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Abstract—A nonlinear integral equation arising in the spatial model of biological communities developed by Aus-
trian scientists Ulf Dieckmann and Richard Law is studied. Sufficient conditions for the existence of a solution of
this equation (a fixed point of the integral operator) are found. The uniqueness of the solution is also analyzed.
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1. INTRODUCTION
In this paper, we study a nonlinear integral equa-

tion arising in the spatial biological model of adaptive
dynamics developed by Dieckmann and Law [1, 2].
This model deals with a self-structured community of
biological species. A short description of the model is
given in Section 2. A more detailed exposition can be
found in [1–4]. Then we describe the mathematical
formulation of a problem related to the above-men-
tioned integral equation and analyze its well-posed-
ness. More specifically, sufficient conditions for the
existence of a solution of this nonlinear integral equa-
tion are found and its uniqueness is proved.

2. DESCRIPTION
OF THE BIOLOGICAL MODEL

Consider a single-species community inhabiting an
area . The biological environment is character-
ized by several homogeneous parameters, namely, the
natural death rate d, the competition death rate , and
the birth rate b, and by two radial symmetric functions
m and  known as the dispersal (at birth) and competi-
tion kernels, respectively, which satisfy the conditions
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On every time interval, the state of the community
is characterized by three spatial moments (unknown
functions):  is the mean density of individuals;

 is the mean density of pairs of individuals,
where  is the shift of the second individual with
respect to the first one; and  is the mean den-
sity of triplets of individuals, where  and  are the
respective shifts of the second and third individuals
with respect to the first one.

In this paper, we study an equilibrium state of the
community described by a stationary point of the sys-
tem of spatial dynamics equations [2]

(1)

3. EQUILIBRIUM OPERATOR

Following [4], we consider a parametric power-2
closure of the third spatial moment:

Substituting this expression into system (1) and setting
the derivatives to zero, after some algebra (see, e.g.,
[4]), we obtain the nonlinear integral equation
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(2)

where , , and .
In what follows, this equation is studied in operator
form.

To introduce an “equilibrium operator,” we
rewrite (2) as , where the operator  is
defined as

(3)

and consider the problem of finding a fixed point of
this operator. The difficulties in studying operator (3)
are associated with the fact that it is neither contractive
nor compact. We represent it as the sum of a compact
and a noncompact part: . Here,

In what follows, we additionally assume that the
functions  and  are everywhere continuous.

The definitions of the above-introduced operators
involve fractions with denominators depending on 
(via ). This fact may cause difficulties in studying the
compactness of the operators. Nevertheless, the fol-
lowing lemmas hold.

Lemma 1. Suppose that  and . Then

the fraction  is bounded away from zero and infinity

uniformly in f for all .
Lemma 2. Let . Assume

that . Then the function

is continuous and bounded away from zero and infinity
uniformly in f for all .

Next, using Fubini’s classical theorems and Riesz’s
criterion, we can prove the compactness of the “blocks”
involved in the operator , namely, the following asser-
tions hold true.

Lemma 3. The operators  and  =
[m  f ] are compact as operators from  to .

Lemma 4. The operator  +

ψ(x), where  are continuous summable functions, is
compact as an operator from  to .

By using these lemmas, we can find conditions guar-
anteeing the compactness of the entire operator . They
are stated in the form of the following theorem.

Theorem 1. Let . Assume

that . Then  is defined as an operator from

 to  and is compact.
The following result is proved using the Leray–

Schauder principle for the existence of a fixed point of
a compact operator [5].

Theorem 2. Under the conditions of Theorem 1, if
 > 0 and , then there exists

 such that the operator  has a fixed point

in .
Now, we use the fact that, for , the image of

 under the operator  is a closed subball
 such that . Here, by

, we mean the distance between the sets  and
 in the metric generated by the norm of 

The second part of the equilibrium operator (i.e.,
the operator ) is also defined as an operator from

 to  (with the same condition imposed on 
as in Theorem 1), but this operator is not compact.
This can be proved, for example, by constructing a
sequence of functions  whose image (under
the operator ) does not contain a fundamental sub-
sequence.

To complete the proof of the existence of a fixed
point for the equilibrium operator, we need the follow-
ing result from [5].

Theorem (on fixed points of a perturbed compact
operator). Let A be a compact operator defined on a
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domain  of a Banach space. Assume that A has a non-
zero rotation on the boundary of G and maps  to a sub-
domain  such that . If A is
perturbed by a Lipschitz operator whose norm does not
exceed , then the perturbed operator has fixed points
in .

Under the conditions of Lemmas 1 and 2, the oper-
ator  satisfies all the assumptions of this theorem,
i.e.,  is a Lipschitz operator with a constant L = 
and its norm vanishes as .

Relying on the above argument, we can prove the
following important result.

Theorem 3. Suppose that the conditions of Theorems 1
and 2 are satisfied. If , then, for sufficiently small

, the operator  has a fixed point in .
An immediate consequence of this theorem is the

existence of a solution of Eq. (2) and a biologically

interesting fact that, if , then the fixed

point of the operator  is nonzero.

4. UNIQUENESS OF THE FIXED POINT
Now, we find sufficient conditions under which the

fixed point of the operator  is unique. For this pur-
pose, we need to prove the following assertion.

Lemma 5. Under the conditions of Theorem 1, there
is  such that, for all  and all ,
there exists  such that, for all

,  is a Lipschitz operator with a Lipschitz
constant .

By using the fact that a Lipschitz operator with a
Lipschitz constant  can have at most one fixed
point, we prove the following result.

Theorem 4. Under the conditions of Theorem 3 and
Lemma 5, there exist constants  and a small
number  such that the operator  has a unique
fixed point in the ball .

5. CONCLUSIONS
In this paper, we have studied the well-posedness

of a problem related to a nonlinear integral equation
derived by applying a parametric power-2 closure of

the third spatial moment. Sufficient conditions for the
existence and uniqueness of a solution of this equation
were found in the case when the competition and dis-
persal kernels are continuous. Note that the linear
integral equation derived by using the closure with

 (so-called asymmetric power-2 closure) was
intensively studied in [6–8]. Specifically, it was shown
that, for , this equation can have only the trivial
solution, while, for d = 0, it additionally has nontrivial
solutions, which can be found, for example, by apply-
ing iterative Neumann series. The stability of the con-
sidered problem remains an open question.
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