e. quadrangles with non-collinear successive edges.

Let’s define complex numbers u1, u2, u3, u4 in the following way: a) u2
k

= zi,
k=1,2,3,4; b) u1 we choose arbitrarily; c) the rotation from uk to uk+1, k = 1, 2, 3
is in the same direction as the rotation from zk to zk+1. Let uk = ak + i bk,
k = 1, 2, 3, 4, then

∑

k

(a2
k
+ b2

k
) = 2 and

∑

k

[a2
k
− b2

k
) + 2i akbk] = 0,

i.e. ā = (a1, a2, a3, a4) and b̄ = (b1, b2, b3, b4) are a pair of orthonormal vectors in
R

4. Let Π = 〈ā, b̄〉 be the linear hull. The two-dimensional plane Π uniquely defines
its orthogonal complement — the two-dimensional plane Π⊥. An orthonormal base
(c̄, d̄) of Π⊥ in its turn defines a quadrangle Q◦ of perimeter 2, which will be called
the quadrangle dual to the quadrangle Q.

We will prove the following properties of the quadrangle duality.
1
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• The dual quadrangle Q◦ is defined uniquely up to rotation and reflection
(Theorem 2.1).

• The change of the first vertex and the direction of the going around of Q
does not change the dual quadrangle Q◦ (Theorem 2.2).

• The duality preserves: a) convexity (Corollary 5.1); b) non-convexity (The-
orem 5.1); c) self-intersection (Theorem 4.1).

• The sum of lengths of corresponding edges (in the sense of Section 3) of Q
and Q◦ is 1 (Theorem 6.1).

• The lengths of the corresponding diagonals of Q and Q◦ are equal (Theorem
7.1).

• Parallelograms are self-dual (Theorem 8.1).

2. General remarks

Our definition of the dual quadrangle Q◦ is not strictly correct, because the base
(c̄, d̄) of Π⊥ is not unique: it is defined up to a rotation and up to the order of base
vectors.

Theorem 2.1. The plane Π⊥ uniquely defines the dual quadrangle up to a rotation

and up to a reflection.

Proof. Let a base (ē, f̄) of Π⊥ be obtained by the rotation of (c̄, d̄) on an angle α.
Thus,

ek = ck cos(α) − dk sin(α), fk = ck sin(α) + dk cos(α), k = 1, 2, 3, 4,

i.e.

ek + i fk = (ck + i dk)e
iα ⇒ (ek + i fk)

2 = (ck + i dk)
2e2iα, k = 1, 2, 3, 4.

Hence, the rotation of base of Π⊥ on angle α implies the rotation of Q◦ on angle
2α.

Let us now consider the base (d̄, c̄), instead of the base (c̄, d̄), then

Re
(

(dk + i ck)
2
)

= −Re
(

(ck + i dk)
2
)

Im
(

(dk + i ck)
2
)

= Im
(

(ck + i dk)
2
) k = 1, 2, 3, 4,

i.e. this change of base implies the reflection of Q◦ with respect to the axis OY . �

Let ABCD be the quadrangle Q, where A is the first vertex and the order ABCD
defines the direction of going around. Let (c̄, d̄) be the base of Π⊥ and KLMN be
vertices of Q◦ (K is the first vertex and the order KLMN defines the direction of
going around).

Theorem 2.2. The dual of quadrangle Q does not depend on the choice of the first

vertex and on the direction of the going around.

Proof. Let us consider the going around of Q = ABCD in the same direction, but
the first vertex be B, i.e. Q = BCDA. Complex numbers z1, z2, z3, z4 are the same,
but in order z2, z3, z4, z1. Complex numbers u2, u3, u4 are the same, but the last one
may be u1 or −u1. If the last number is u1, then Π = 〈(a2, a3, a4, a1), (b2, b3, b4, b1)〉
and Π⊥ = 〈(c2, c3, c4, c1), (d2, d3, d4, d1)〉. Thus, if KLMN is the original dual
quadrangle, then LMNK is the new one, but the same. If the last number is −u1,
then Π = 〈(a2, a3, a4,−a1), (b2, b3, b4,−b1)〉 and Π⊥ = 〈(c2, c3, c3,−c1), (d2, d3, d4,−d1)〉,
i.e. the result is the same because (−c1 − i d1)

2 = (c1 + i d1)
2.
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Now let us consider the going around in the opposite direction, hence, Q = ADCB.
In this case we must consider complex numbers −z4,−z3,−z2,−z1 and their square
roots ±i u4, ±i u3, ±i u2, ±i u1. Thus

Π = 〈∓(a4, a3, a2, a1),±(b4, b3, b2, b1)〉

and

Π⊥ = 〈(c4, c3, c2, c1), (d4, d3, d2, d1)〉,
i.e. Q◦ = KNML. �

Remark 2.1. The rotation of Q does not change the plane Π.

Corollary 2.1. Let Q◦ is dual to Q and (Q◦)◦ is dual to Q◦, then Q = (Q◦)◦ up

to a rotation and up to a reflection.

3. The main construction

In this section, using the knowledge of lengths of edges and angles of the quadrangle
Q we will construct the base of the plane Π⊥.

Let Q = ABCD be positioned in the following way: A is at the origin, B is
in the positive real axis, C and D are in the upper half-plane. Let |AB| = s1,
|BC| = s2, |CD| = s3 and |DA| = s4. 4-dimensional vectors ā = (a1, a2, a3, a4) and
b̄ = (0, b2, b3, b4) will be considered as quaternions a and b. Let v = (0, a2, a3, a4),
|v|2 = a22 + a23 + a24 = 1− a21 = 1− s1. We consider quaternion products g = a · v =
(−a22−a23−a24, a1a2, a1a3a1a4) = (s1−1, a1a2, a1a3, a1a4) and h = b ·v = (0, b3a4−
b4a3, b4a2 − b2a4, b2a3 − b3a4). The corresponding vectors ḡ and h̄ constitute an
orthogonal base of Π⊥ (not orthonormal, because |g| = |h| = √

1− s1).

Let Q be a convex quadrangle

✲
x

✻y

✁
✁
✁
✟✟✟❇

❇
❇
❇❇

A B

C

D

Figure 1

Then

z1 = s1, z2 = s2 exp(π − β2), z3 = s3 exp(2π − β2 − β3), z4 = s4 exp(π + β1),

where ∠DAB = β1, ∠ABC = β2, ∠BCD = β3 and ∠CDA = β4. Thus,

ā = [
√
s1,

√
s2 sin(γ2),−

√
s3 cos(γ2 + γ3),−

√
s4 sin(γ1)],

b̄ = [0,
√
s2 cos(γ2),

√
s3 sin(γ2 + γ3),

√
s4 cos(γ1)],

where γk = βk/2, k = 1, 2, 3, 4, and

ḡ = [s1 − 1,
√
s1s2 sin(γ2),−

√
s1s3 cos(γ2 + γ3),−

√
s1s4 sin(γ1)],

h̄ = [0,−√
s3s4 cos(γ4),

√
s2s4 sin(γ1 + γ2),−

√
s2s3 cos(γ3)]

(1)
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If our quadrangle Q is non convex

✲

✻

x

y

A
✜
✜
✜
✜
✜
✜
✜✜

❆
❆

❆
✂
✂
✂
✂✂

B

C

D

Figure 2

then

z1 = s1, z2 = s2 exp(π − β2), z3 = s3 exp(β3 − β2), z4 = s4 exp(180 + β1),

where ∠DAB = β1, ∠ABC = β2, ∠BCD = β3 and ∠CDA = β4. And

ā = [
√
s1,

√
s2 sin(γ2),

√
s3 cos(γ3 − γ2),−

√
s4 sin(γ1)],

b̄ = [0,
√
s2 cos(γ2),

√
s3 sin(γ3 − γ2),

√
s4 cos(γ1)].

Thus

ḡ = [s1 − 1,
√
s1s2 sin(γ2),

√
s1s3 cos(γ3 − γ2),−

√
s1s4 sin(γ1)],

h̄ = [0,−√
s3s4 cos(γ4),

√
s2s4 sin(γ1 + γ2),

√
s2s3 cos(γ3)].

(2)

If at last our quadrangle Q is self-intersecting

✲
x

✻
y

A B
✦✦✦✦✦✦✦✦

❙
❙

❙
❙

❙
❙❍❍❍❍❍❍ D

C

Figure 3

then

z1 = s1, z2 = s2 exp(π − β2), z3 = s3 exp(β3 − β2), z4 = s4 exp(β1 − π),

where ∠ABC = β2, ∠BCD = β3, ∠CDA = β4, ∠DAB = β1. And

ā = [
√
s1,

√
s2 sin(γ2),

√
s3 cos(γ3 − γ2),

√
s4 sin(γ1)],

b̄ = [0,
√
s2 cos(γ2),

√
s3 sin(γ3 − γ2),−

√
s4 cos(γ1)].

Thus,

ḡ = [s1 − 1,
√
s1s2 sin(γ2),

√
s1s3 cos(γ3 − γ2),

√
s1s4 sin(γ1)],

h̄ = [0,
√
s3s4 cos(γ4),−

√
s2s4 sin(γ1 + γ2),

√
s2s3 cos(γ3)].

(3)
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4. Self-intersecting quadrangles

Theorem 4.1. The quadrangle, dual to a self-intersecting quadrangle, is also self-

intersecting.

Proof. Let Q be a self-intersecting quadrangle ABCD (see Figure 3) and Q◦ =
KLMN — its dual. As z2 belongs to the upper half-plane, then a2 > 0 and g2 > 0.
As a3b4 − a4b3 < 0, because of the clockwise turn from z3 to z4, then h2 > 0 and
(g2 + i h2)

2 belongs to the upper half-plane. Thus, M also belongs to the upper
half-plane (K is at origin and L = (1− s1, 0)).

As the turn from z2 to z3 is clockwise, then a2b3− a3b2 < 0 and h4 > 0. As g4 > 0,
then (g4 + i h4)

2 belongs to the upper half-plane. Thus, N belongs to the lower
half-plane (the direction of the vector NK is up), i.e. Q◦ cannot be convex — M
and N belong to different half-planes with respect to KL.

Now we will demonstrate that Q◦ is self-intersecting. Let us consider the following
highly symmetric quadrangle Q0 = ABCD

✲

✻

x

y

�
�
�
�
�
�❅

❅
❅
❅
❅
❅

A B

C D

Figure 4

where all angles βk, k = 1, 2, 3, 4, are π/3 (see Figure 3). Its dual Q◦
0 = KLMN

✲

✻

x

y

❏
❏
❏
❏❏✂

✂
✂
✂
✂
✂
✂
✂
✂✂❏
❏
❏
❏❏

K L

M

N

Figure 5

is the same quadrangle, rotated clockwise on π/3. Let us assume that there exists
a self-intersecting quadrangle Q1 with non-convex dual (see below)

✁
✁
✁
✁

�

❅
❅
❅

Figure 6
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Let Qt, 0 6 t 6 1, be a continuous family of non-degenerate self-intersecting
quadrangles, that connectsQ0 with Q1. We construct this family by moving vertices
B, C and D. Then the continuous family Q◦

t
connects Q◦

0 with Q◦

1. Hence, for some
α, 0 < α < 1, the dual quadrangle Q◦

α
must be degenerate:

✁
✁
✁
✁
✁
✁❅

❅
❅K

N

L

M

Q◦

t

✁
✁
✁
✁
✁◗◗

◗
◗◗K

N

L

M

Q◦

α

Figure 7

Now we will consider quadrangles (Q◦

t
)◦ and take the limit for t → α. Let us

consider the quadrangle Q◦
t in the left part of Figure 7 and let (with some abusing

of the notation) |KL| = s1, |LM | = s2, |MN | = s3, |NK| = s4, ∠NKL = β1,
∠KLM = β2, ∠LMN = β3, ∠MNK = β4. Then

āt = [
√
s1,

√
s2 sin(γ2),−

√
s3 cos(γ2 + γ3),

√
s4 sin(γ2 + γ3 − γ4)],

b̄t = [0,
√
s2 cos(γ2),

√
s3 sin(γ2 + γ3),

√
s4 cos(γ2 + γ3 − γ4)].

When t → α, then Q◦
t on the left (Figure 7) is transformed into Q◦

α on the right,

with angles ∠MKL = β̃1, ∠KLM = β̃2 and ∠LMK = β̃3. When t → α, then
β4 → 0, β2 → β̃2, β3 → β̃3 and β1 → π − β̃1. Hence,

āα = [
√
s1,

√
s2 sin(γ̃2),−

√
s3 sin(γ̃1),

√
s4 cos(γ̃1)],

b̄α = [0,
√
s2 cos(γ̃2),

√
s3 cos(γ̃1),

√
s4 sin(γ̃1)].

Thus,

ḡα = [
√
1− s1,

√
s1s2 sin(γ̃2),−

√
s1s3 sin(γ̃1),

√
s1s4 cos(γ̃1)],

h̄α = [0,
√
s3s4,−

√
s2s4 cos(γ̃1 + γ̃2),−

√
s2s3 sin(γ̃1 + γ̃2)].

The quadrangle, constructed with the use of vectors ḡα and h̄α, belongs to our
family Qt (Corollary 2.1). Now let us consider complex numbers (gα)3 + i(hα)3,
(gα)4 + i(hα)4 and compute the product

(hα)3
(gα)3

· (hα)4
(gα)4

=

=

√
s2s4 cos(γ̃1 + γ̃2)√

s1s3 sin(γ̃1)
· −

√
s2s3 sin(γ̃1 + γ̃2)
√
s1s4 cos (̃γ1)

= −s2 sin(β̃3)

s1 sin(β̃1)
= −1

(because in triangle the ratio of an edge to the sine of the opposite angle is constant
and equal to the diameter of the circumscribed circle). As this product is −1
then the corresponding vectors are orthogonal. Thus the squaring of this complex
numbers produces collinear vectors. Hence, the quadrangle (Q◦

α)
◦ is degenerate.

But it cannot be so, because it belongs to our non-degenerate family. �
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5. Non-convex quadrangles

Theorem 5.1. If Q is non-convex quadrangle, then its dual is also non convex.

Proof. Let Q be a quadrangle in Figure 2. As z2 belongs to the upper half-plane,
then a2 > 0, thus g2 > 0. As a3b4−a4b3 > 0, because of the counter clockwise turn
from z3 to z4, then h2 < 0, i.e. (g2 + i h2)

2 belongs to the lower half-plane. Thus,
the vertex M lies in the lower half-plane.

As z4 belongs to the lower half-plane, then a4 < 0, b4 > 0, thus g4 < 0. As
a2b3 − a3b2 < 0, because of the clockwise turn from z2 to z3, then h4 > 0, i.e.
(g4 + i h4)

2 belongs to the lower half-plane. Thus, the vertex N lies in the upper
half-plane, i.e. vertices M and N lie in different half-planes with respect to edge
KL. Hence, the quadrangle KLMN cannot be convex. But by Theorem 4.1. it
cannot be self-intersecting, so it is non-convex. �

Corollary 5.1. The dual to a convex quadrangle is also convex.

6. Edges

Theorem 6.1. Let Q = ABCD be a convex quadrangle and Q◦ = KLMN be

its dual. Then |AB| + |KL| = 1, |BC| + |LM | = 1, |CD| + |MN | = 1 and

|DA|+ |NK| = 1.

Proof. As |g| = |h| =
√
1− s1, then have to prove that |(g2 + i h2)

2| = g22 + h2
2 =

(1− s1)(1 − s2). Let |AC| = l, then

g22 + h2
2 = s1s2 sin

2(γ2) + s3s4 cos
2(γ4) =

[s1s2 − s1s2 cos(β2) + s3s4 + s3s4 cos(β4)]/2 =
[

s1s2 + (l2 − s21 − s22)/2) + s3s4 − (l2 − s23 − s24)/2
]

/2 =
[(s3 + s4)

2 − (s1 − s2)
2]/4 = [(s3 + s4 + s1 − s2)(s3 + s4 − s1 + s2)] =

= (1− s2)(1 − s1).

The same reasoning proves that |NK| = 1− s4. As perimeters of Q and Q◦ are 2,
then |MN | = 1− s3. �

Remark 6.1. The same reasoning proves the theorem for non-convex and self-
intersecting quadrangles.

7. Diagonals

Theorem 7.1. Let Q = ABCD be a convex quadrangle and Q◦ = KLMN be its

dual, then |AC| = |KM | and |BD| = |LN |, i.e. the duality preserves lengths of

diagonals.

Proof. Let l = |AC| = |z1+ z2| = |z3+ z4|. We will prove, that |g21 +(g2+ i h2)
2| =

(1− s1)l. At first we will find the real part of the complex number (g2 + i h2)
2:

Re(g2 + i h2)
2 = g22 − h2

2 = s1s2 sin
2(γ2)− s3s4 cos

2(γ4) =

[s1s2(1− cos(β2)− s3s4(1 + cos(β4)]/2 =

= [2s1s2 + l2 − s21 − s22 − 2s3s4 + l2 − s23 − s24]/4 =

= [2l2 − (s1 − s2)
2 − (s3 + s4)

2]/4.



8 IRINA BUSJATSKAJA AND YURY KOCHETKOV

Now the real part of g21 + (g2 + i h2)
2 is

(1− s1)
2 + [2l2 − (s1 − s2)

2 − (s3 + s4)
2]/4 =

= [4(1− s1)
2 + 2l2 − (s1 − s2)

2 − (s3 + s4)
2]/4 =

= [2(1− s1)
2 + 2l2 + (1− 2s1 + s2)(1− s2)+

+(1− s1 + s3 + s4)(1 − s1 − s3 − s4)]/4 =

= [2(1− s1)
2 + 2l2 + (1 − 2s1 + s2)(1 − s2) + (s2 − 1)(3− 2s1 − s2)]/4 =

= [2(1− s1)
2 + 2l2 − 2(1− s2)

2]/4 = [l2 − (s1 − s2)(s3 + s4)]/2.

Now we will find the square of the imaginary part of g21 + (g2 + i h2)
2:

4s1s2s3s4 sin
2(γ2) cos

2(γ4) =

= s1s2(1− cos(β2)s3s4(1 + cos(β4)) =

= (2s1s2 + l2 − s21 − s22)(2s3s4 + s23 + s24 − l2)/4 =

= (l2 − (s1 − s2)
2)((s3 + s4)

2 − l2)/4.

At last we can find |g21 + (g2 + i h2)
2|2:

[(l2 − (s1 − s2)(s3 + s4))
2 + (l2 − (s1 − s2)

2)((s3 + s4)
2 − l2)]/4 =

= [l2(−2(s1 − s2)(s3 + s4) + (s3 + s4)
2 + (s1 − s2)

2)]/4 =

= l2[(s3 + s4 − s1 + s2)
2]/4 = l2(1 − s1)

2.

Analogously, we can prove that |g21 + (g4 + i h4)
2| = (1− s1) · |BD|. �

Remark 7.1. The statement of this theorem is also valid for non-convex and self-
intersecting quadrangles. The reasoning is the same.

8. Special cases

Theorem 8.1. The dual to a trapezoid is a trapezoid.

Proof. Let Q = ABCD be a trapezoid, where AB ‖ CD:

✲

✻

x

y

✡
✡
✡
✡✡ ❇

❇
❇
❇❇

A B

CD

Figure 8

Here z3 is a negative real number, hence, u3 = α i, α > 0, hence, g3 = 0, hence
(g3 + i h3)

2 is a negative real number. �

Theorem 8.2. The dual to a parallelogram is the same parallelogram.

Proof. Let Q = ABCD be a parallelogram. As |AB|+ |BC| = 1, then |KL| = |BC|
and |LM | = |AB|. It remains to note that |AC| = |KM |. �
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9. The geometric construction

Given a convex quadrangle Q it is easy to construct the dual Q◦, using ruler and
compass.

Let Q = ABCD be a convex quadrangle

❅
❅
❅

�
�
�
��

✑
✑
✑
✑✑

❏
❏
❏
❏❏A

B

C

D

Figure 9

with diagonal AC. Let |AB| = s1, |BC| = s2, |CD| = s3 and |DA| = s4. Using
compass we construct the point B1: a) it is in the same half-plane (with respect to
AC) as point B; b) |B1A| = (s2+s3+s4−s1)/2; c) |B1C| = (s1+s3+s4−s2)/2. In
the same way we construct the pointD1: a) it is in the same half-plane (with respect
to AC) as point D; b) |D1A| = (s1+s2+s3−s4)/2; c) |D1C| = (s1+s2+s4−s3)/2.
Then AB1CD1 will be the required dual.
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