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Abstract. A new model of a stock market as a nonlinear random dynamical system with 

additive noise in three-dimensional phase space is offered. Implementations of this model in 

the adiabatic approximation possess all the key signs of fractal market, making the model a 

reasonable evolutionary model for a stock market. The use of adiabatic approximation allows 

us to model a stock market as a nonlinear random dynamical system with multiplicative noise 

with the power-law in one-dimensional phase space. This model shows fractality, long memory 

and 1/f noise in a stock market. 

1. Introduction 

An interdisciplinary research field, known as econophysics, was formed in the middle 1990s as an 

approach to solve various problems in economics, such as uncertainty or stochastic processes and 

nonlinear dynamics, by applying theories and methods originally developed by physicists. The term 

“econophysics” was coined by H E Stanley in order to describe the large number of papers written by 

physicists in the problems of (stock and other) markets (for econophysics reviews see refs. [1-4]). 

Current state of theoretical economics allows one to effectively use advanced methods of physical 

and mathematical modelling for economical system. A remarkable example is applying nonlinear 

dynamics to analysis of financial time series [5, 6]. Moreover, in 1963 B B Mandelbrot [7] during his 

research of cotton prices found out that the prices follows a scaled distribution in time. These 

probability distributions are considered fractal. In 1994 was formed fractal market hypothesis (FMH) 

as an alternative investment theory to efficient market hypothesis (EMH). The FMH is a model of 

investor behaviour that unlike the EMH assumes investors have multiple time horizons and interpret 

information based upon their horizon.  

According to the FMH, the financial time series (FTS) have the following key features: power law 

distribution, 1/f noise, and long memory. 

The most comprehensive survey of mathematical models of financial markets can be found in the 

book of R J Elliott and P E Kopp [8]. Although the book and other relevant publications contain 

numerous conceptual models, we have not found any econophysical model of a stock market that can 

explain its fundamental functioning mechanisms and the key features. Thus, the purpose of this work 

is building of econophysical model of a stock market as a nonlinear random dynamical system which 

is explaining the key features of FTS. 

2. Nonlinear random dynamical model for the stock market 

2.1. Deterministic dynamical system  

In detail, the construction of the nonlinear dynamical model of the stock is presented in works [9-11]. 

In this section, we only indicate the basic principles. 
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The evolution of a stock market can be described by the well-known Lorenz system of equations: 
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where eqtt
   is the variation of “ask” price ( t

 ) relative to equilibrium value ( eq
 ) is the “ask” 

price in equilibrium state); eqtt
hhh   is the variation of “bid” price ( t

h ) relative to equilibrium 

value ( eq
h ) is the “bid” price in equilibrium state); 

tptat
NNS   is an instantaneous difference 

between numbers of agents in a -state and p -state. 

A particular market agent being in a -state has maximum amount of valuable information about 

financial asset (
a

I ) and has minimum information (
p

I ) being in p -state. The agent being in a -

state is able to generate local demand on deal with the asset and send an “ask-quantum” to other 

agents. If the agent is in p -state (he/she does not have enough valuable information about the asset), 

then the agent's rational decision is do not generate demand on deal (“bid-quantum”). Moreover, for 

the agent in p -state generating of a deal offer depends on the agent's reaction on received “ask-

quantum” or can be his or her own decision. General pattern in stock markets is that local “ask” waves 

(“quanta”) induce local “bid” waves (“quanta”). 

Indeed, stock market is an open system that continuously exchanges information and money flows 

with the external world. Sources of external information include corporate financial reports, financial 

news feeds, stock-ticker data and others. This information flow, in some sense, “pump up” the stock 

market, making inverse population of market agents: 
pa

NN  , where 
a

N  is the number of agents 

being in a -state, 
p

N  is the number of agents being in p -state. 

Indeed, stock market is an open system that continuously exchanges information and money flows 

with the external world. Sources of external information include corporate financial reports, financial 

news feeds, stock-ticker data and others. This information flow, in some sense, “pump up” the stock 

market, making inverse population of market agents: 
pa

NN  , where 
a

N  is the number of agents 

being in a -state,
p

N  is the number of agents being in p -state. 

The system of self-consistent equations (1) is a well-known method to describe a self-organizing 

system. The Lorenz synergetic model was first developed as a simplification of hydrodynamic 

equations describing the Rayleigh-Bénard heat convection in the atmosphere; it is now a classical 

model of chaotic dynamics. Further research on the Lorenz system presented in a series of publications 

proved that the system provides an appropriate kinetic picture of the cooperative behavior of particles 

in any macroscopic dynamical system where the actualization of potential order is possible. Processes 

in such self-organizing complex systems in nonequilibrium state lead to the selection of a small 

number of parameters from the complete set of variables that describe the system; all other degrees of 

freedom adjust to correspond to these selected parameters. Following the terminology used in the 

synergy theory, these parameters are the order parameter ( t
 ), conjugated field ( t

h ), and control 

parameter ( t
S ). According to the Ruelle-Takens theorem, we can observe a nontrivial self-

organization with strange attractors if the number of selected degrees of freedom is three or more. 

In the system of equations (1) a  is a coefficient, and positive constants h
a , S

a  are measures of 

feedback in a stock market. Functions 
t

, ht
h  ,  

St
SS 

0  describe the autonomous 

relaxation of the variation of “ask” price, variation of “bid” price and instantaneous difference between 
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numbers of agents in a -state and p -state to the stationary values 0
t

 , 0
t

h , 0
SS

t
  with 

relaxation times  , h
 , S

 . 

Financial interpretation of the results is as follows [9-11]: 

 

 In case of relatively small intensity of external information pumping ( 0
0
S ), the stock 

market tends to stable equilibrium. However, practically this stable equilibrium state cannot be 

reached, since the market is an open system with permanent external information pumping.  

 If 28
0
S , then the stock market functions as an open nonequilibrium system with 

deterministic chaos. Such behavior is typical for a financial market with considerably intense 

external information. 

 3-dimensional dynamical model (1) explains some properties of the stock market functioning 

such as fractality (fractal dimension equals 1.497) and chaotic nature (correlation dimension 

equals 1.896) of FTS [12]. 

2.2. Random dynamical system 

The nonlinear dynamic model (1) explains the fractality and chaotic nature of empirical as well as the 

dissipative nature of the system. On the other hand, Eq. (1) cannot explain some other phenomena 

found in empirical data [13-17], and first of all, the key signs of fractal market signals: a power law of 

PDF, 1/f noise, and long memory. Let us consider different ways of improving (generalizing) Eq. (1) 

in order to adequately describe a stock market. 

Taking into account stochastic terms and the fractionality of the order parameter, Eq. (1) takes the 

following form: 
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In Eq. (2), I  are noise intensities for each phase variable; t
  is white noise, where 0

t
 , 

 tt
tt

  , ;  1,0 . The random dynamic system (RDS) (2) is a generalization of the 

deterministic dynamic system (1) where stochastic sources are added, the feedback is weakened, and 

the order parameter is relaxed. The replacement of the order parameter t
  by a smaller value ( 

t
) 

means that the process of ordering influences the self-consistent behavior of the system to a lesser 

extent than it does in the ideal case of 1 . 

Let us analyze RDS (2) in adiabatic approximation when the characteristic relaxation time of the 

variation of “ask” price considerably exceeds the corresponding relaxation times of the variation of 

“bid” price and the instantaneous difference between numbers of agents in a -state and p -state: 

Sh
 , . 

For a stock market functioning as an open nonequilibrium system, the adiabatic approximation 

means that when the external information feed tends to zero, the stream of “ask-quanta” slowly 

decreases and at the same time the “bid-quanta” and the number of agents being in a -state decrease 

as well. 

An adiabatic approximation is a necessary condition for the transformation of the three-

dimensional RDS with additive noise (2) into a one-dimensional RDS with multiplicative noise of the 

following form: 

 

     If  . (3) 
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The terms of Eq. (3) corresponding to the drift and diffusion (intensity of the chaotic source) have 

the following form: 

      2

0
1 Sf , (4) 

     222 1 

  
Sh

IIII . (5) 

The stationary probability distribution density of the deviation of the variation of “ask” price from 

the corresponding equilibrium value has the following form: 
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where Z  is a normalization constant. 

Before we draw any conclusion about probability density function (PDF) (6), let’s direct our 

attention to one significant fact that distinguishes theory from practice. Distributions of real systems 

and processes regardless of their nature cannot have an infinite expected value or variance. Therefore, 

power-law PDFs like   2 xxp  ( 2  is chosen for the purposes of analysis of expression (6)) are 

approximate and not valid for large x . The exponential decrease of PDF corresponds to the 

intermediate asymptotics, and in practice instead of heavy tails we should have semi-heavy tails: 
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where the scaling function  
c

  is approximately constant at c
   and quickly decreases when 

 . Here the “heaviness of the tail” is shifted toward the intermediate range of   values. Thus, 

the dimensionless variation of “ask” price   scaled for c
  serves as a scaling variable c

  in (7). 

Since the integral in Fokker-Planck equation is regular at 0 , the PDF obtained has a power-law 

form. 

The power law for PDF of the deviation of the variation of “ask” price, which is equivalent to for 

large times, was obtained and justified analytically. However, we could not obtain analytical 

expressions for power spectral density (  fS ), autocorrelation function (ACF), or the fractal 

dimensions ( F
D ). Therefore, we present below the results of numerical calculations for a family of 

realizations of RDS (3):   18.1 xxp ,   36.1 ffS ,   04.0ACF , 235.1
F

D . 

3. Conclusions 

The generalized Lorentz system (2) adequately models the evolution of a stock market as a complex 

system. The characteristics of  -realizations of RDS (3) are quantitatively close to the corresponding 

characteristics of empirical FTS. 

For a description of the evolution of a stock market, the nonlinear dynamical system model (1) is a 

rough, not very accurate approximation. First, the model does not predict the occurrence of 

catastrophic values in a time series of the variation of “ask” price which would signify the complexity 

of a stock market, or the existence of long memory or the time series’ tendency to follow trends. 

Despite this deficiency, Eq. (1) allows one to study stock market far from equilibrium, and it also 

explains the existence of dynamical chaos in a time series as well as their fractality. 

The nonlinear random dynamical system (2) is a generalization of the model (1) that accounts for 

external stochastic sources and the fractionality of the order parameter (weakening of feedback and 

relaxation of the order parameter). This model adequately describes the evolution of a stock market. 
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Quantitative characteristics of the model (2) in adiabatic approximation are close to the 

corresponding characteristics of the empirical FTS. An adiabatic approximation allows us to reduce a 

three-dimensional random adiabatic system with additive noise (2) to a one-dimensional random 

dynamical system with exponential multiplicative noise (3). 
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