DUAL QUADRANGLES IN THE PLANE

IRINA BUSJATSKAJA AND YURY KOCHETKOV

Abstract

We consider quadrangles of perimeter 2 in the plane with marked directed edge. To such quadrangle Q a two-dimensional plane $\Pi \in \mathbb{R}^{4}$ with orthonormal base is corresponded. Orthogonal plane Π^{\perp} defines a plane quadrangle Q° of perimeter 2 and with marked directed edge. This quadrangle is defined uniquely (up to rotation and symmetry). Quadrangles Q and Q° will be called dual to each other. The following properties of duality are proved: a) duality preserves convexity, non convexity and self-intersection; b) duality preserves the length of diagonals; c) the sum of lengths of corresponding edges in Q and Q° is 1 .

1. Introduction

We follow the work [1] (see also the bibliography there). Let Q be a quadrangle with perimeter 2 and with marked directed edge in plane \mathbb{R}^{2}. It means that we indicate the first vertex and the direction of going around of Q.

Remark 1.1. If perimeter of a quadrangle is not 2 , then we made a dilation with some positive α.
Let $Q=A B C D$ and A be the first vertex. Vectors $\overline{A B}, \overline{B C}, \overline{C D}$ and $\overline{D A}$ we will consider as complex numbers z_{1}, z_{2}, z_{3} and z_{4}, respectively. Then

$$
z_{1}+z_{2}+z_{3}+z_{4}=0, \quad \text { and } \quad\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|+\left|z_{4}\right|=2
$$

Remark 1.2. The above complex description of Q is invariant with respect to a translation.

In what follows we will consider only non degenerate quadrangles (with one exception in Section 4), i.e. quadrangles with non-collinear successive edges.

Let's define complex numbers $u_{1}, u_{2}, u_{3}, u_{4}$ in the following way: a) $u_{k}^{2}=z_{i}$, $\mathrm{k}=1,2,3,4$; b$) u_{1}$ we choose arbitrarily; c) the rotation from u_{k} to $u_{k+1}, k=1,2,3$ is in the same direction as the rotation from z_{k} to z_{k+1}. Let $u_{k}=a_{k}+i b_{k}$, $k=1,2,3,4$, then

$$
\left.\sum_{k}\left(a_{k}^{2}+b_{k}^{2}\right)=2 \quad \text { and } \quad \sum_{k}\left[a_{k}^{2}-b_{k}^{2}\right)+2 i a_{k} b_{k}\right]=0,
$$

i.e. $\bar{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $\bar{b}=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ are a pair of orthonormal vectors in \mathbb{R}^{4}. Let $\Pi=\langle\bar{a}, \bar{b}\rangle$ be the linear hull. The two-dimensional plane Π uniquely defines its orthogonal complement - the two-dimensional plane Π^{\perp}. An orthonormal base (\bar{c}, \bar{d}) of Π^{\perp} in its turn defines a quadrangle Q° of perimeter 2 , which will be called the quadrangle dual to the quadrangle Q.

We will prove the following properties of the quadrangle duality.

- The dual quadrangle Q° is defined uniquely up to rotation and reflection (Theorem 2.1).
- The change of the first vertex and the direction of the going around of Q does not change the dual quadrangle Q° (Theorem 2.2).
- The duality preserves: a) convexity (Corollary 5.1); b) non-convexity (Theorem 5.1); c) self-intersection (Theorem 4.1).
- The sum of lengths of corresponding edges (in the sense of Section 3) of Q and Q° is 1 (Theorem 6.1).
- The lengths of the corresponding diagonals of Q and Q° are equal (Theorem 7.1).
- Parallelograms are self-dual (Theorem 8.1).

2. General remarks

Our definition of the dual quadrangle Q° is not strictly correct, because the base (\bar{c}, \bar{d}) of Π^{\perp} is not unique: it is defined up to a rotation and up to the order of base vectors.

Theorem 2.1. The plane Π^{\perp} uniquely defines the dual quadrangle up to a rotation and up to a reflection.
Proof. Let a base (\bar{e}, \bar{f}) of Π^{\perp} be obtained by the rotation of (\bar{c}, \bar{d}) on an angle α. Thus,

$$
e_{k}=c_{k} \cos (\alpha)-d_{k} \sin (\alpha), \quad f_{k}=c_{k} \sin (\alpha)+d_{k} \cos (\alpha), k=1,2,3,4
$$

i.e.

$$
e_{k}+i f_{k}=\left(c_{k}+i d_{k}\right) e^{i \alpha} \Rightarrow\left(e_{k}+i f_{k}\right)^{2}=\left(c_{k}+i d_{k}\right)^{2} e^{2 i \alpha}, k=1,2,3,4
$$

Hence, the rotation of base of Π^{\perp} on angle α implies the rotation of Q° on angle 2α.

Let us now consider the base (\bar{d}, \bar{c}), instead of the base (\bar{c}, \bar{d}), then

$$
\begin{aligned}
& \operatorname{Re}\left(\left(d_{k}+i c_{k}\right)^{2}\right)=-\operatorname{Re}\left(\left(c_{k}+i d_{k}\right)^{2}\right) \\
& \operatorname{Im}\left(\left(d_{k}+i c_{k}\right)^{2}\right)=\operatorname{Im}\left(\left(c_{k}+i d_{k}\right)^{2}\right)
\end{aligned} \quad k=1,2,3,4,
$$

i.e. this change of base implies the reflection of Q° with respect to the axis $O Y$.

Let $A B C D$ be the quadrangle Q, where A is the first vertex and the order $A B C D$ defines the direction of going around. Let (\bar{c}, \bar{d}) be the base of Π^{\perp} and $K L M N$ be vertices of Q° (K is the first vertex and the order $K L M N$ defines the direction of going around).
Theorem 2.2. The dual of quadrangle Q does not depend on the choice of the first vertex and on the direction of the going around.

Proof. Let us consider the going around of $Q=A B C D$ in the same direction, but the first vertex be B, i.e. $Q=B C D A$. Complex numbers $z_{1}, z_{2}, z_{3}, z_{4}$ are the same, but in order $z_{2}, z_{3}, z_{4}, z_{1}$. Complex numbers u_{2}, u_{3}, u_{4} are the same, but the last one may be u_{1} or $-u_{1}$. If the last number is u_{1}, then $\Pi=\left\langle\left(a_{2}, a_{3}, a_{4}, a_{1}\right),\left(b_{2}, b_{3}, b_{4}, b_{1}\right)\right\rangle$ and $\Pi^{\perp}=\left\langle\left(c_{2}, c_{3}, c_{4}, c_{1}\right),\left(d_{2}, d_{3}, d_{4}, d_{1}\right)\right\rangle$. Thus, if $K L M N$ is the original dual quadrangle, then $L M N K$ is the new one, but the same. If the last number is $-u_{1}$, then $\Pi=\left\langle\left(a_{2}, a_{3}, a_{4},-a_{1}\right),\left(b_{2}, b_{3}, b_{4},-b_{1}\right)\right\rangle$ and $\Pi^{\perp}=\left\langle\left(c_{2}, c_{3}, c_{3},-c_{1}\right),\left(d_{2}, d_{3}, d_{4},-d_{1}\right)\right\rangle$, i.e. the result is the same because $\left(-c_{1}-i d_{1}\right)^{2}=\left(c_{1}+i d_{1}\right)^{2}$.

Now let us consider the going around in the opposite direction, hence, $Q=A D C B$. In this case we must consider complex numbers $-z_{4},-z_{3},-z_{2},-z_{1}$ and their square roots $\pm i u_{4}, \pm i u_{3}, \pm i u_{2}, \pm i u_{1}$. Thus

$$
\Pi=\left\langle\mp\left(a_{4}, a_{3}, a_{2}, a_{1}\right), \pm\left(b_{4}, b_{3}, b_{2}, b_{1}\right)\right\rangle
$$

and

$$
\Pi^{\perp}=\left\langle\left(c_{4}, c_{3}, c_{2}, c_{1}\right),\left(d_{4}, d_{3}, d_{2}, d_{1}\right)\right\rangle
$$

i.e. $Q^{\circ}=K N M L$.

Remark 2.1. The rotation of Q does not change the plane Π.
Corollary 2.1. Let Q° is dual to Q and $\left(Q^{\circ}\right)^{\circ}$ is dual to Q°, then $Q=\left(Q^{\circ}\right)^{\circ}$ up to a rotation and up to a reflection.

3. The main construction

In this section, using the knowledge of lengths of edges and angles of the quadrangle Q we will construct the base of the plane Π^{\perp}.

Let $Q=A B C D$ be positioned in the following way: A is at the origin, B is in the positive real axis, C and D are in the upper half-plane. Let $|A B|=s_{1}$, $|B C|=s_{2},|C D|=s_{3}$ and $|D A|=s_{4}$. 4-dimensional vectors $\bar{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $\bar{b}=\left(0, b_{2}, b_{3}, b_{4}\right)$ will be considered as quaternions a and b. Let $v=\left(0, a_{2}, a_{3}, a_{4}\right)$, $|v|^{2}=a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=1-a_{1}^{2}=1-s_{1}$. We consider quaternion products $g=a \cdot v=$ $\left(-a_{2}^{2}-a_{3}^{2}-a_{4}^{2}, a_{1} a_{2}, a_{1} a_{3} a_{1} a_{4}\right)=\left(s_{1}-1, a_{1} a_{2}, a_{1} a_{3}, a_{1} a_{4}\right)$ and $h=b \cdot v=\left(0, b_{3} a_{4}-\right.$ $\left.b_{4} a_{3}, b_{4} a_{2}-b_{2} a_{4}, b_{2} a_{3}-b_{3} a_{4}\right)$. The corresponding vectors \bar{g} and \bar{h} constitute an orthogonal base of Π^{\perp} (not orthonormal, because $|g|=|h|=\sqrt{1-s_{1}}$).

Let Q be a convex quadrangle

Figure 1
Then

$$
z_{1}=s_{1}, z_{2}=s_{2} \exp \left(\pi-\beta_{2}\right), z_{3}=s_{3} \exp \left(2 \pi-\beta_{2}-\beta_{3}\right), z_{4}=s_{4} \exp \left(\pi+\beta_{1}\right)
$$

where $\angle D A B=\beta_{1}, \angle A B C=\beta_{2}, \angle B C D=\beta_{3}$ and $\angle C D A=\beta_{4}$. Thus,

$$
\begin{aligned}
& \bar{a}=\left[\sqrt{s_{1}}, \sqrt{s_{2}} \sin \left(\gamma_{2}\right),-\sqrt{s_{3}} \cos \left(\gamma_{2}+\gamma_{3}\right),-\sqrt{s_{4}} \sin \left(\gamma_{1}\right)\right], \\
& \bar{b}=\left[0, \sqrt{s_{2}} \cos \left(\gamma_{2}\right), \sqrt{s_{3}} \sin \left(\gamma_{2}+\gamma_{3}\right), \sqrt{s_{4}} \cos \left(\gamma_{1}\right)\right]
\end{aligned}
$$

where $\gamma_{k}=\beta_{k} / 2, k=1,2,3,4$, and

$$
\begin{align*}
\bar{g} & =\left[s_{1}-1, \sqrt{s_{1} s_{2}} \sin \left(\gamma_{2}\right),-\sqrt{s_{1} s_{3}} \cos \left(\gamma_{2}+\gamma_{3}\right),-\sqrt{s_{1} s_{4}} \sin \left(\gamma_{1}\right)\right] \\
\bar{h} & =\left[0,-\sqrt{s_{3} s_{4}} \cos \left(\gamma_{4}\right), \sqrt{s_{2} s_{4}} \sin \left(\gamma_{1}+\gamma_{2}\right),-\sqrt{s_{2} s_{3}} \cos \left(\gamma_{3}\right)\right] \tag{1}
\end{align*}
$$

If our quadrangle Q is non convex

Figure 2
then

$$
z_{1}=s_{1}, z_{2}=s_{2} \exp \left(\pi-\beta_{2}\right), z_{3}=s_{3} \exp \left(\beta_{3}-\beta_{2}\right), z_{4}=s_{4} \exp \left(180+\beta_{1}\right)
$$

where $\angle D A B=\beta_{1}, \angle A B C=\beta_{2}, \angle B C D=\beta_{3}$ and $\angle C D A=\beta_{4}$. And

$$
\begin{aligned}
& \bar{a}=\left[\sqrt{s_{1}}, \sqrt{s_{2}} \sin \left(\gamma_{2}\right), \sqrt{s_{3}} \cos \left(\gamma_{3}-\gamma_{2}\right),-\sqrt{s_{4}} \sin \left(\gamma_{1}\right)\right], \\
& \bar{b}=\left[0, \sqrt{s_{2}} \cos \left(\gamma_{2}\right), \sqrt{s_{3}} \sin \left(\gamma_{3}-\gamma_{2}\right), \sqrt{s_{4}} \cos \left(\gamma_{1}\right)\right] .
\end{aligned}
$$

Thus

$$
\begin{align*}
& \bar{g}=\left[s_{1}-1, \sqrt{s_{1} s_{2}} \sin \left(\gamma_{2}\right), \sqrt{s_{1} s_{3}} \cos \left(\gamma_{3}-\gamma_{2}\right),-\sqrt{s_{1} s_{4}} \sin \left(\gamma_{1}\right)\right], \tag{2}\\
& \bar{h}=\left[0,-\sqrt{s_{3} s_{4}} \cos \left(\gamma_{4}\right), \sqrt{s_{2} s_{4}} \sin \left(\gamma_{1}+\gamma_{2}\right), \sqrt{s_{2} s_{3}} \cos \left(\gamma_{3}\right)\right] .
\end{align*}
$$

If at last our quadrangle Q is self-intersecting

Figure 3
then

$$
z_{1}=s_{1}, z_{2}=s_{2} \exp \left(\pi-\beta_{2}\right), z_{3}=s_{3} \exp \left(\beta_{3}-\beta_{2}\right), z_{4}=s_{4} \exp \left(\beta_{1}-\pi\right)
$$

where $\angle A B C=\beta_{2}, \angle B C D=\beta_{3}, \angle C D A=\beta_{4}, \angle D A B=\beta_{1}$. And

$$
\begin{aligned}
& \bar{a}=\left[\sqrt{s_{1}}, \sqrt{s_{2}} \sin \left(\gamma_{2}\right), \sqrt{s_{3}} \cos \left(\gamma_{3}-\gamma_{2}\right), \sqrt{s_{4}} \sin \left(\gamma_{1}\right)\right] \\
& \bar{b}=\left[0, \sqrt{s_{2}} \cos \left(\gamma_{2}\right), \sqrt{s_{3}} \sin \left(\gamma_{3}-\gamma_{2}\right),-\sqrt{s_{4}} \cos \left(\gamma_{1}\right)\right]
\end{aligned}
$$

Thus,

$$
\begin{align*}
\bar{g} & =\left[s_{1}-1, \sqrt{s_{1} s_{2}} \sin \left(\gamma_{2}\right), \sqrt{s_{1} s_{3}} \cos \left(\gamma_{3}-\gamma_{2}\right), \sqrt{s_{1} s_{4}} \sin \left(\gamma_{1}\right)\right], \tag{3}\\
\bar{h} & =\left[0, \sqrt{s_{3} s_{4}} \cos \left(\gamma_{4}\right),-\sqrt{s_{2} s_{4}} \sin \left(\gamma_{1}+\gamma_{2}\right), \sqrt{s_{2} s_{3}} \cos \left(\gamma_{3}\right)\right] .
\end{align*}
$$

4. Self-Intersecting quadrangles

Theorem 4.1. The quadrangle, dual to a self-intersecting quadrangle, is also selfintersecting.

Proof. Let Q be a self-intersecting quadrangle $A B C D$ (see Figure 3) and $Q^{\circ}=$ $K L M N$ - its dual. As z_{2} belongs to the upper half-plane, then $a_{2}>0$ and $g_{2}>0$. As $a_{3} b_{4}-a_{4} b_{3}<0$, because of the clockwise turn from z_{3} to z_{4}, then $h_{2}>0$ and $\left(g_{2}+i h_{2}\right)^{2}$ belongs to the upper half-plane. Thus, M also belongs to the upper half-plane (K is at origin and $L=\left(1-s_{1}, 0\right)$).

As the turn from z_{2} to z_{3} is clockwise, then $a_{2} b_{3}-a_{3} b_{2}<0$ and $h_{4}>0$. As $g_{4}>0$, then $\left(g_{4}+i h_{4}\right)^{2}$ belongs to the upper half-plane. Thus, N belongs to the lower half-plane (the direction of the vector $\overline{N K}$ is up), i.e. Q° cannot be convex $-M$ and N belong to different half-planes with respect to $K L$.
Now we will demonstrate that Q° is self-intersecting. Let us consider the following highly symmetric quadrangle $Q_{0}=A B C D$

Figure 4
where all angles $\beta_{k}, k=1,2,3,4$, are $\pi / 3$ (see Figure 3). Its dual $Q_{0}^{\circ}=K L M N$

Figure 5
is the same quadrangle, rotated clockwise on $\pi / 3$. Let us assume that there exists a self-intersecting quadrangle Q_{1} with non-convex dual (see below)

Figure 6

Let $Q_{t}, 0 \leqslant t \leqslant 1$, be a continuous family of non-degenerate self-intersecting quadrangles, that connects Q_{0} with Q_{1}. We construct this family by moving vertices B, C and D. Then the continuous family Q_{t}° connects Q_{0}° with Q_{1}°. Hence, for some $\alpha, 0<\alpha<1$, the dual quadrangle Q_{α}° must be degenerate:

Figure 7

Now we will consider quadrangles $\left(Q_{t}^{\circ}\right)^{\circ}$ and take the limit for $t \rightarrow \alpha$. Let us consider the quadrangle Q_{t}° in the left part of Figure 7 and let (with some abusing of the notation) $|K L|=s_{1},|L M|=s_{2},|M N|=s_{3},|N K|=s_{4}, \angle N K L=\beta_{1}$, $\angle K L M=\beta_{2}, \angle L M N=\beta_{3}, \angle M N K=\beta_{4}$. Then

$$
\begin{aligned}
& \bar{a}_{t}=\left[\sqrt{s_{1}}, \sqrt{s_{2}} \sin \left(\gamma_{2}\right),-\sqrt{s_{3}} \cos \left(\gamma_{2}+\gamma_{3}\right), \sqrt{s_{4}} \sin \left(\gamma_{2}+\gamma_{3}-\gamma_{4}\right)\right], \\
& \bar{b}_{t}=\left[0, \sqrt{s_{2}} \cos \left(\gamma_{2}\right), \sqrt{s_{3}} \sin \left(\gamma_{2}+\gamma_{3}\right), \sqrt{s_{4}} \cos \left(\gamma_{2}+\gamma_{3}-\gamma_{4}\right)\right] .
\end{aligned}
$$

When $t \rightarrow \alpha$, then Q_{t}° on the left (Figure 7) is transformed into Q_{α}° on the right, with angles $\angle M K L=\tilde{\beta}_{1}, \angle K L M=\tilde{\beta}_{2}$ and $\angle L M K=\tilde{\beta}_{3}$. When $t \rightarrow \alpha$, then $\beta_{4} \rightarrow 0, \beta_{2} \rightarrow \tilde{\beta}_{2}, \beta_{3} \rightarrow \tilde{\beta}_{3}$ and $\beta_{1} \rightarrow \pi-\tilde{\beta}_{1}$. Hence,

$$
\begin{aligned}
& \bar{a}_{\alpha}=\left[\sqrt{s_{1}}, \sqrt{s_{2}} \sin \left(\tilde{\gamma}_{2}\right),-\sqrt{s_{3}} \sin \left(\tilde{\gamma}_{1}\right), \sqrt{s_{4}} \cos \left(\tilde{\gamma}_{1}\right)\right], \\
& \bar{b}_{\alpha}=\left[0, \sqrt{s_{2}} \cos \left(\tilde{\gamma}_{2}\right), \sqrt{s_{3}} \cos \left(\tilde{\gamma}_{1}\right), \sqrt{s_{4}} \sin \left(\tilde{\gamma}_{1}\right)\right]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \bar{g}_{\alpha}=\left[\sqrt{1-s_{1}}, \sqrt{s_{1} s_{2}} \sin \left(\tilde{\gamma}_{2}\right),-\sqrt{s_{1} s_{3}} \sin \left(\tilde{\gamma}_{1}\right), \sqrt{s_{1} s_{4}} \cos \left(\tilde{\gamma}_{1}\right)\right], \\
& \bar{h}_{\alpha}=\left[0, \sqrt{s_{3} s_{4}},-\sqrt{s_{2} s_{4}} \cos \left(\tilde{\gamma}_{1}+\tilde{\gamma}_{2}\right),-\sqrt{s_{2} s_{3}} \sin \left(\tilde{\gamma}_{1}+\tilde{\gamma}_{2}\right)\right] .
\end{aligned}
$$

The quadrangle, constructed with the use of vectors \bar{g}_{α} and \bar{h}_{α}, belongs to our family Q_{t} (Corollary 2.1). Now let us consider complex numbers $\left(g_{\alpha}\right)_{3}+i\left(h_{\alpha}\right)_{3}$, $\left(g_{\alpha}\right)_{4}+i\left(h_{\alpha}\right)_{4}$ and compute the product

$$
\begin{aligned}
\frac{\left(h_{\alpha}\right)_{3}}{\left(g_{\alpha}\right)_{3}} \cdot \frac{\left(h_{\alpha}\right)_{4}}{\left(g_{\alpha}\right)_{4}} & = \\
& =\frac{\sqrt{s_{2} s_{4}} \cos \left(\tilde{\gamma}_{1}+\tilde{\gamma}_{2}\right)}{\sqrt{s_{1} s_{3}} \sin \left(\tilde{\gamma}_{1}\right)} \cdot-\frac{\sqrt{s_{2} s_{3}} \sin \left(\tilde{\gamma}_{1}+\tilde{\gamma}_{2}\right)}{\left.\sqrt{s_{1} s_{4}} \cos \tilde{(} \gamma_{1}\right)}=-\frac{s_{2} \sin \left(\tilde{\beta}_{3}\right)}{s_{1} \sin \left(\tilde{\beta}_{1}\right)}=-1
\end{aligned}
$$

(because in triangle the ratio of an edge to the sine of the opposite angle is constant and equal to the diameter of the circumscribed circle). As this product is -1 then the corresponding vectors are orthogonal. Thus the squaring of this complex numbers produces collinear vectors. Hence, the quadrangle $\left(Q_{\alpha}^{\circ}\right)^{\circ}$ is degenerate. But it cannot be so, because it belongs to our non-degenerate family.

5. Non-CONVEX QUADRANGLES

Theorem 5.1. If Q is non-convex quadrangle, then its dual is also non convex.
Proof. Let Q be a quadrangle in Figure 2. As z_{2} belongs to the upper half-plane, then $a_{2}>0$, thus $g_{2}>0$. As $a_{3} b_{4}-a_{4} b_{3}>0$, because of the counter clockwise turn from z_{3} to z_{4}, then $h_{2}<0$, i.e. $\left(g_{2}+i h_{2}\right)^{2}$ belongs to the lower half-plane. Thus, the vertex M lies in the lower half-plane.

As z_{4} belongs to the lower half-plane, then $a_{4}<0, b_{4}>0$, thus $g_{4}<0$. As $a_{2} b_{3}-a_{3} b_{2}<0$, because of the clockwise turn from z_{2} to z_{3}, then $h_{4}>0$, i.e. $\left(g_{4}+i h_{4}\right)^{2}$ belongs to the lower half-plane. Thus, the vertex N lies in the upper half-plane, i.e. vertices M and N lie in different half-planes with respect to edge $K L$. Hence, the quadrangle $K L M N$ cannot be convex. But by Theorem 4.1. it cannot be self-intersecting, so it is non-convex.

Corollary 5.1. The dual to a convex quadrangle is also convex.

6. Edges

Theorem 6.1. Let $Q=A B C D$ be a convex quadrangle and $Q^{\circ}=K L M N$ be its dual. Then $|A B|+|K L|=1,|B C|+|L M|=1,|C D|+|M N|=1$ and $|D A|+|N K|=1$.

Proof. As $|g|=|h|=\sqrt{1-s_{1}}$, then have to prove that $\left|\left(g_{2}+i h_{2}\right)^{2}\right|=g_{2}^{2}+h_{2}^{2}=$ $\left(1-s_{1}\right)\left(1-s_{2}\right)$. Let $|A C|=l$, then

$$
\begin{aligned}
& g_{2}^{2}+h_{2}^{2}=s_{1} s_{2} \sin ^{2}\left(\gamma_{2}\right)+s_{3} s_{4} \cos ^{2}\left(\gamma_{4}\right)= \\
& {\left[s_{1} s_{2}-s_{1} s_{2} \cos \left(\beta_{2}\right)+s_{3} s_{4}+s_{3} s_{4} \cos \left(\beta_{4}\right)\right] / 2=} \\
& \left.\left[s_{1} s_{2}+\left(l^{2}-s_{1}^{2}-s_{2}^{2}\right) / 2\right)+s_{3} s_{4}-\left(l^{2}-s_{3}^{2}-s_{4}^{2}\right) / 2\right] / 2= \\
& {\left[\left(s_{3}+s_{4}\right)^{2}-\left(s_{1}-s_{2}\right)^{2}\right] / 4=\left[\left(s_{3}+s_{4}+s_{1}-s_{2}\right)\left(s_{3}+s_{4}-s_{1}+s_{2}\right)\right]=} \\
& \quad=\left(1-s_{2}\right)\left(1-s_{1}\right) .
\end{aligned}
$$

The same reasoning proves that $|N K|=1-s_{4}$. As perimeters of Q and Q° are 2, then $|M N|=1-s_{3}$.

Remark 6.1. The same reasoning proves the theorem for non-convex and selfintersecting quadrangles.

7. Diagonals

Theorem 7.1. Let $Q=A B C D$ be a convex quadrangle and $Q^{\circ}=K L M N$ be its dual, then $|A C|=|K M|$ and $|B D|=|L N|$, i.e. the duality preserves lengths of diagonals.

Proof. Let $l=|A C|=\left|z_{1}+z_{2}\right|=\left|z_{3}+z_{4}\right|$. We will prove, that $\left|g_{1}^{2}+\left(g_{2}+i h_{2}\right)^{2}\right|=$ $\left(1-s_{1}\right) l$. At first we will find the real part of the complex number $\left(g_{2}+i h_{2}\right)^{2}$:

$$
\begin{aligned}
& \operatorname{Re}\left(g_{2}+i h_{2}\right)^{2}=g_{2}^{2}-h_{2}^{2}=s_{1} s_{2} \sin ^{2}\left(\gamma_{2}\right)-s_{3} s_{4} \cos ^{2}\left(\gamma_{4}\right)= \\
& \quad\left[s _ { 1 } s _ { 2 } \left(1-\cos \left(\beta_{2}\right)-s_{3} s_{4}\left(1+\cos \left(\beta_{4}\right)\right] / 2=\right.\right. \\
& =\left[2 s_{1} s_{2}+l^{2}-s_{1}^{2}-s_{2}^{2}-2 s_{3} s_{4}+l^{2}-s_{3}^{2}-s_{4}^{2}\right] / 4= \\
& \quad=\left[2 l^{2}-\left(s_{1}-s_{2}\right)^{2}-\left(s_{3}+s_{4}\right)^{2}\right] / 4
\end{aligned}
$$

Now the real part of $g_{1}^{2}+\left(g_{2}+i h_{2}\right)^{2}$ is

$$
\begin{gathered}
\left(1-s_{1}\right)^{2}+\left[2 l^{2}-\left(s_{1}-s_{2}\right)^{2}-\left(s_{3}+s_{4}\right)^{2}\right] / 4= \\
=\left[4\left(1-s_{1}\right)^{2}+2 l^{2}-\left(s_{1}-s_{2}\right)^{2}-\left(s_{3}+s_{4}\right)^{2}\right] / 4= \\
=\left[2\left(1-s_{1}\right)^{2}+2 l^{2}+\left(1-2 s_{1}+s_{2}\right)\left(1-s_{2}\right)+\right. \\
\left.+\left(1-s_{1}+s_{3}+s_{4}\right)\left(1-s_{1}-s_{3}-s_{4}\right)\right] / 4= \\
=\left[2\left(1-s_{1}\right)^{2}+2 l^{2}+\left(1-2 s_{1}+s_{2}\right)\left(1-s_{2}\right)+\left(s_{2}-1\right)\left(3-2 s_{1}-s_{2}\right)\right] / 4= \\
=\left[2\left(1-s_{1}\right)^{2}+2 l^{2}-2\left(1-s_{2}\right)^{2}\right] / 4=\left[l^{2}-\left(s_{1}-s_{2}\right)\left(s_{3}+s_{4}\right)\right] / 2 .
\end{gathered}
$$

Now we will find the square of the imaginary part of $g_{1}^{2}+\left(g_{2}+i h_{2}\right)^{2}$:

$$
\begin{aligned}
& 4 s_{1} s_{2} s_{3} s_{4} \sin ^{2}\left(\gamma_{2}\right) \cos ^{2}\left(\gamma_{4}\right)= \\
& =s_{1} s_{2}\left(1-\cos \left(\beta_{2}\right) s_{3} s_{4}\left(1+\cos \left(\beta_{4}\right)\right)=\right. \\
& =\left(2 s_{1} s_{2}+l^{2}-s_{1}^{2}-s_{2}^{2}\right)\left(2 s_{3} s_{4}+s_{3}^{2}+s_{4}^{2}-l^{2}\right) / 4= \\
& =\left(l^{2}-\left(s_{1}-s_{2}\right)^{2}\right)\left(\left(s_{3}+s_{4}\right)^{2}-l^{2}\right) / 4
\end{aligned}
$$

At last we can find $\left|g_{1}^{2}+\left(g_{2}+i h_{2}\right)^{2}\right|^{2}$:

$$
\begin{aligned}
& {\left[\left(l^{2}-\left(s_{1}-s_{2}\right)\left(s_{3}+s_{4}\right)\right)^{2}+\left(l^{2}-\left(s_{1}-s_{2}\right)^{2}\right)\left(\left(s_{3}+s_{4}\right)^{2}-l^{2}\right)\right] / 4=} \\
& =\left[l^{2}\left(-2\left(s_{1}-s_{2}\right)\left(s_{3}+s_{4}\right)+\left(s_{3}+s_{4}\right)^{2}+\left(s_{1}-s_{2}\right)^{2}\right)\right] / 4= \\
& =l^{2}\left[\left(s_{3}+s_{4}-s_{1}+s_{2}\right)^{2}\right] / 4=l^{2}\left(1-s_{1}\right)^{2}
\end{aligned}
$$

Analogously, we can prove that $\left|g_{1}^{2}+\left(g_{4}+i h_{4}\right)^{2}\right|=\left(1-s_{1}\right) \cdot|B D|$.
Remark 7.1. The statement of this theorem is also valid for non-convex and selfintersecting quadrangles. The reasoning is the same.

8. Special cases

Theorem 8.1. The dual to a trapezoid is a trapezoid.
Proof. Let $Q=A B C D$ be a trapezoid, where $A B \| C D$:

Figure 8
Here z_{3} is a negative real number, hence, $u_{3}=\alpha i, \alpha>0$, hence, $g_{3}=0$, hence $\left(g_{3}+i h_{3}\right)^{2}$ is a negative real number.

Theorem 8.2. The dual to a parallelogram is the same parallelogram.
Proof. Let $Q=A B C D$ be a parallelogram. As $|A B|+|B C|=1$, then $|K L|=|B C|$ and $|L M|=|A B|$. It remains to note that $|A C|=|K M|$.

9. The geometric construction

Given a convex quadrangle Q it is easy to construct the dual Q°, using ruler and compass.
Let $Q=A B C D$ be a convex quadrangle

Figure 9
with diagonal $A C$. Let $|A B|=s_{1},|B C|=s_{2},|C D|=s_{3}$ and $|D A|=s_{4}$. Using compass we construct the point B_{1} : a) it is in the same half-plane (with respect to $A C)$ as point B; b) $\left|B_{1} A\right|=\left(s_{2}+s_{3}+s_{4}-s_{1}\right) / 2 ;$ c) $\left|B_{1} C\right|=\left(s_{1}+s_{3}+s_{4}-s_{2}\right) / 2$. In the same way we construct the point D_{1} : a) it is in the same half-plane (with respect to $A C)$ as point $\left.D ; \mathrm{b})\left|D_{1} A\right|=\left(s_{1}+s_{2}+s_{3}-s_{4}\right) / 2 ; \mathrm{c}\right)\left|D_{1} C\right|=\left(s_{1}+s_{2}+s_{4}-s_{3}\right) / 2$. Then $A B_{1} C D_{1}$ will be the required dual.

References

[1] J.Cantarella, T.Needham, C.Shonkwiler \& G.Stewart, Random triangles and polygons in the plane, The American Mathematical Monthly, 126(2), 2019, 113-134.

E-mail address: ibusjatskaja@hse.ru, yukochetkov@hse.ru

