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Abstract

For a graph G and a positive integer k, a subset C of vertices of G is called a k-path
vertex cover if C intersects all paths of k vertices in G. The cardinality of a minimum
k-path vertex cover is denoted by Bp (G). For a graph G and a positive integer k,
a subset M of pairwise vertex-disjoint paths of k vertices in G is called a k-path
packing. The cardinality of a maximum k-path packing is denoted by 1 p, (G). In this
paper, we describe some graphs, having equal values of p, and pp,, for k > 5, and
present polynomial-time algorithms of finding a minimum k-path vertex cover and a
maximum k-path packing in such graphs.

Keywords k-path vertex cover - k-path packing - Computational complexity

1 Introduction

By default, all graphs in this paper are finite, undirected, without loops and multiple
edges. We use V(G) and E(G) to denote the vertex set and the edge set of a graph G,
respectively. We call a k-path a path of k vertices and use Py to denote it.

For a positive integer k, a set of pairwise vertex-disjoint k-paths of a graph G is
called a k-path packing of G. The k-path packing problem is to find a maximum

B D. S. Malyshev
dsmalyshev@rambler.ru; dmalishev@hse.ru

D. B. Mokeev

mokeevdb@gmail.com

National Research Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Ave.,
Nizhny Novgorod, Russia 603950

Laboratory of Algorithms and Technologies for Networks Analysis, National Research
University Higher School of Economics, 136 Rodionova Str., Nizhny Novgorod, Russia 603093

National Research University Higher School of Economics, 25/12 Bolshaja Pecherskaja Ulitsa,
Nizhny Novgorod, Russia 603155

Published online: 03 September 2019 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-019-01475-0&domain=pdf

D. B. Mokeev, D. S. Malyshev

k-path packing in a graph. For a positive integer k, a set of vertices of a graph G,
which intersects all k-paths of G, is called a k-path vertex cover of G. The k-path
vertex cover problem is to find a minimum k-path vertex cover in a given graph. For
a given graph H, the H-packing problem can be defined in a similar way. The k-path
vertex cover problem can be motivated by a problem, related to security protocols in
wireless sensor networks (see, for example [2,10,12,14]) or the problem of installing
cameras on roads [11].

A lot of papers on packing problems are devoted to algorithmic aspects (see [4,6,
7,13]). It is known that the matching problem (i.e., the 2-path packing problem) can
be solved in polynomial time [3], but the H-packing problem is NP-complete for any
graph H, having a connected component on three or more vertices [5].

It seems perspective to find new polynomially solvable cases for the k-path packing
and k-path vertex cover problems. Several results are known for k = 3 [1], k = 4 [9],
and for the general case [8].

The aim of this paper is to describe a family of graph classes, on which the k-path
packing and k-path vertex cover problems for k > 5 have polynomial-time algorithms.
Namely, we consider some graphs, which hereditarily meet the equality of Bp, and
i p,. This property admits us to present a polynomial-time algorithm of finding a
minimum k-path vertex cover and a maximum k-path packing in such graphs.

We denote by (vq, v2, ..., vr) a k-path that consists of vertices vy, v, ..., vg. We
denote by |G| the number of vertices in G. We denote by G U H the graph, obtained
from graphs G and H by their union.

For a given graph G and its subgraph H, we denote by G\ H the graph, obtained
from G by deleting each vertex of H with all incident edges. For a given graph G and
A C V(G), we denote by G[A] the subgraph of G, induced by the set A.

2 k-extended graphs

In this section, we describe k-extended graphs and prove the equality of Bp, and u p,
for such graphs.

Definition 1 An induced subgraph T of a graph G is a terminal subgraph of G if there
is only one vertex u of the graph G\T, which is adjacent to one or more vertices of
T. We call u the contact vertex of T.

For any k > 2, we call a connected graph, which does not have a k-path, as a
Fy-graph.

Definition 2 Let M be a pseudograph (a graph with possible loops and multiple edges).
Given an integer k > 5, the operation of a k-extension of M consists of the following.
All edges of cycles, including loops and two or more edges between the same vertices,
are subdivided, each with k — 1 vertices. For a vertex v, denote by d(v) the distance
between v and a nearest vertex of M. For each new vertex x with d(x) > 2, several
terminal Fy(y)-graphs with a contact vertex x can be added. For each old vertex y,
several terminal Fi-graphs with a contact vertex y can be added.
We refer to the obtained graph as k-extended graph.
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Theorem 1 For each integer k > 5, Bp, (G) = wp (G) in every k-extended graph G.

Proof Let G be obtained by the operation of a k-extention from a pseudograph M.
We can assume that G is a connected graph. Otherwise, we can consider any its
connected component. The proof is by induction on the number of vertices in G. If G
does not have k-paths, then up, (G) = Bp,(G) = 0.
Let wp,(G) > 1 and Bp, (H) = pup (H), for each graph H with |H| < |G|.
Consider the following cases.

1. There exists a terminal Fj-subgraph X with the contact vertex a in G, such that
G[V(X) U {a}] contains a k-path. Or there exists terminal Fj subgraphs X and
X» with a common contact vertex a in G, such that none of G[V (X) U {a}] and
G[V(X>) U {a}] contains k-paths, but G[V (X) U V(Y) U {a}] contains a k-path.
Denote X = X U X5 in the second case. One can see that each k-path, which
contains vertices of the set V (X), contains also the vertex a.

Consider an arbitrary k-path P of G[V (X) U {a}]. Denote G = G\P. By the
induction hypothesis, there exist a k-path packing M and a k-path vertex cover C
of G, such that |[M| = |C|.

Then M U { P} is the k-path packing of G of the cardinality |M |+ 1 and C U {a} is
the k-path vertex cover of G of the same cardinality. Therefore, up, (G) = Bp, (G).

2. The graph G has not terminal Fy-subgraphs with the properties above. Then G
contains a cycle of nk vertices, where n € N. Consider a cycle Yy of M. Denote
by Y1 a cycle of G, which is obtained from Yy by k — 1 vertex subdivisions of all
its edges.

Denote G = G\Y. By the induction hypothesis, there exist a k-path packing M
and a k-path vertex cover C of G, such that M| = |C].

Denoter = |Yy|. Then |Y;| = kt,i.e. the cycle Y| canbe splitinto ¢ pairwise vertex-
disjoint k-paths. Denote such k-paths as Py, P>, ..., P.. Then MU{ Py, P>, ..., P;}
is a k-path packing of G of the cardinality |M| 4 ¢.

We need to prove that C U V (Yp) is a k-path vertex cover of G. Note, there are not
edges between the vertex sets V(G \Y2) and V (¥2\Yp). So, each path, containing
vertices of the both sets, contains at least one vertex of Y.

Consider a connected component Z of the graph Y>\ Y. It consists of a (k — 1)-path
P and some terminal subgraphs with the contact vertices from P. Let x be a vertex
of P, and T be a terminal subgraph with the contact vertex x. One can see that
d(x) equals the difference between the radius of P and its distance from the center
of P. Since T is a Fy(y)-graph, the graph G[V (T') U {x}] has not (d(x) + 1)-paths.
Thus, none of the paths in Z has length more than & — 1, i.e. Z is the Fj-graph.
Hence, each connected component of the graph Y»\Yy is a Fj-graph.

Hence, each k-path of Y> contains at least one vertex of Yy. So, C U V(Yp) is a
k-path vertex cover of G of the cardinality |C| +t = | M| +¢.

Therefore, up, (G) = Bp, (G).
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3 Algorithms

Here we show that we can find a maximum k-path packing and a minimum k-path
vertex cover in k-extended graphs in O (n?) time, where n is the number of vertices in
an input graph.

Let M(G) denote a pseudograph, such that G is obtained by the operation of a
k-extention from M (G). Let A be the set of all cyclic vertices of M(G). The set A
can be found in O (n?) time, using the depth-first search (see Algorithm 1).

Algorithm 1.
Input: A k-extended connected graph G = (V, E) with |V | > k.
Output: The set A of all cyclic vertices of M(G).
A=0;B=4.
Choose an arbitrary vertex z € V.
Build a DFS-tree T of G with the root z.
E = E\E(T).
For cach e € E' do
Find a cycle C in the graph (V(T), E(T) U {e}).
If |C| > k, then add V (C) into B End If
End For
For each v € B do
10. If deg(v) > 2in G[B], then
11. add v into A.
12. For eachu € B do

PN R W=

N

13. If dist(v, u) is divisible by &, then add u into A End If
14. End For

15. End]If

16. End For

From the proof of Theorem 1, we can see that the following algorithm finds a max-
imum k-path packing and a minimum k-path vertex cover in a connected k-extended
graph G.

Algorithm 2.
Input: A k-extended connected graph G = (V, E) with |V | > k.
Output: A vertex set C € V, which is a minimum k-path vertex cover of G; a k-path
set M, which is a maximum k-path packing of G.

I.C=0;M =90.

2. For each vertex v € V do /(v) = 0 End For

3. Find the set A.

4. Choose z € V.If A = B = (J, then z is an arbitrary leaf of G, else z is an
arbitrary vertex of A.

5. Build a DFS-tree T of G with the root z.
Denote by p(v) the parent of the vertex vin 7.
Denote by Ch(v) the set of all children of the vertex v in 7.

6. For each leaf v of T do /(v) = 1 End For

7. While |V(T)| > k do
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8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

Choose v, such that /(v) = 0 and /(1) > 0, for each u € Ch(v).
Choose x € Ch(v), where [(x) > I(u), for each u € Ch(v).
If [(x) =k — 1, then
Add v into C.
Find a k-path P in the subtree with the root v.
Add P into M.
Delete the subtree with the root v from 7.
l(p(v)) = 1.
Else
Choose y € Ch(v)\{x}, where [(y) > [(u), for each u € Ch(v)\{x}.
If I(x) +1(y) > k — 1, then
Add v into C.
Find a k-path P in the subtree with the root v.
Add P into M.
Delete the subtree with the root v from T'.
l(p(v)) = 1.
Else
(k) =1(x)+ 1.
End If
End If
End While

Note that the complexity of building a DFS-tree for a graph is O(n?) and there is
only one cycle in the other part of the algorithm. So, for any fixed k, the complexity
of Algorithm 2 is O (n?). If the graph G is not connected, then we can repeat this
algorithm for each its connected component. Hence, a maximum k-path packing and
a minimum k-path vertex cover can be found in k-extended graphs in time O (n?).
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