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MORSE-SMALE SURFACED DIFFEOMORPHISMS WITH

ORIENTABLE HETEROCLINIC

A. MOROZOV and O. POCHINKA

Abstract. In the present paper we consider preserving orientation
Morse-Smale diffeomorphisms on surfaces. Using the methods of fac-
torization and linearizing neighborhoods we prove that such diffeo-
morphisms have a finite number of orientable heteroclinic orbits.

1. Introduction

The Morse-Smale dynamics is a pattern of a regular structurally stable
(rough) behaviour. The foundations of the theory of roughness of flows,
laid down in the classic work by A. Andronov and L. Pontryagin [1], were
developed by the associates of academician A. Andronov in the Gorky school
of non-linear oscillations E. Leontovich and A. Mayer [12], [13]. Moreover,
A. Meyer introduced the concept of roughness for a discrete dynamical
system and obtained a complete topological classification of such systems
(Morse-Smale systems) on the circle [14].

Since then, the theory of topological classification of Morse-Smale dy-
namic systems has gained wide popularity and has undergone intensive de-
velopment (see, for example, review [8]). So the topological classification of
structurally stable flows on surfaces is exhaustively described in the work
by M. Peixoto [16]. On three-dimensional manifolds, the necessary and suf-
ficient conditions of the topological conjugacy of Morse-Smale flows follows
from the works by Ya. Umanskiy [20] and A. Prishlyak [18]. There are
also multidimensional classification results, for example, the classification
by S. Pilyugin [17] for Morse-Smale flows without heteroclinic intersections
on the n-dimensional sphere. For three-dimensional Morse-Smale diffeo-
morphisms, the completed classification results were obtained only in 2018
by C. Bonatti, V. Grines, O. Pochinka [5] after twenty years of work by a
team of Russian-French scientists, C. Bonatti, V. Grines, F. Laudenbach, V.
Medvedev, E. Pecu, O. Pochinka. The researchers of the Nizhny Novgorod
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school V. Grines, E. Gurevich, V. Medvedev, O. Pochinka also obtained
a complete topological classification of Morse-Smale diffeomorphisms with
saddles of co-dimension one on closed n-manifolds [9].

The classification of Morse-Smale cascades on surfaces was obtained in
the work by C. Bonatti and R. Langevin [7], as part of the study of dif-
feomorphisms with zero-dimensional basic sets. Therefore, it uses a rather
heavy apparatus of Markov partitions, due to the need to track the geometry
of heteroclinic intersections that make up an infinite number of orbits. Given
the obvious evolution of the theory of topological classification of dynamical
systems, it would be natural to expect a separate and clear classification of
two-dimensional Morse-Smale casacdes. Such attempts were made for some
meaningful subclasses of surface diffeomorphisms, for example, in the works
by A. Bezdenezhnykh, V. Grines, T. Mitryakova, O. Pochinka [4], [10], with
the restriction imposed in the form of a finite number of heteroclinic orbits
(beh = 1).

However, the topology of heteroclinic intersections sometimes itself nat-
urally imposes restrictions on the length of heteroclinic chains, which makes
it possible to obtain a classification of such systems in combinatorial terms.
In this paper, it is proven that Morse-Smale surfaced diffeomorphism with
orientable heteroclinic intersections cannot have an infinite number of het-
eroclinic orbits. In the other words we state the following result.

Theorem 1. If f : M2 → M2 is a preserving orientation Morse-Smale
diffeomorphism on surface with orientable heteroclinic then beh(f) = 1.

This result was announced by V. Grines and A. Bezdenezhnyh here [3]
and was proved as the chapter of the candidate’s dissertation by A. Bez-
denezhnyh [2]. That proof used a technique of the paper by A. Mayer [15]
about the relation of the number of pairwise disjoint non-trivial recurrent
trajectories with the genus of the ambient surface. In this paper we con-
duct an independent proof of this result using a factorization methods to
compatible systems of neighborhoods.

2. General properties of Morse-Smale diffeomorphisms

Everywhere below Mn is a smooth closed connected orientable n-
dimensional manifold (n ≥ 1) and f : Mn → Mn is a preserving orientation
diffeomorphism.

Definition 2 (Morse-Smale diffeomorphism). Diffeomorphism f : Mn →
Mn is called Morse-Smale diffeomorphism, if

1. its non-wandering set Ωf consists of a finite number of hyperbolic
orbits;

2. the invariant manifolds W s
p , W

u
q intersect transversally for any non-

wandering points p, q.
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It is well known that Morse-Smale diffeomorphisms have no cycles in the
sense of the following definition.

Definition 3 (k-cycle). A sequence of different periodic orbitsO0,O1, . . . ,Ok

that satisfies the condition

Wu
Oi+1

∩W s
Oi

6= ∅, i ∈ {0, . . . , k},Ok+1 = O0,

is called k-cycle (k ≥ 1).

The absence of cycles allows us to introduce the following partial order
relation on the set of periodic orbits of the Morse-Smale diffeomorphism (it
was first done by S. Smale [19]).

Definition 4 (Partial order relation, beh). Let Oi,Oj be periodic or-
bits of the Morse-Smale diffeomorphism f : Mn → Mn. One says that
the orbit Oi,Oj are in a relation ≺ (Oi ≺ Oj), if

W s
Oi

∩Wu
Oj

6= ∅.

A sequence composed by different periodic orbits Oi = Oi0 ,Oi1 , ...,Oik =
Oj(k ≥ 1) such that Oi0 ≺ Oi1 ≺ . . . ≺ Oik is called chain of length k,
connecting periodic orbits Oi and Oj . Number equal to the length of the
maximum saddle chain of a Morse-Smale diffeomorphism f : Mn → Mn is
denoted

beh(f).

For a subset P of the periodic orbits of f let us set

beh(Oj |P ) = max
Oi⊂P

{beh(Oj|Oi)}.

Proposition 5 ( [11], Theorem 2.1.1). Let f : Mn → Mn be a Morse-
Smale diffeomorphism. Then

1. Mn =
⋃

p∈Ωf

Wu
p ;

2. Wu
p is a smooth submanifold of a manifold Mn diffeomorphic to

R
dim Wu

p for any periodic point p ∈ Ωf ;
3. cl(ℓup) \ (ℓ

u
p ∪ p) =

⋃
r∈Ωf :ℓup∩W s

r 6=∅

Wu
r for any unstable separatrix ℓup (a

connected component of Wu
p \ p) of periodic point p ∈ Ωf .

A similar theorem holds for the stable manifolds of the diffeomorphism
f .

3. Surfaced Morse-Smale diffeomorphisms

In this section we consider a class MS(M2) of orientation preserving
Morse-Smale diffeomorphisms given on a closed orientable surface M2.
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3.1. Orientable heteroclinic. Following to [2], for the diffeomorphisms
in this class we will introduce the concept of orientable heteroclinic as the
following.

Definition 6 (Orientable heteroclinic). Let f ∈ MS(M2), σi, σj —
saddle points of diffeomorphism f , such that W s

σi
∩Wu

σj
6= ∅. For any hete-

roclinic point x ∈ W s
σi

∩Wu
σj

we define an ordered pair of vectors (~υu
x , ~υ

s
x),

where:

• ~υu
x is the tangent vector to the unstable manifold of the point σj at

the point x and directed from x to fmu

(x), where mu is a period of
the unstable separatrix containing x;

• ~υs
x is the tangent vector to the stable manifold of the point σi at the

point x and directed from x to fms

(x), where ms is a period of the
stable separatrix containing x.

Heteroclinic intersection of diffeomorphism f is called orientable, if ordered
pairs of vectors (~υu

x , ~υ
s
x) determines the same orientation of the ambient

surfaceM2 at every heteroclinic point x of the diffeomorphism f . Otherwise,
the heteroclinic intersection is called non-orientable (see Fig. 1, Fig. 2).

Fig. 1. Non-orientable heteroclinic intersection

Fig. 2. Orientable heteroclinic intersection
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3.2. Linearizing neighborhoods. For ν ∈ {−1, 1} denote by aν : R2 →
R

2 diffeomorphism given by formula

aν(x1, x2) = (ν ·
x1

2
, ν · 2x2).

We call aν canonical diffeomorphism. Diffeomorphism aν has a single fixed
saddle point at the origin O with stable manifold W s

O = Ox1 and unstable
manifold Wu

O = Ox2.
Let N = {(x1, x2) ∈ R

2 : |x1x2| ≤ 1}. Notice that the set N is
invariant with respect to the canonical diffeomorphism aν . Define in the
neighborhood of N a pair of transversal foliations Fu, Fs as follows:

Fs =
⋃

c2∈Ox2

{(x1, x2) ∈ N : x2 = c2},

Fu =
⋃

c1∈Ox1

{(x1, x2) ∈ N : x1 = c1}.

Notice that the canonical diffeomorphism aν which sends the leaves of
foliation Fu (Fs) to leaves of the same foliation.

Now let σ be a saddle point of a diffeomorphism f ∈ MS(M2). Suppose
σ has a period mσ and a type of orientation νσ, that is νσ = 1 (νσ = −1) if
fmσ |Wu

σ
preserves (changes) the orientation.

Definition 7 (Linearizing neighbourhood). An fmσ -invariant neigh-
bourhood Nσ of saddle point σ ∈ Ωf is called by linearizing if there is
a homeomorphism µσ : Nσ → N , conjugate diffeomorphism fmσ |Nσ

with
canonical diffeomorphism aνσ |N .

Foliations Fu, Fs induced by means of the homeomorphism µ−1
σ , fmσ -

invariant foliations Fu
σ , F s

σ on the linearizing neighboughood Nσ (see Fig.
3).

Neighbourhood NOσ
=

mσ−1⋃
k=0

fk(Nσ), equipped with a mapping µOσ
,

composed of homeomorphisms µσf
−k : fk(Nσ) → N , k = 0, . . . ,mσ − 1,

called by linearizing neighbourhood of orbit Oσ.

Definition 8 (The compatible system of neighbourhoods). An f -invariant
collection Nf of linearizing neghbourhoods Nσ of all saddle point σ of dif-
feomorphism f ∈ MS(M2) is called compatible if the following properties
are hold:

• if W s
σ1

∩ Wu
σ2

= ∅ and Wu
σ1

∩ W s
σ2

= ∅ for saddle points σ1, σ2 then
Nσ1

∩Nσ2
= ∅;

• if W s
σ1

∩Wu
σ2

6= ∅ for different saddle points σ1, σ2 then

(Fu
σ1,x

∩Nσ2
) ⊂ Fu

σ2,x
, (F s

σ2,x
∩Nσ1

) ⊂ F s
σ1,x

,

for x ∈ (Nσ1
∩Nσ2

) (see Fig. 4).
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Fig. 3. A linearizing neighborhood

Fig. 4. A compatible system of neighborhoods

Proposition 9 ( [6], Theorem 1). For every diffeomorphism f ∈
MS(M2) there is a compatible system of neighbourhoods.

3.3. Factorization method. Let f ∈ MS(M2). Denote by Σ0,Σ,Σbeh(f)

the set of all sinks, saddles, sources of f , accordingly. We decompose the set
Σ on the subsets Σ1, . . . ,Σbeh(f)−1 inductively, as follows: define Σi as the
set of all saddle points of the diffeomorphism f , such that beh(Oσ|Σi−1) = 1
for every orbit Oσ, σ ∈ Σi.

For every i ∈ {0, . . . , beh(f)− 1} define

Ai =

i⋃

j=0

Wu
Σj
, Vi =

i⋃

j=0

W s
Σj

\ Ai.
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It follows from [11] that Ai is an attractor of the diffeomorphism f and f

acts discontinuously on the Vi. Let V̂i = Vi/f and denote by

p
i
: Vi → V̂i

the natural projection.
Let V̂ be a connected component of V̂i and V = p−1

i (V̂ ). Denote by mV

the number of connected components in V . Set p
V
= p

i
|V .

Proposition 10 ( [11] Proposition 2.1.5). The space V̂ is diffeomorphic

to two-dimensional torus, natural projection p
V
: V → V̂ is a covering map

inducing an epimorphism η
V

: π1(V̂ ) → mV Z (here m
V
Z is the group of

integers multiple to m
V
) with the following property. Let [ĉ] ∈ π1(V̂ ). Any

lift c of the loop ĉ joints a point x ∈ V with the point fn(x), where n ∈ Z

does not depend on the choice of the lift. Then η
V
([ĉ]) = n.

For an unstable separatrix γu of a saddle point σ denote by mγu its
period, that is, the smallest natural number µ, such that fµ(γu) = γu.
Let us suppose, that an unstable saddle separatrix γu belongs to V . Let
γ̂u = p

V
(γu) and denote by jγ̂u : γ̂u → V̂ the inclusion map.

Proposition 11 ( [11] proposition 2.1.3). The set γ̂u is a circle

smoothly embedded in V̂ , such that η
V
(jγ̂u∗(π1(γ̂

u))) = mγuZ.

γ

γ

Fig. 5. Projection of an unstable saddle separatrix to V̂

On figure 5 the torus V̂ is represented with projection γ̂u of separatrix
γu such that

mγu

mω
= 3.

Let Nγu be a connected component of the set Nσ \W s
σ containing γu and

N̂u
γu = p

V
(Nγu).

Proposition 12 ( [11] Proposition 2.1.3). The set N̂γu is an annulus

smoothly embedded in V̂ .
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Fig. 6. Projection of compatible foliations to V̂

Similar statements can be formulated for the stable saddle separatrix
when it belongs to V .

On Figure 6 a part of the phase portrait of a diffeomorphism f ∈
MS(M2) is represented. Here α1, α2 are source points, ω1, ω2 are sink
points, σ1 is a saddle point and Nσ1

is a linearizing neighbourhood of it.
All non-wandering point are supposed to be fixed and V = W s

ω1
\ ω1 —

the punctured basin of the sink ω1. Then on the space orbit V̂ we can see
annulus N̂γu = p

V
(Nγu) as the projection of a part of Nσ1

containing the
unstable separatrix γu. Also we can see projections of both foliations in
Nσ1

:

F̂u
σ1

= p
V
(Fu

σ1
), F̂ s

σ1
= p

V
(F s

σ1
).

4. Proof of the main result (Theorem 1)

Let f ∈ MS(M2) and Nf be its compatible system of linearizing negh-
bourhoods Nσ of all saddle point σ. In the denotations of previous section
for i = 1, . . . , beh(f)− 1 let

Ws
i =

⋃

σ∈Σi

W s
σ , Wu

i =
⋃

σ∈Σi

Wu
σ ,

Ni =
⋃

σ∈Σi

Nσ, Fs
i =

⋃

σ∈Σi

F s
σ , Fu

i =
⋃

σ∈Σi

Fu
σ .

Let us prove, that from the conditions of the orientability heteroclinic in-
tersections of f follows that beh(f) = 1.
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Suppose the opposite: beh(f) > 1. Then there is a chain of saddle points
σ1 ≺ σ2 ≺ σ3 (see Figure 7), such that σi ∈ Σi and (see Fig. 7)

Wu
σi+1

∩W s
σi

6= ∅, i = 1, 2.

Fig. 7. The chain of the periodic points σ1 ≺ σ2 ≺ σ3 of
the diffeomorphism f .

Then these saddle points have separatrix γs
1 , γ

u
2 , γ

u
3 such that γs

1 ∩γu
2 6= ∅

and γu
3 ∩ W s

σ2
6= ∅. Let γ̂s

1 = p1(γ
s
1), γ̂

u
2 = p1(γ

u
2 ). By the construction,

all points of the separatrix γs
1 , γ

u
2 belong to space V1. Due to Proposition

11, each set γ̂s
1 , γ̂

u
2 is a circle on a disjoint union of the tori V̂1. Since the

intersection γ̂s
1 ∩ γ̂u

2 is not empty then these circles belong to the same torus

(denote it by V̂ ). Also we will see annuli N̂1 = p1(Nγs
1
) and N̂1

2 = p1(Nγu
2
)

on the torus V̂ .
Every point of the separatrix γu

3 , except the finite number of heteroclinic
orbits γu

3 ∩Ws
2 , belongs to the space V1. Then the set γ̂u

3 = p1(γ
u
3 ) consists

of a finite number of non-compact arcs. As γu
3 ∩ W s

σ2
6= ∅ then, due to

Proposition 5, γu
3 ∩Nγu

2
6= ∅. Thus there is a connected component ℓ̂ of the

set γ̂u
3 such that ℓ̂ ∩ N̂1

2 6= ∅.

Let Γ̂u
2 = V̂ ∩ p1(Wu

2 ) and N̂2 = p1(N2). Due to Proposition 11 the set

Γ̂u
2 is a disjoint union of homotopically non-trivial circles on the torus V̂

and γ̂u
2 is one of them. From condition of the orientability of heteroclinic

intersections, it follows that the circle γ̂s
1 intersects each of the circles of the

set Γ̂u
2 and the index of the intersection at each point of such the intersection

is the same.
As the curve ℓ̂ belongs V̂ then there is annuli N̂2

2 (possible N̂2
2 = N̂1

2 )

which is a connected components of the set N̂2 and such that (ℓ̂ ∩ N̂2) ⊂

(N̂1
2 ∪ N̂2

2 ). From the compatible system of neighborhoods follows, that

each connected component of the intersection ℓ̂∩ (N̂1
2 ∪ N̂2

2 ) is a leaf of the

foliation F̂u
2 = p1(Fu

2 ) (see Fig. 8).

Let x̂1 = ℓ̂∩ ∂N̂1
2 and x̂2 = ℓ̂∩ ∂N̂2

2 . Due to the orientability of the het-
eroclinic intersection the points x̂1, x̂2 belong to different connected com-
ponents of the set ∂(N̂1

2 ∪ N̂2
2 ). Moreover, according to compatibility of
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Fig. 8. Orbit space V̂

system of linearizing neighborhoods, the arc ℓ̂ is a union of three arcs with
the pairwise disjoint interiors

ℓ̂ = F̂u

1,ℓ̂
∪ ℓ̂x̂1,x̂2

∪ F̂u

2,ℓ̂
,

where F̂u

1,ℓ̂
, F̂u

2,ℓ̂
are different leaves of foliation F̂u

2 .

It follows from the definition of the compatible system of lineariz-
ing neighborhoods that every connected component of the intersection
γ̂s
1 ∩ (N̂1

2 ∪ N̂2
2 ) is a leaf of the foliation F̂s

2 = p1(Fs
2 ). Choose one con-

nected component F̂ s

1,ℓ̂
(F̂ s

2,ℓ̂
) in the intersection γ̂s

1 ∩ N̂1
2 (γ̂

s
1 ∩ N̂2

2 ), possible

F̂ s

1,ℓ̂
= F̂ s

2,ℓ̂
if N̂1

2 = N̂2
2 . Let ŷ1 = F̂ s

1,ℓ̂
∩ Γ̂2 and ŷ2 = F̂ s

2,ℓ̂
∩ Γ̂2. Also choose

one pair of the points ẑ1, ẑ2 from each of the countable set F̂ s

1,ℓ̂
∩ F̂u

1,ℓ̂
,

F̂ s

2,ℓ̂
∩ F̂u

2,ℓ̂
(see Fig. 9).

According to the orientability of the heteroclinic intersection, the pairs
of the vectors (~υu

ŷ1
, ~υs

ŷ1
) and (~υu

ŷ2
, ~υs

ŷ2
) define the same orientation of the

torus V̂ . Also, the pairs of the vectors (~υu
ŷ1
, ~υs

ŷ1
), (~υu

ẑ1
, ~υs

ẑ1
) and (~υu

ŷ2
, ~υs

ŷ2
),

(~υu
ẑ2
, ~υs

ẑ2
) also need to be consistently oriented. However, this contradicts

with any orientation on the curve ℓ̂.
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a) b)

Fig. 9. Intersection of separatrices in the space orbit V̂
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