DUAL QUADRANGLES IN THE PLANE

IRINA BUSJATSKAJA AND YURY KOCHETKOV

ABSTRACT. We consider quadrangles of perimeter 2 in the plane with marked directed edge. To such quadrangle Q a two-dimensional plane $\Pi \in \mathbb{R}^4$ with orthonormal base is corresponded. Orthogonal plane Π^{\perp} defines a plane quadrangle Q° of perimeter 2 and with marked directed edge. This quadrangle is defined uniquely (up to rotation and symmetry). Quadrangles Q and Q° will be called dual to each other. The following properties of duality are proved: a) duality preserves convexity, non convexity and self-intersection; b) duality preserves the length of diagonals; c) the sum of lengths of corresponding edges in Q and Q° is 1.

1. INTRODUCTION

We follow the work [1] (see also the bibliography there). Let Q be a quadrangle with perimeter 2 and with marked directed edge in plane \mathbb{R}^2 . It means that we indicate the first vertex and the direction of going around of Q.

Remark 1.1. If perimeter of a quadrangle is not 2, then we made a dilation with some positive α .

Let Q = ABCD and A be the first vertex. Vectors \overline{AB} , \overline{BC} , \overline{CD} and \overline{DA} we will consider as complex numbers z_1 , z_2 , z_3 and z_4 , respectively. Then

$$z_1 + z_2 + z_3 + z_4 = 0$$
, and $|z_1| + |z_2| + |z_3| + |z_4| = 2$.

Remark 1.2. The above complex description of Q is invariant with respect to a translation.

In what follows we will consider only *non degenerate* quadrangles (with one exception in Section 4), i.e. quadrangles with non-collinear successive edges.

Let's define complex numbers u_1, u_2, u_3, u_4 in the following way: a) $u_k^2 = z_i$, k=1,2,3,4; b) u_1 we choose arbitrarily; c) the rotation from u_k to u_{k+1} , k = 1, 2, 3is in the same direction as the rotation from z_k to z_{k+1} . Let $u_k = a_k + i b_k$, k = 1, 2, 3, 4, then

$$\sum_{k} (a_k^2 + b_k^2) = 2 \quad \text{and} \quad \sum_{k} [a_k^2 - b_k^2) + 2i \, a_k b_k] = 0,$$

i.e. $\bar{a} = (a_1, a_2, a_3, a_4)$ and $\bar{b} = (b_1, b_2, b_3, b_4)$ are a pair of orthonormal vectors in \mathbb{R}^4 . Let $\Pi = \langle \bar{a}, \bar{b} \rangle$ be the linear hull. The two-dimensional plane Π uniquely defines its orthogonal complement — the two-dimensional plane Π^{\perp} . An orthonormal base (\bar{c}, \bar{d}) of Π^{\perp} in its turn defines a quadrangle Q° of perimeter 2, which will be called the quadrangle *dual* to the quadrangle Q.

We will prove the following properties of the quadrangle duality.

- The dual quadrangle Q° is defined uniquely up to rotation and reflection (Theorem 2.1).
- The change of the first vertex and the direction of the going around of Q does not change the dual quadrangle Q° (Theorem 2.2).
- The duality preserves: a) convexity (Corollary 5.1); b) non-convexity (Theorem 5.1); c) self-intersection (Theorem 4.1).
- The sum of lengths of corresponding edges (in the sense of Section 3) of Q and Q° is 1 (Theorem 6.1).
- The lengths of the corresponding diagonals of Q and Q° are equal (Theorem 7.1).
- Parallelograms are self-dual (Theorem 8.1).

2. General Remarks

Our definition of the dual quadrangle Q° is not strictly correct, because the base (\bar{c}, \bar{d}) of Π^{\perp} is not unique: it is defined up to a rotation and up to the order of base vectors.

Theorem 2.1. The plane Π^{\perp} uniquely defines the dual quadrangle up to a rotation and up to a reflection.

Proof. Let a base (\bar{e}, \bar{f}) of Π^{\perp} be obtained by the rotation of (\bar{c}, \bar{d}) on an angle α . Thus,

$$e_k = c_k \cos(\alpha) - d_k \sin(\alpha), \quad f_k = c_k \sin(\alpha) + d_k \cos(\alpha), \ k = 1, 2, 3, 4,$$

i.e.

$$e_k + i f_k = (c_k + i d_k)e^{i\alpha} \Rightarrow (e_k + i f_k)^2 = (c_k + i d_k)^2 e^{2i\alpha}, \ k = 1, 2, 3, 4.$$

Hence, the rotation of base of Π^{\perp} on angle α implies the rotation of Q° on angle 2α .

Let us now consider the base (\bar{d}, \bar{c}) , instead of the base (\bar{c}, \bar{d}) , then

$$\operatorname{Re} \left((d_k + i c_k)^2 \right) = -\operatorname{Re} \left((c_k + i d_k)^2 \right) \\
\operatorname{Im} \left((d_k + i c_k)^2 \right) = \operatorname{Im} \left((c_k + i d_k)^2 \right) \\$$

i.e. this change of base implies the reflection of Q° with respect to the axis OY. \Box

Let ABCD be the quadrangle Q, where A is the first vertex and the order ABCD defines the direction of going around. Let (\bar{c}, \bar{d}) be the base of Π^{\perp} and KLMN be vertices of Q° (K is the first vertex and the order KLMN defines the direction of going around).

Theorem 2.2. The dual of quadrangle Q does not depend on the choice of the first vertex and on the direction of the going around.

Proof. Let us consider the going around of Q = ABCD in the same direction, but the first vertex be B, i.e. Q = BCDA. Complex numbers z_1, z_2, z_3, z_4 are the same, but in order z_2, z_3, z_4, z_1 . Complex numbers u_2, u_3, u_4 are the same, but the last one may be u_1 or $-u_1$. If the last number is u_1 , then $\Pi = \langle (a_2, a_3, a_4, a_1), (b_2, b_3, b_4, b_1) \rangle$ and $\Pi^{\perp} = \langle (c_2, c_3, c_4, c_1), (d_2, d_3, d_4, d_1) \rangle$. Thus, if KLMN is the original dual quadrangle, then LMNK is the new one, but the same. If the last number is $-u_1$, then $\Pi = \langle (a_2, a_3, a_4, -a_1), (b_2, b_3, b_4, -b_1) \rangle$ and $\Pi^{\perp} = \langle (c_2, c_3, c_3, -c_1), (d_2, d_3, d_4, -d_1) \rangle$, i.e. the result is the same because $(-c_1 - i d_1)^2 = (c_1 + i d_1)^2$.

 $\mathbf{2}$

Now let us consider the going around in the opposite direction, hence, Q = ADCB. In this case we must consider complex numbers $-z_4, -z_3, -z_2, -z_1$ and their square roots $\pm i u_4, \pm i u_3, \pm i u_2, \pm i u_1$. Thus

$$\Pi = \langle \mp(a_4, a_3, a_2, a_1), \pm(b_4, b_3, b_2, b_1) \rangle$$

and

$$\Pi^{\perp} = \langle (c_4, c_3, c_2, c_1), (d_4, d_3, d_2, d_1) \rangle,$$

i.e. $Q^{\circ} = KNML$.

Remark 2.1. The rotation of Q does not change the plane Π .

Corollary 2.1. Let Q° is dual to Q and $(Q^{\circ})^{\circ}$ is dual to Q° , then $Q = (Q^{\circ})^{\circ}$ up to a rotation and up to a reflection.

3. The main construction

In this section, using the knowledge of lengths of edges and angles of the quadrangle Q we will construct the base of the plane Π^{\perp} .

Let Q = ABCD be positioned in the following way: A is at the origin, B is in the positive real axis, C and D are in the upper half-plane. Let $|AB| = s_1$, $|BC| = s_2$, $|CD| = s_3$ and $|DA| = s_4$. 4-dimensional vectors $\bar{a} = (a_1, a_2, a_3, a_4)$ and $\bar{b} = (0, b_2, b_3, b_4)$ will be considered as quaternions a and b. Let $v = (0, a_2, a_3, a_4)$, $|v|^2 = a_2^2 + a_3^2 + a_4^2 = 1 - a_1^2 = 1 - s_1$. We consider quaternion products $g = a \cdot v = (-a_2^2 - a_3^2 - a_4^2, a_1a_2, a_1a_3a_1a_4) = (s_1 - 1, a_1a_2, a_1a_3, a_1a_4)$ and $h = b \cdot v = (0, b_3a_4 - b_4a_3, b_4a_2 - b_2a_4, b_2a_3 - b_3a_4)$. The corresponding vectors \bar{g} and \bar{h} constitute an orthogonal base of Π^{\perp} (not orthonormal, because $|g| = |h| = \sqrt{1 - s_1}$).

Let Q be a convex quadrangle

Figure 1

Then

 $z_1 = s_1, z_2 = s_2 \exp(\pi - \beta_2), z_3 = s_3 \exp(2\pi - \beta_2 - \beta_3), z_4 = s_4 \exp(\pi + \beta_1),$ where $\angle DAB = \beta_1, \angle ABC = \beta_2, \angle BCD = \beta_3$ and $\angle CDA = \beta_4$. Thus,

$$\bar{a} = [\sqrt{s_1}, \sqrt{s_2}\sin(\gamma_2), -\sqrt{s_3}\cos(\gamma_2 + \gamma_3), -\sqrt{s_4}\sin(\gamma_1)],\\ \bar{b} = [0, \sqrt{s_2}\cos(\gamma_2), \sqrt{s_3}\sin(\gamma_2 + \gamma_3), \sqrt{s_4}\cos(\gamma_1)],$$

where $\gamma_k = \beta_k/2, \ k = 1, 2, 3, 4$, and

$$\bar{g} = [s_1 - 1, \sqrt{s_1 s_2} \sin(\gamma_2), -\sqrt{s_1 s_3} \cos(\gamma_2 + \gamma_3), -\sqrt{s_1 s_4} \sin(\gamma_1)], \\
\bar{h} = [0, -\sqrt{s_3 s_4} \cos(\gamma_4), \sqrt{s_2 s_4} \sin(\gamma_1 + \gamma_2), -\sqrt{s_2 s_3} \cos(\gamma_3)]$$
(1)

If our quadrangle Q is non convex

Figure 2

then

$$z_1 = s_1, z_2 = s_2 \exp(\pi - \beta_2), z_3 = s_3 \exp(\beta_3 - \beta_2), z_4 = s_4 \exp(180 + \beta_1),$$

where $\angle DAB = \beta_1, \angle ABC = \beta_2, \angle BCD = \beta_3$ and $\angle CDA = \beta_4$. And

$$\bar{a} = [\sqrt{s_1}, \sqrt{s_2}\sin(\gamma_2), \sqrt{s_3}\cos(\gamma_3 - \gamma_2), -\sqrt{s_4}\sin(\gamma_1)],\\ \bar{b} = [0, \sqrt{s_2}\cos(\gamma_2), \sqrt{s_3}\sin(\gamma_3 - \gamma_2), \sqrt{s_4}\cos(\gamma_1)].$$

Thus

$$\bar{g} = [s_1 - 1, \sqrt{s_1 s_2} \sin(\gamma_2), \sqrt{s_1 s_3} \cos(\gamma_3 - \gamma_2), -\sqrt{s_1 s_4} \sin(\gamma_1)], \\ \bar{h} = [0, -\sqrt{s_3 s_4} \cos(\gamma_4), \sqrt{s_2 s_4} \sin(\gamma_1 + \gamma_2), \sqrt{s_2 s_3} \cos(\gamma_3)].$$
(2)

If at last our quadrangle Q is self-intersecting

Figure 3

then

$$z_1 = s_1, z_2 = s_2 \exp(\pi - \beta_2), z_3 = s_3 \exp(\beta_3 - \beta_2), z_4 = s_4 \exp(\beta_1 - \pi),$$

where $\angle ABC = \beta_2, \angle BCD = \beta_3, \angle CDA = \beta_4, \angle DAB = \beta_1.$ And

$$\bar{a} = [\sqrt{s_1}, \sqrt{s_2}\sin(\gamma_2), \sqrt{s_3}\cos(\gamma_3 - \gamma_2), \sqrt{s_4}\sin(\gamma_1)],\\ \bar{b} = [0, \sqrt{s_2}\cos(\gamma_2), \sqrt{s_3}\sin(\gamma_3 - \gamma_2), -\sqrt{s_4}\cos(\gamma_1)].$$

Thus,

$$\bar{g} = [s_1 - 1, \sqrt{s_1 s_2} \sin(\gamma_2), \sqrt{s_1 s_3} \cos(\gamma_3 - \gamma_2), \sqrt{s_1 s_4} \sin(\gamma_1)], \\ \bar{h} = [0, \sqrt{s_3 s_4} \cos(\gamma_4), -\sqrt{s_2 s_4} \sin(\gamma_1 + \gamma_2), \sqrt{s_2 s_3} \cos(\gamma_3)].$$
(3)

4. Self-intersecting quadrangles

Theorem 4.1. The quadrangle, dual to a self-intersecting quadrangle, is also self-intersecting.

Proof. Let Q be a self-intersecting quadrangle ABCD (see Figure 3) and $Q^{\circ} = KLMN$ — its dual. As z_2 belongs to the upper half-plane, then $a_2 > 0$ and $g_2 > 0$. As $a_3b_4 - a_4b_3 < 0$, because of the clockwise turn from z_3 to z_4 , then $h_2 > 0$ and $(g_2 + i h_2)^2$ belongs to the upper half-plane. Thus, M also belongs to the upper half-plane (K is at origin and $L = (1 - s_1, 0)$).

As the turn from z_2 to z_3 is clockwise, then $a_2b_3 - a_3b_2 < 0$ and $h_4 > 0$. As $g_4 > 0$, then $(g_4 + i h_4)^2$ belongs to the upper half-plane. Thus, N belongs to the lower half-plane (the direction of the vector \overline{NK} is up), i.e. Q° cannot be convex — M and N belong to different half-planes with respect to KL.

Now we will demonstrate that Q° is self-intersecting. Let us consider the following highly symmetric quadrangle $Q_0 = ABCD$

Figure 4

where all angles β_k , k = 1, 2, 3, 4, are $\pi/3$ (see Figure 3). Its dual $Q_0^\circ = KLMN$

Figure 5

is the same quadrangle, rotated clockwise on $\pi/3$. Let us assume that there exists a self-intersecting quadrangle Q_1 with non-convex dual (see below)

Figure 6

Let Q_t , $0 \leq t \leq 1$, be a continuous family of non-degenerate self-intersecting quadrangles, that connects Q_0 with Q_1 . We construct this family by moving vertices B, C and D. Then the continuous family Q_t° connects Q_0° with Q_1° . Hence, for some $\alpha, 0 < \alpha < 1$, the dual quadrangle Q_{α}° must be degenerate:

Figure 7

Now we will consider quadrangles $(Q_t^{\circ})^{\circ}$ and take the limit for $t \to \alpha$. Let us consider the quadrangle Q_t° in the left part of Figure 7 and let (with some abusing of the notation) $|KL| = s_1$, $|LM| = s_2$, $|MN| = s_3$, $|NK| = s_4$, $\angle NKL = \beta_1$, $\angle KLM = \beta_2$, $\angle LMN = \beta_3$, $\angle MNK = \beta_4$. Then

$$\bar{a}_t = [\sqrt{s_1}, \sqrt{s_2}\sin(\gamma_2), -\sqrt{s_3}\cos(\gamma_2 + \gamma_3), \sqrt{s_4}\sin(\gamma_2 + \gamma_3 - \gamma_4)],\\ \bar{b}_t = [0, \sqrt{s_2}\cos(\gamma_2), \sqrt{s_3}\sin(\gamma_2 + \gamma_3), \sqrt{s_4}\cos(\gamma_2 + \gamma_3 - \gamma_4)].$$

When $t \to \alpha$, then Q_t° on the left (Figure 7) is transformed into Q_{α}° on the right, with angles $\angle MKL = \tilde{\beta}_1$, $\angle KLM = \tilde{\beta}_2$ and $\angle LMK = \tilde{\beta}_3$. When $t \to \alpha$, then $\beta_4 \to 0$, $\beta_2 \to \tilde{\beta}_2$, $\beta_3 \to \tilde{\beta}_3$ and $\beta_1 \to \pi - \tilde{\beta}_1$. Hence,

$$\bar{a}_{\alpha} = [\sqrt{s_1}, \sqrt{s_2}\sin(\tilde{\gamma}_2), -\sqrt{s_3}\sin(\tilde{\gamma}_1), \sqrt{s_4}\cos(\tilde{\gamma}_1)], \\ \bar{b}_{\alpha} = [0, \sqrt{s_2}\cos(\tilde{\gamma}_2), \sqrt{s_3}\cos(\tilde{\gamma}_1), \sqrt{s_4}\sin(\tilde{\gamma}_1)].$$

Thus,

$$\bar{g}_{\alpha} = [\sqrt{1-s_1}, \sqrt{s_1 s_2} \sin(\tilde{\gamma}_2), -\sqrt{s_1 s_3} \sin(\tilde{\gamma}_1), \sqrt{s_1 s_4} \cos(\tilde{\gamma}_1)],\\ \bar{h}_{\alpha} = [0, \sqrt{s_3 s_4}, -\sqrt{s_2 s_4} \cos(\tilde{\gamma}_1 + \tilde{\gamma}_2), -\sqrt{s_2 s_3} \sin(\tilde{\gamma}_1 + \tilde{\gamma}_2)].$$

The quadrangle, constructed with the use of vectors \bar{g}_{α} and \bar{h}_{α} , belongs to our family Q_t (Corollary 2.1). Now let us consider complex numbers $(g_{\alpha})_3 + i(h_{\alpha})_3$, $(g_{\alpha})_4 + i(h_{\alpha})_4$ and compute the product

$$\frac{(h_{\alpha})_3}{(g_{\alpha})_3} \cdot \frac{(h_{\alpha})_4}{(g_{\alpha})_4} = \frac{\sqrt{s_2 s_4} \cos(\tilde{\gamma}_1 + \tilde{\gamma}_2)}{\sqrt{s_1 s_3} \sin(\tilde{\gamma}_1)} \cdot -\frac{\sqrt{s_2 s_3} \sin(\tilde{\gamma}_1 + \tilde{\gamma}_2)}{\sqrt{s_1 s_4} \cos(\tilde{\gamma}_1)} = -\frac{s_2 \sin(\tilde{\beta}_3)}{s_1 \sin(\tilde{\beta}_1)} = -1$$

(because in triangle the ratio of an edge to the sine of the opposite angle is constant and equal to the diameter of the circumscribed circle). As this product is -1then the corresponding vectors are orthogonal. Thus the squaring of this complex numbers produces collinear vectors. Hence, the quadrangle $(Q^{\circ}_{\alpha})^{\circ}$ is degenerate. But it cannot be so, because it belongs to our non-degenerate family.

5. Non-convex quadrangles

Theorem 5.1. If Q is non-convex quadrangle, then its dual is also non convex.

Proof. Let Q be a quadrangle in Figure 2. As z_2 belongs to the upper half-plane, then $a_2 > 0$, thus $g_2 > 0$. As $a_3b_4 - a_4b_3 > 0$, because of the counter clockwise turn from z_3 to z_4 , then $h_2 < 0$, i.e. $(g_2 + i h_2)^2$ belongs to the lower half-plane. Thus, the vertex M lies in the lower half-plane.

As z_4 belongs to the lower half-plane, then $a_4 < 0$, $b_4 > 0$, thus $g_4 < 0$. As $a_2b_3 - a_3b_2 < 0$, because of the clockwise turn from z_2 to z_3 , then $h_4 > 0$, i.e. $(g_4 + i h_4)^2$ belongs to the lower half-plane. Thus, the vertex N lies in the upper half-plane, i.e. vertices M and N lie in different half-planes with respect to edge KL. Hence, the quadrangle KLMN cannot be convex. But by Theorem 4.1. it cannot be self-intersecting, so it is non-convex.

Corollary 5.1. The dual to a convex quadrangle is also convex.

6. Edges

Theorem 6.1. Let Q = ABCD be a convex quadrangle and $Q^{\circ} = KLMN$ be its dual. Then |AB| + |KL| = 1, |BC| + |LM| = 1, |CD| + |MN| = 1 and |DA| + |NK| = 1.

Proof. As $|g| = |h| = \sqrt{1 - s_1}$, then have to prove that $|(g_2 + ih_2)^2| = g_2^2 + h_2^2 = (1 - s_1)(1 - s_2)$. Let |AC| = l, then

$$\begin{aligned} g_2^2 + h_2^2 &= s_1 s_2 \sin^2(\gamma_2) + s_3 s_4 \cos^2(\gamma_4) = \\ & [s_1 s_2 - s_1 s_2 \cos(\beta_2) + s_3 s_4 + s_3 s_4 \cos(\beta_4)]/2 = \\ & \left[s_1 s_2 + (l^2 - s_1^2 - s_2^2)/2) + s_3 s_4 - (l^2 - s_3^2 - s_4^2)/2 \right]/2 = \\ & [(s_3 + s_4)^2 - (s_1 - s_2)^2]/4 = [(s_3 + s_4 + s_1 - s_2)(s_3 + s_4 - s_1 + s_2)] = \\ & = (1 - s_2)(1 - s_1). \end{aligned}$$

The same reasoning proves that $|NK| = 1 - s_4$. As perimeters of Q and Q° are 2, then $|MN| = 1 - s_3$.

Remark 6.1. The same reasoning proves the theorem for non-convex and self-intersecting quadrangles.

7. DIAGONALS

Theorem 7.1. Let Q = ABCD be a convex quadrangle and $Q^{\circ} = KLMN$ be its dual, then |AC| = |KM| and |BD| = |LN|, i.e. the duality preserves lengths of diagonals.

Proof. Let $l = |AC| = |z_1 + z_2| = |z_3 + z_4|$. We will prove, that $|g_1^2 + (g_2 + ih_2)^2| = (1 - s_1)l$. At first we will find the real part of the complex number $(g_2 + ih_2)^2$:

$$\operatorname{Re}(g_2 + i h_2)^2 = g_2^2 - h_2^2 = s_1 s_2 \sin^2(\gamma_2) - s_3 s_4 \cos^2(\gamma_4) = [s_1 s_2 (1 - \cos(\beta_2) - s_3 s_4 (1 + \cos(\beta_4))]/2 = [2s_1 s_2 + l^2 - s_1^2 - s_2^2 - 2s_3 s_4 + l^2 - s_3^2 - s_4^2]/4 = [2l^2 - (s_1 - s_2)^2 - (s_3 + s_4)^2]/4.$$

Now the real part of $g_1^2 + (g_2 + i h_2)^2$ is

$$(1 - s_1)^2 + [2l^2 - (s_1 - s_2)^2 - (s_3 + s_4)^2]/4 =$$

$$= [4(1 - s_1)^2 + 2l^2 - (s_1 - s_2)^2 - (s_3 + s_4)^2]/4 =$$

$$= [2(1 - s_1)^2 + 2l^2 + (1 - 2s_1 + s_2)(1 - s_2) +$$

$$+ (1 - s_1 + s_3 + s_4)(1 - s_1 - s_3 - s_4)]/4 =$$

$$= [2(1 - s_1)^2 + 2l^2 + (1 - 2s_1 + s_2)(1 - s_2) + (s_2 - 1)(3 - 2s_1 - s_2)]/4 =$$

$$= [2(1 - s_1)^2 + 2l^2 - 2(1 - s_2)^2]/4 = [l^2 - (s_1 - s_2)(s_3 + s_4)]/2.$$

Now we will find the square of the imaginary part of $g_1^2 + (g_2 + i h_2)^2$:

 $4s_1s_2s_3s_4\sin^2(\gamma_2)\cos^2(\gamma_4) =$

$$= s_1 s_2 (1 - \cos(\beta_2) s_3 s_4 (1 + \cos(\beta_4))) =$$

= $(2s_1 s_2 + l^2 - s_1^2 - s_2^2) (2s_3 s_4 + s_3^2 + s_4^2 - l^2)/4 =$
= $(l^2 - (s_1 - s_2)^2) ((s_3 + s_4)^2 - l^2)/4$

At last we can find $|g_1^2 + (g_2 + i h_2)^2|^2$:

$$[(l^{2} - (s_{1} - s_{2})(s_{3} + s_{4}))^{2} + (l^{2} - (s_{1} - s_{2})^{2})((s_{3} + s_{4})^{2} - l^{2})]/4 =$$

= $[l^{2}(-2(s_{1} - s_{2})(s_{3} + s_{4}) + (s_{3} + s_{4})^{2} + (s_{1} - s_{2})^{2})]/4 =$
= $l^{2}[(s_{3} + s_{4} - s_{1} + s_{2})^{2}]/4 = l^{2}(1 - s_{1})^{2}.$

Analogously, we can prove that $|g_1^2 + (g_4 + i h_4)^2| = (1 - s_1) \cdot |BD|$.

Remark 7.1. The statement of this theorem is also valid for non-convex and selfintersecting quadrangles. The reasoning is the same.

8. Special cases

Theorem 8.1. The dual to a trapezoid is a trapezoid.

Proof. Let Q = ABCD be a trapezoid, where $AB \parallel CD$:

Figure 8

Here z_3 is a negative real number, hence, $u_3 = \alpha i$, $\alpha > 0$, hence, $g_3 = 0$, hence $(g_3 + i h_3)^2$ is a negative real number.

Theorem 8.2. The dual to a parallelogram is the same parallelogram.

Proof. Let Q = ABCD be a parallelogram. As |AB| + |BC| = 1, then |KL| = |BC| and |LM| = |AB|. It remains to note that |AC| = |KM|.

9. The geometric construction

Given a convex quadrangle Q it is easy to construct the dual $Q^\circ,$ using ruler and compass.

Let Q = ABCD be a convex quadrangle

Figure 9

with diagonal AC. Let $|AB| = s_1$, $|BC| = s_2$, $|CD| = s_3$ and $|DA| = s_4$. Using compass we construct the point B_1 : a) it is in the same half-plane (with respect to AC) as point B; b) $|B_1A| = (s_2+s_3+s_4-s_1)/2$; c) $|B_1C| = (s_1+s_3+s_4-s_2)/2$. In the same way we construct the point D_1 : a) it is in the same half-plane (with respect to AC) as point D; b) $|D_1A| = (s_1+s_2+s_3-s_4)/2$; c) $|D_1C| = (s_1+s_2+s_4-s_3)/2$. Then AB_1CD_1 will be the required dual.

References

 J.Cantarella, T.Needham, C.Shonkwiler & G.Stewart, Random triangles and polygons in the plane, The American Mathematical Monthly, 126(2), 2019, 113-134.

E-mail address: ibusjatskaja@hse.ru, yukochetkov@hse.ru