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Abstract. A random walk of a particle in Rd is considered. The weak convergence of various
transformations of trajectories of random flights with Poisson switching times was studied by Davy-
dov and Konakov in [Random walks in nonhomogeneous Poisson environment, in Modern Problems
of Stochastic Analysis and Statistics, Springer, 2017, pp. 3–24], who also built a diffusion approxima-
tion of the process of random flights. The goal of the present paper is to prove a stronger convergence
with respect to the Kantorovich distance. Three types of transformations are considered. The cases
of exponential and superexponential growth of the switching time transformation function are quite
simple—in these cases the required result follows from the fact that the limit processes lie within the
unit ball. In the case of a power-like growth of the transformation function, the convergence follows
from combinatorial arguments and properties of the Kantorovich metric.
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1. Introduction. Random flights have many physical applications. As an example,
we mention a Lorentz process, which is a stochastic process defined by a particle moving
according to Newton’s law of motion through static scatterers distributed in the space in
accordance with some probability measure. Consider the Boltzmann-Grad limit: the density
of the scatterers increases to infinity as the diameter of the scatterers decreases to zero so
that the average free path of the particle remains constant. A Lorentz process is known
to converge to a stochastic process in the weak∗ topology of regular Borel measures on the
space of trajectories. The limit process is a Markov process if and only if the scaled density
of the scatterers converges in probability to its average value. In this case, the limit process
is a (spatially inhomogeneous) random flight process.

Let (X ,d) be a Polish space and let p ∈ [1,∞). The Kantorovich space of order p is
defined as

Pp(X ) :=

{
µ ∈ P (X );

∫
X
d(x0, x)

p µ(dx) < +∞
}

for some (and hence for any) x0 ∈ X , where P (X ) is the set of all probability measures on X .
For any two probability measures µ, ν on X , the Kantorovich distance of order p

between µ and ν is defined by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X
d(x, y)p dπ(x, y)

)1/p

= inf
{
[Ed(X,Y )p]1/p, law(X) = µ, law(Y ) = ν

}
.

It is well known that the Kantorovich distance Wp metrizes the weak convergence
in Pp(X ) (see [1, Theorem 6.9]). However, it is worth pointing out that the “weak con-
vergence” in the sense of [1] is stronger than the classical weak convergence [4] (see [1,
Definition 6.8]). These two types of convergence are equivalent if the metric d is bounded;
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CONVERGENCE OF CERTAIN CLASSES OF RANDOM FLIGHTS 657

however, in general, they are different. In [3], the weak convergence result was established in
the classical sense. This is why the convergence in the Kantorovich metric should be justified,
because it does not automatically follow from the weak convergence established in [3].

Consider a random walk of a particle in Rd defined by two independent sequences of
random variables (r.v.’s) Tk and εk. The sequence εk, which consists of independent r.v.’s
distributed on the unit sphere Sd−1, controls the direction of motion of the particle. The
sequence Tk, which is such that Tk ⩾ 0, Tk ⩽ Tk+1 for any k, can be interpreted as a sequence
of times when the flight direction of the particle changes. The particle starts from the origin
and moves in the direction ε1 up to time T1 when it changes the direction to ε2 and moves
in this direction for a period of duration T2 − T1, and so on. The velocity is constant on
all intervals. The position of the particle at time t is denoted by X(t). The paper [3] gives
conditions for the process {YT , T > 0},

YT (t) =
1

B(T )
X(tT ), t ∈ [0, 1],

to converge weakly in C[0, 1]: YT ⇒ Y , T → ∞, and B(T ) → ∞.

The switching times are assumed to form a Poisson process T = (Tk) in R+. In the
homogeneous case, the process X(t) is a random walk, because the intervals Tk+1 − Tk are
independent and Y is a Wiener process. However, the situation is more challenging in the
case of an inhomogeneous Poisson process, because the increments Tk+1 − Tk cease to be
independent.

Nevertheless, the form of the limiting process was found and some Poisson switching
time transformation functions were shown to be weakly convergent. Let Tk = f(Γk), where
(Γk) is a standard homogeneous Poisson process in R+ of intensity 1. In this case,

(Γk) = (γ1 + γ2 + · · ·+ γk),

where (γk) are standard independent identically distributed exponential r.v.’s and f(x) is
a regular function of polynomial (exponential, superexponential) growth. We also assume
that Eε1 = 0.

Consider the process

Zn(t) = YTn(t).

For T = Tn, the trajectories {Zn(t), t ∈ [0, 1]} are continuous broken lines with vertices
at the points {(tn,k, Sk/Bn), k = 0, 1, . . . , n}, where tn,k = Tk/Tn, T0 = 0, Bn = B(Tn),
Sk =

∑k
i=1 εi(Ti − Ti−1).

We formulate the main result of the first part of [3] as follows.

Theorem 1. The following results hold under the above assumptions.

(1) If the function f grows polynomially (f(t) = tα, α>1/2), we set B(T )=T (2α−1)/(2α).
Then the process Zn converges weakly to Y, where Y is a Gaussian process

Y (t) =
√
2α

∫ t

0

s(α−1)/(2α) dw(s),

where w is a process of Brownian motion such that the covariance matrix w(1) coincides with
the covariance matrix ε1.

(2) If the function f grows exponentially (f(t) = etβ , β > 0), we set B(T ) = T . Then
the process Zn converges weakly to Y, where Y is a continuous piecewise-linear process with
vertices at the points (tk, Y (tk)),

tk = e−βΓk−1 , Γ0 = 0,

Y (tk) =

∞∑
i=k

εi(e
−βΓi−1 − e−βΓi), Y (0) = 0.
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658 V. D. KONAKOV AND A. R. FALALEEV

(3) In the case of a superexponential growth of the function f, we assume that f is an
increasing continuous function such that

lim
t→∞

f ′(t)

f(t)
= +∞.

Let B(T ) = T . Then Tn/Tn+1 → 0 in probability and Zn ⇒ Y, where the limit process
degenerates as

Y (t) = ε1t, t ∈ [0, 1].

Recall that the goal of the present paper is to prove a stronger convergence, namely, the
convergence with respect to the Kantorovich distance. Throughout the proofs given below,
constants may assume different values in different relations.

2. The main result. In what follows, we put X = C[0, 1] and d(f, g) =
supx∈[0,1] |f(x) − g(x)|. For a continuous random process X(t), t ∈ [0, 1], we denote by µX

the measure in C[0, 1] corresponding to this process.

Theorem 2. Let (X ,d) be a Polish space and let p ∈ [1,∞). Then

Wp(µXn , µY ) → 0,

where the process Xn in cases (1)–(3) is a broken line with vertices at the points
(tn,k, Xn(tn,k)).

In case (1),

tn,k =

(
Γk

Γn

)α

, Xn(tn,k) = n1/2−α
k∑

i=1

εi(Γ
α
i − Γα

i−1),

Γα
0 = 0, k = 1, . . . , n.

The limit process Y (t) is a Gaussian process with integral representation

Y (t) =
√
2α

∫ t

0

s(α−1)/(2α) dw(s),

where w(s) is a Brownian motion with the covariance matrix w(1), which is equal to the
covariance matrix ε1.

In case (2),

tn,k = e−β(Γn−Γk), Xn(tn,k) = e−βΓn

k∑
i=1

εi(e
βΓi − eβΓi−1),

Γ0 = 0, k = 1, . . . , n.

The limit process Y (t) is a continuous piecewise-linear process with a countable number
of vertices (tk, Y (tk)), k = 1, 2, . . . , tk = e−βΓk−1 , Γ0 = 0,

Y (tk) =

∞∑
i=k

εi(e
−βΓi−1 − e−βΓi).

In case (3),

tn,k =
f(Tk)

f(Tn)
, Xn(tn,k) =

1

f(Tn)

k∑
i=1

εi(f(Γi)− f(Γi−1)),

Γ0 = 0, k = 1, . . . , n.

The limit process Y (t) degenerates as

Y (t) = ε1t, t ∈ [0, 1].
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As for the intuitive explanation of limit processes, in the polynomial case such an expla-
nation was actually given in [3]. The original process was approximated by a process in
the form of a broken line constructed from a sequence of partial sums of independent (non-
identically distributed) r.v.’s. In this case, Prokhorov’s theorem applies. The exponential
case can be verified by a direct calculation, and the superexponential case appears as the
degeneration of the exponential case, when the entire broken line up to its next-to-last link is
concentrated in an arbitrarily small neighborhood of the origin, and the last link degenerates
to a ray emanating from the origin.

3. Auxiliary definitions and results.

Definition 1 (the weak convergence in Pp). Let (X ,d) be a Polish space and let
p ∈ [1,∞). Next, let (µk), k ∈ N, be a sequence of probability measures in Pp(X) and let
µ ∈ Pp(X ). We say that “µk converges weakly in Pp(X)” if any of the following equivalent
conditions holds for some (and hence for any) x0 ∈ X:

(i) µk ⇒ µ, k → ∞, and∫
d(x0, x)

p dµk(x) →
∫

d(x0, x)
pdµ(x);

(ii) µk ⇒ µ, k → ∞, and

lim sup
k→∞

∫
d(x0, x)

p dµk(x) ⩽
∫

d(x0, x)
p dµ(x);

(iii) µk ⇒ µ, k → ∞, and

lim
R→∞

lim sup
k→∞

∫
d(x0,x)⩾R

d(x0, x)
p dµk(x) = 0;

(iv) for any continuous function φ such that |φ(x)| ⩽ C(1+d(x0, x)
p), C ∈ R+, we have∫

φ(x) dµk(x) →
∫

φ(x) dµ(x).

Theorem 3 (the distance Wp metrizes Pp(X ), [1, Theorem 6.9]). Let (X ,d) be a Polish
space and let p ∈ [1,∞). Then the Kantorovich distance Wp metrizes the “weak convergence
in Pp(X ).” In other words, if (µk)k∈N is a sequence of probability measures in Pp(X ) and
µ is a measure in Pp(X ), then the conditions

µk “converges weakly in Pp(X )” to µ

and
Wp(µk, µ) → 0

are equivalent.

For a proof we require additional estimates.

Theorem 4 (Doob’s maximal inequality [2]). If Xk is a martingale or a positive sub-
martingale indexed by a finite set k ∈ (0, 1, . . . , N), then, for any p ⩾ 1 and λ > 0,

λpP
[

sup
0⩽k⩽N

|Xk| ⩾ λ
]
⩽ E[|XN |p].

The following estimates can be found in [3].

Lemma 1. Let α > 0 and m ⩾ 1. Then, for any x > 0, h > 0,

(x+ h)α − xα =
m∑

k=1

akh
kxα−k +R(x, h),
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660 V. D. KONAKOV AND A. R. FALALEEV

where

ak =
α(α− 1) · · · (α− k + 1)

k!
,

|R(x, h)| ⩽ |am+1|hm+1 max{xα−(m+1), (x+ h)α−(m+1)}.

Lemma 2. Let α ⩾ 0. Then, as k → ∞,(
1 +

α

k

)k

= eα +O

(
1

k

)
.

Lemma 3. Let Γ be the Euler gamma function. Then, as k → ∞,

Γ(k + α)

Γ(k)
= kα +O(kα−1).

Lemma 4. For any real β and k → ∞,

EΓβ
k = kβ +O(kβ−1).

Lemma 5. Let α ⩾ 0. If k → ∞, then the following formulas hold :

Γα
k+1 − Γα

k = αγk+1Γ
α−1
k + ρk,

where |ρk| = O(kα−2) in probability, and

E|Γα
k+1 − Γα

k |2 = 2α2k2α−2 +O(k2α−3).

The following result is a consequence of Lemma 5.

Corollary 1. The following equality holds:

n−1∑
1

E|Γα
k+1 − Γα

k |2 =
2α2

2α− 1
n2α−1 +O(n2α−2).

4. Proof of Theorem 2. There are three cases to consider.
The case of exponential growth. The switching time transformation function reads as

f(t) = etβ , β > 0, B(T ) = T , and the process Zn converges weakly to Y , where Y is
a continuous piecewise-linear process with vertices at the points (tk, Y (tk)),

tk = e−βΓk−1 , Γ0 = 0,

Y (tk) =

∞∑
i=k

εk(e
−βΓi−1 − e−βΓi), Y (0) = 0.

For T = Tn, the trajectories {Zn(t), t ∈ [0, 1]} are continuous broken lines with vertices
at the points {(tn,k, Sk/Bn), k = 0, 1, . . . , n}, where tn,k = Tk/Tn, T0 = 0, Bn = B(Tn),
Sk =

∑k
i=1 εi(Ti − Ti−1).

So, the trajectories of the process are broken lines with vertices at the points (tn,k,
Xn(tn,k)),

Xn(tn,k) =
1

eβΓn

k∑
i=1

εi(e
βΓi − eβΓi−1).

We have Xn( · )
L
= Yn( · ) (see [3, p. 11]), where Yn( · ) is the broken line with vertices

(τn,k, Yn(τn,k)), (τn,k)↓, τn,1 = 1, τn,k = e−β(γ1+···+γk−1), k = 2, . . . , n,

Yn(τn,k) =

n−1∑
i=k

εi(e
−βΓi−1 − e−βΓi) + εne

−βΓn−1 ,

Yn(0) = 0, and Γ0 = 0.

D
ow

nl
oa

de
d 

02
/0

5/
21

 to
 4

6.
24

2.
15

.1
76

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF CERTAIN CLASSES OF RANDOM FLIGHTS 661

Since Yn(τn,k) is a sum of nonnegative terms multiplied by the random vector εi, |εi| = 1,
we have

max
k=1,...,n

|Yn(τn,k)| ⩽
n−1∑
i=1

(e−βΓi−1 − e−βΓi) + e−βΓn−1 = 1.

Therefore, for R > 1,

µn(d(0, x) ⩾ R) = P
(
max
0⩽t⩽1

|Yn(t)| ⩾ R
)
= 0.

Hence

lim
R→∞

lim
n→∞

∫
d(0,x)⩾R

dp(0, x) dµn(x) = 0.

This proves the convergence Wp(µn, µ) → 0 for any p > 1.
The case of superexponential growth. In this case, putting Bn = B(Tn) = Tn, we have

max
k=1,...,n

|Xn(tn,k)| ⩽
n∑

k=1

Tk − Tk−1

Tn
=

Tn

Tn
= 1.

Therefore, for R > 1

µn(d(0, x) ⩾ R) = P
(
max
0⩽t⩽1

|Xn(t)| ⩾ R
)
= 0.

Then

lim
R→∞

lim
n→∞

∫
d(0,x)⩾R

dp(0, x) dµn(x) = 0.

This proves the convergence Wp(µn, µ) → 0 for any p > 1.
The case of polynomial growth. Note that if εj is a uniformly distributed r.v. on the unit

ball in Rd, then ⟨εi, ej⟩ is a one-dimensional r.v. distributed symmetrically with respect to
zero. Since the odd moments of such an r.v. are 0, we have

Tk = Γα
k , α >

1

2
, tn,k =

Tk

Tn
=

(
Γk

Γn

)α

, Bn = nα−1/2,

Γα
0 = 0, Xn(tn,k) =

1

Bn

k∑
i=1

εi(Γ
α
i − Γα

i−1).

This gives us the upper estimate

P

(
max

k=1,...,n

∣∣∣∣ 1

Bn

k∑
i=1

⟨εi, ej⟩(Γα
i − Γα

i−1)

∣∣∣∣ ⩾ 3R

)

⩽ P

(
max

k=1,...,n

∣∣∣∣ 1

Bn

k∑
i=1

⟨εi, ej⟩(Γα
i − Γα

i−1)−
α

Bn

k∑
i=1

⟨εi, ej⟩γiΓα−1
i−1

∣∣∣∣ > R

)

+P

(
max

k=1,...,n

∣∣∣∣ α

Bn

k∑
i=1

⟨εi, ej⟩γiΓα−1
i−1 − α

Bn

k∑
i=1

⟨εi, ej⟩γi(i− 1)α−1

∣∣∣∣ > R

)

+P

(
max

k=1,...,n

∣∣∣∣ α

Bn

k∑
i=1

⟨εi, ej⟩γi(i− 1)α−1

∣∣∣∣ > R

)
= I + II + III.

Estimate for I. We use Doob’s maximal inequality with λ = BnR, p = 2N . Let Mn =
σ(γ1, . . . , γn) be the filtration generated by (γ1, . . . , γn). Then the process

Aα
k =

k∑
i=1

⟨εi, ej⟩(Γα
i − Γα

i−1 − αγiΓ
α−1
i−1 )
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becomes a conditional martingale. By Doob’s maximal inequality

I = E
(
P
(

max
k=1,...,n

|Aα
k | > BnR

) ∣∣∣ Mn

)
⩽

1

R2Nn2Nα−N
E(Aα

k )
2N

=
nN−2Nα

R2N

∑
k1+···+kn=2N

(2N)!

k1! · · · kn!

n∏
i=1

E(⟨εi, ej⟩)kiE(Γα
i −Γα

i−1 −αγiΓ
α−1
i−1 )

ki .

Note that if there is at least one odd number among ki, then the corresponding term in
the sum is zero due to the symmetry of the distribution εi with respect to 0.

Using (19) in [3], we have, for 1/2 < α < 2,∣∣E(Γα
i − Γα

i−1 − αγiΓ
α−1
i−1 )

ki
∣∣ ⩽ E|Γα

i − Γα
i−1 − αγiΓ

α−1
i−1 |

ki

⩽ C(α,N)E(γi)
2kiEΓ

ki(α−2)
i−1 ⩽ C(α,N)(2ki)! i

(α−2)ki .

Therefore, since α < 2, we have∣∣∣∣ n∏
i=1

E(⟨εi, ej⟩)kiE(Γα
i − Γα

i−1 − αγiΓ
α−1
i−1 )

ki

∣∣∣∣ ⩽ C(α,N)

n∏
i=1

iki(α−2) ⩽ C(α,N).

For α ⩾ 2, an appeal to the Cauchy–Schwarz inequality shows that

E
(
γ2ki
i Γ

(α−2)ki
i

)
⩽

√
E(γi)4ki

√
EΓ

(2α−4)ki
i ⩽ C(α,N)i(α−2)ki

and ∣∣E(Γα
i − Γα

i−1 − αγiΓ
α−1
i−1 )

ki
∣∣ ⩽ E|Γα

i − Γα
i−1 − αγiΓ

α−1
i−1 |

ki ⩽ C(α,N)i(α−2)ki .

Therefore, by Lemma 5∣∣∣∣ (2N)!

k1! · · · kn!

n∏
i=1

E(⟨εi, ej⟩)kiE(Γα
i − Γα

i−1 − αγiΓ
α−1
i−1 )

ki

∣∣∣∣
⩽ C(α,N)

n∏
i=1

i(α−2)ki ⩽ C(α,N)

n∏
i=1

n(α−2)ki = C(α,N)n2Nα−4N .

Let us estimate the number of nonzero terms in the sum
∑

k1+···+kn=2N . The constraint

C(N)nN on the number of terms is a consequence of simple combinatorial arguments.
We have

(4.1) I ⩽
C(α,N)

R2Nn2Nα−N
n2Nα−4NnN <

C(α,N)

R2N
.

This estimates is sufficient for verifying assertion (iii) in Definition 1.
Estimate for II. Arguing as before and taking into account the independence γi and Γα

i−1,
we get

II ⩽
α2N

R2Nn2Nα−N

∑
k1+···+kn=2N

Dk,

where

Dk =
(2N)!

k1! · · · kn!

n∏
i=2

E(⟨εi, ej⟩)kiE(γi)
kiE

(
Γα−1
i−1 − (i− 1)α−1)ki ,

k = (k1, . . . , kn). Let us estimate the expectation. We have

E
(
Γα−1
i−1 − (i− 1)α−1)ki =

ki∑
m=0

Cm
ki
(−1)ki−m(i− 1)(ki−m)(α−1)EΓ

(α−1)m
i−1

=

ki∑
m=0

(−1)ki−m(i− 1)(ki−m)(α−1)Cm
ki

[
(i− 1)(α−1)m +Om

(
(i− 1)(α−1)m−1)]

= (i− 1)ki(α−1)

[ ki∑
m=0

Cm
ki
(−1)ki−m +

ki∑
m=0

Cm
ki
(−1)ki−mOm

(
(i− 1)−1)],
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and further,∣∣∣∣ n∏
i=2

E(⟨εi, ej⟩)kiE(γi)
kiE

(
Γα−1
i−1 − (i− 1)α−1)ki

∣∣∣∣ ⩽ C(N,α)

n∏
i=1

iki(α−1)

⩽ C(N,α)

n∏
i=1

nki(α−1) = C(N,α)n2N(α−1);

II ⩽ C(N,α)
α2N

R2Nn2Nα−N
nNn2N(α−1)−1 ⩽ C(N,α)

α2N

R2N
.(4.2)

Next,

III⩽
α2N

R2Nn2Nα−N

∑
k1+···+kn=2N

(2N)!

k1! · · · kn!

n∏
i=2

E(⟨εi, ej⟩)kiE(γi)
ki(i− 1)ki(α−1),

where ∣∣∣∣ n∏
i=2

E(⟨εi, ej⟩)kiE(γi)
ki(i− 1)ki(α−1)

∣∣∣∣ ⩽ C(N,α)n2N(α−1).

We finally get

(4.3) III ⩽ C(N,α)
1

R2Nn2Nα−N
nNn2N(α−1) =

C(N,α)

R2N
.

The multidimensional cases can be reduced to the one-dimensional case as follows:

P

(
max

k=1,2,...,n

∣∣∣∣ k∑
i=1

εi(Γ
α
i − Γα

i−1)

∣∣∣∣ ⩾ BnR

)

= P

(
max

k=1,2,...,n

∣∣∣∣ d∑
j=1

k∑
i=1

⟨εi, ej⟩ej(Γα
i − Γα

i−1)

∣∣∣∣ ⩾ BnR

)

⩽ P

(
∃ j∗, 1 ⩽ j∗ ⩽ d, max

k=1,2,...,n

∣∣∣∣ k∑
i=1

⟨εi, ej∗⟩ej∗(Γα
i − Γα

i−1)

∣∣∣∣ ⩾ BnR

d

)

⩽
d∑

j=1

P

(
max

k=1,2,...,n

k∑
i=1

|⟨εi, ej⟩|(Γα
i − Γα

i−1) ⩾
BnR

d

)
.(4.4)

Let us verify the hypotheses of Theorem 6.9 in [1]. For this purpose, using the above
estimates (4.1)–(4.4), we have∫

d(0,x)>R

dp(0, x) dµn(x) =

∞∑
i=0

∫
(i+1)R⩽d(0,x)<(i+2)R

dp(0, x) dµn(x)

⩽ Rp
∞∑
i=0

(i+ 2)p · µn

(
d(0, x) ⩾ (i+ 1)R

)
= Rp

∞∑
i=0

(i+ 2)p ·P
(
max
0⩽t⩽1

|Xn(t)| ⩾ (i+ 1)R
)

= Rp
∞∑
i=0

(i+ 2)p ·P
(

max
k=1,...,n

∣∣∣∣ 1

Bn

k∑
i=1

εi(Γ
α
i − Γα

i−1)

∣∣∣∣ ⩾ (i+ 1)R

)

⩽ Rp
∞∑
i=0

(i+ 2)p ·
d∑

j=1

P

(
max

k=1,2,...,n

k∑
i=1

|⟨εi, ej⟩|(Γα
i − Γα

i−1) ⩾
Bn(i+ 1)R

d

)
⩽

C(N,α, d)

R2N−p
.
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Thus, condition (iii) of Definition 1 holds for α > 1/2,

lim
R→∞

lim
n→∞

∫
d(0,x)⩾R

dp(0, x) dµn(x) = 0.

This completes the proof of the convergence in the Kantorovich metric in the cases α > 1/2
and p ∈ [1,∞).

Acknowledgment. The authors are grateful to Y. Davydov for useful remarks and
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