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A general idea of the qualitative study of dynamical systems, going back to
the works by A. Andronov, E. Leontovich, A. Mayer, is a possibility to de-
scribe dynamics of a system using combinatorial invariants. So M. Peixoto
proved that the structurally stable flows on surfaces are uniquely determined,
up to topological equivalence, by the isomorphic class of a directed graph.
Multidimensional structurally stable flows does not allow entering their clas-
sification into the framework of a general combinatorial invariant. However,
for some subclasses of such systems it is possible to achieve the complet
combinatorial description of their dynamics.

In the present paper, based on classification results by S. Pilyugin, A. Pr-

ishlyak, V. Grines, E. Gurevich, O. Pochinka, any connected bi-color tree

implemented as gradient-like flow of n-sphere, n > 2 without heteroclinic

intersections. This problem is solved using the appropriate gluing operations

of the so-called Cherry boxes to the flow-shift. This result not only completes

the topological classification for such flows, but also allows to model systems

with a regular behavior. For such flows, the implementation is especially im-

portant because they model, for example, the reconnection processes in the

solar corona.

1. Introduction and statement of results

A general idea of a qualitative study of dynamical systems, going back to
the works by A. Andronov [1], E. Leontovich, A. Mayer [2], [3], is a possibility to
describe dynamics of a system using combinatorial invariants. A brilliant example
of the implementation of such approach is the topological classification of Morse-
Smale flows on surfaces obtained by M. Peixoto [4]. He proved that structurally
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stable flows on surfaces are uniquely determined, up to topological equivalence, by
the isomorphic class of a directed graph.

Multidimensional structurally stable flows do not allow to classify their into
the framework of a general combinatorial invariant. However, for some subclasses
of such systems it is possible to achieve a completely combinatorial description of
their dynamics. Thus, according to the results by S. Pilyugin [5], A. Prishlyak
[6], V. Grines, E. Gurevich, O. Pochinka [7], the topological equivalence class of a
gradient-like flow (Morse-Smale flow without periodic orbits) on n-sphere, n > 2,
without heteroclinic intersections is completely determined by a bi-color tree corre-
sponding to a skeleton of co-dimensional one saddle invariant manifolds. A problem
of the realization of an abstract invariant is an integral part of the topological clas-
sification. For such flows, it is especially important because they model regular
processes in various natural sciences (see, for example, [8]). In particular, such
flows model reconnection processes in the solar corona (see, for example, [9], [10]).

In such processes the corona of the Sun is divided on domains by fans and
spines (2- and 1-dimensional invariant manifolds) of null points of the magnetic
field (the points, at which the strength of magnetic field is null). Restructuring
of this domains underlie such effects as the flares and prominences. This energy
processes are very important for explanation of many nature laws. The topological
structure of a magnetic field is defined by null points, spines, fans and separators,
the union of those forming the so-called skeleton of the magnetic field. Experiments
and observations show that the evolution of the structure of the magnetic field is
similar to relaxation processes. At first plasma evolves slowly for some considerable
time but at some point there occurs a topological restructuring of the magnetic
configuration (reconnection) [11].

Indeed below we model different stable states of the magnetic field.

Let us recall that n-ball or n-disk is a manifold with a boundary homeomor-
phic to a standard n-ball

Bn = {(x1, ..., xn) ∈ Rn | x2
1 + ...+ x2

n ≤ 1}.

An open n-ball or n-disk we call a manifold homeomorphic to an interior of Bn. We
call by (n− 1)-sphere a manifold Sn−1 homeomorphic to a standard (n− 1)-sphere

Sn−1 = ∂Bn.

Let us consider a class G of gradient-like flows without heteroclinic intersec-
tions on n-dimensional sphere Sn, n ≥ 3, that is, flows whose the non-wandering set
consists of a finite many hyperbolic fixed points such that the invariant manifolds
of saddle points have no intersections.

Let f t ∈ G. According to the result by S. Pilyugin [5, Lemma 2.2], the
dimensions of the invariant saddle manifolds of f t have to be only (n − 1) and 1.
Let us denote by Ωft the non-wandering set of f t, and let

Ωift = {p ∈ Ωft | dimWu
p = i}.
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By [12, Theorem 2.3],

Sn =
⋃

p∈Ωft

Wu
p =

⋃
p∈Ωft

W s
p .

It follows from [13, Proposition 2.3] that for any saddle point σ of a flow f t

the closure of its invariant manifold W δ
σ with dimension (n − 1) contains, except

the manifold itself, exactly one fixed point. That point is a sink if δ = u and a
source if δ = s. Then the set clW δ

σ is a sphere with dimension (n−1). By [14] and
[15] this sphere is cylindrically embedded1. Denote by mft the number of saddle
points of a flow f t. Then the union

Wft =
⋃

p∈Ω1
ft

clW s
p ∪

⋃
q∈Ωn−1

ft

clWu
q

of closures of all invariant manifolds of dimension (n− 1) divides a sphere Sn into
kft = mft + 1 connected components. Denote such components by D1, . . . , Dkft ,
and let

Dft =

kft⋃
i=1

Di.

A bi-colour graph of a flow f t ∈ G is a graph Γft , such that:

1) the set Γ0
ft of vertices of Γft bijectively corresponds to Dft by a bijection

ξ0 : Γ0
ft → Dft ;

2) two vertices vi, vj are connected by an edge ei,j iff domains Di = ξ0(vi),
Dj = ξ0(vj) have a common boundary;

3) an edge ei,j has a colour u (resp. s) if the common boundary of Di and
Dj is the closure of an unstable (resp. stable) saddle manifold (see Fig. 1).

Two graphs Γft and Γf ′t of some flows f t, f ′t are called isomorphic if there
exists an isomorphism η : Γft → Γf ′t mapping vertices of Γft into vertices of Γf ′t
preserving adjacency and coloring.

It follows from [7], that the flows f t, f ′t ∈ G are topologically equivalent iff
their graphs Γft and Γf ′t are isomorphic. Indeed, for any flow f t ∈ G its bi-color
graph is a tree, i.e. connected graph without cycles.

The main result of the present paper is the following theorem.

Theorem 1. For every bi-color tree Γ there is a flow f t ∈ G whose graph Γft is
isomorphic to graph Γ.

Notice that flows of the considered class, under the assumption that they have
a unique sink, were classified and realized in [16] by means of a directed graph.

1A sphere Sn−1 ⊂ Mn is called cylindrically embedded in Mn, if there exists a topological
embedding h : Sn−1 × [−1;+1]→Mn, such that h(Sn−1 × {0}) = Sn−1.
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Figure 1: Example of a flow and its bi-color graph

Acknowledgement: This work was supported by the Russian Science Founda-
tion (project 17-11-01041). The construction of Cherry flow was implemented in
the framework of the Basic Research Program at the National Research University
Higher School of Economics (HSE University) in 2019.

2. Realization of a flow by a bi-color tree

2.1 Description of bi-color tree

Recall some definitions from the graph theory (see, for example, [17] for
details).

A graph is a pair (V,E), where V is a set of vertices and E is a set of pairs
of vertices, which are called edges. If E contains ordered pairs, then the graph is
called a directed one. A k-edge-colouring of a graph is an assignment of k colours
to its edges.

Two vertices are called adjacent if they are connected by an edge (i.e. they
constitute the edge), and the edge is incident to each of the vertices. A loop is an
edge, whose end-vertices coincide. A simple graph is an undirected graph without
loops.

The number of edges incident to a vertex is called degree of the vertex.

A set {v1, (v1, v2), v2, . . . , vk−1, (vk−1, vk), vk} is called a path of the length k.
A path is called a cycle if v1 = vk. A graph is called connected if every two its
vertices are joined by a path.

A tree is a connected acyclic graph. It means that any two its vertices are
connected by exactly one path.

Any tree with at least 2 vertices has at least two pendant vertex, that is a
vertex of the degree 1.

Any tree becomes a out-tree if arbitrary its vertex r is selected, as a root. In
the other words a planted tree is a tree in which one vertex r has been designated
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as the root and every edge is directed away from the root.

If v is a vertex in a planted tree other than the root, the parent of v is the
unique vertex w such that there is a directed edge (w, v). If w is the parent of v,
then v is called a child of w.

The rooted vertex r by definition has a level 0. The level d of any other
vertex v in a such planted tree is the number of edges in the unique path between
the vertex v and the root r. The depth of a tree D is the maximum level of any
vertex there.

An ordered out-tree is an out-tree where the children of each vertex are or-
dered.

2.2 Construction of the flow by the graph

To construct a required flow on the n-sphere Sn for the given bi-color tree Γ
choose a pendant vertex r of Γ as a root and an order all children to get from the
tree Γ an ordered out-tree. Denote by N the number of all vertices of Γ.

To realize of a flow from the bi-color tree Γ, we will use the idea of embedding
of N − 1 pairwise disjoint Cherry boxes Bv in a flow-shift gt0 : Rn → Rn, given by
the formula

gt0(x1, . . . , xn) = (x1 + t, . . . , xn)

and the cherry box Bv has a form

Bv = {(x1, . . . , xn) ∈ Rn : |x1 − αv| ≤ δv, (x2 − βv)2 + x2
3 + . . . x2

n ≤ δ2
v}

for some αv, βv ∈ R, δv > 0 which depends on parameters of v. The dynamics in
Bv coincides with the flow-shift dynamics on the boundary of Bv and differs from
one inside the box due to the appearance of a saddle and a node. We will say that
the dynamics in Bv has a type u (s), if the saddle point has (n − 1)-dimensional
unstable (stable) manifold and the node point is a source (sink) (see Fig. 2).

Figure 2: An embedding of Cherry-boxes of the types u and s to the flow-shift

Below we give formulas for the following things:
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1. The calculation of a position and a size of the Cherry-box Bv;

2. The definition of a flow gtv in Bv;

3. The embedding of a resulting dynamics in Sn.

1. The calculation of a position and a size of the Cherry-box Bv.
For the vertex y which is a unique child of the root r we put

αy = 2ρy

(
1

2
+

1

2N − 4
+ · · ·+ 1

(2N − 4)D−2

)
, βy = 0, δy = 1,

where ρy equals 1 (−1) if the edge (r, y) has a colour s (u) and D is the depth of
the tree Γ. For any other vertex v with the level dv ≥ 2 the parameters of the box
Bv are determined through the parameters αw, βw, δw of its parent’s box Bw, the
order kv of v as a child and a number ρv which equals 1 (−1) if the edge (w, v) has
a colour s (u) by the following way:

δv =
δw

2N − 4
, αv = ρv (|αw| − δw − δv) , βv = βw +

δw
2
− (2kv − 1)δv.

So, the size and position are defined for each Cherry-box corresponding to
every vertex of Γ except the root.

2. The definition of a flow gtv in Bv. Let

Σv = (x1 − αv)2
+ (x2 − βv)2

+ x2
3 + · · ·+ x2

n.

Define the flow gtv : Rn → Rn by the formulas:

ẋ1 =

1− 16δ2
v

9

(
Σv − δ2

v

)2
, Σv ≤ δ2

v

1, otherwise

ẋ2 =


x2 − βv

2

(
sin
(π

2

(
4Σv

δ2v
− 3
))
− 1
)
,

δ2
v

2
< Σv ≤ δ2

v

−(x2 − βv), Σv ≤
δ2
v

2
0, otherwise

. . . . . . . . . . . . . . . . . .

ẋn =


xn
2

(
sin
(π

2

(
4Σv

δ2v
− 3
))
− 1
)
,

δ2
v

2
< Σv ≤ δ2

v

−xn, Σv ≤
δ2
v

2
0, otherwise

By construction flow gtv has exactly two hyperbolic fixed points: the saddle
(source) point Pv(αv + ρvδv/2, βv, 0, . . . , 0) and the sink (saddle) point Qv(αv −
ρvδv/2, βv, 0, . . . , 0) for ρv = 1 (ρv = −1). Define gtΓ : Rn → Rn in such a way that
it coincides with gtv in Bv and is gt0 outside all Cherry-boxes (see figure 3).
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Figure 3: An example of a tree Γ and the flow gtΓ

Let us notice that the flow gtΓ has no heteroclinic intersections. Indeed, by
the construction the interiors of the Cherry-boxes are pairwise disjoint. Moreover,
in the hyperplane x1 = αv we have

ẋ1 < 0 if (x2 − βv)2 + x2
3 + . . . x2

n < (δv/2)2,

ẋ1 > 0 if (δv/2)2 < (x2 − βv)2 + x2
3 + . . . x2

n < δ2
v .

Also in Bv we have

ẋ2 ≤ 0 if x2 ≥ βv, ẋ2 ≥ 0 if x2 ≤ βv,

ẋi ≤ 0 if xi ≥ 0, ẋi ≥ 0 if xi ≤ 0, i = 3, . . . , n.

Thus, the invariant (n− 1)-manifold of saddle point from Bv outside Bv coincides
with a cylinder

Cv = {(x1, . . . , xn) ∈ Rn : (x2 − βv)2 + x2
3 + . . . x2

n ≤ ν2
v},

where δv/2 < νv < δv. By the construction these cylinders are pairwise disjoint,
that proves the fact.

3. The embedding of a resulting dynamics in Sn.

Let us define a flow ht : Rn → Rn by the formula:

ht(x1, x2, . . . , xn) =
(
2tx1, 2

tx2, . . . , 2
txn
)
.

Let Rn+ = {(x1, . . . , xn) ∈ Rn : x1 ≥ 0} and C = {(x1, . . . , xn) ∈ Rn : x2
2+· · ·+x2

n ≤
1}. It is easy to verify that a diffeomorphism ζ : Rn+ \O → C given by the formula

ζ(x1, . . . , xn) =

(
log2 %,

x2

%
, . . . ,

xn
%

)
, % =

√
x2

1 + · · ·+ x2
n
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N

x

J+(x)

Figure 4: The stereographic projection

conjugates the diffeomorphisms ht|∂Rn
+\O and gt|∂C . It allows to define a flow

ϕt : Rn −→ Rn in such a way that ϕt coincides with ht outside intRn+ and coincides
with ζ−1gtΓζ on Rn+.

Let us project the flow ϕt to the n-sphere by means the stereographic pro-
jection.

Denote by N (0, . . . , 0︸ ︷︷ ︸
n

, 1) the North Pole of the sphere Sn. For every point

x = (x1, . . . , xn+1) in Sn ⊂ Rn+1 there is the unique line passing through the points
N and x. This line intersects Rn = Ox1 . . . xn at exactly one point ϑ(x) (see figure
4), which is called the stereographic projection of the point x. One can easily to
check that ϑ : Sn \ {N} → Rn is a diffeomorphism, given by the formula

ϑ(x1, . . . , xn+1) =

(
x1

1− xn+1
, . . . ,

xn−1

1− xn+1
,

xn
1− xn+1

)
.

As flow ϕt coincides with ht in some neighborhoods of the origin O and of
the infinity point, hence, it induces on Sn the required flow

f t(x) =

{
ϑ−1(ϕt(ϑ(x))), x 6= N ;

N , x = N
.
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