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Abstract
For a graph G and a positive integer k, a subset C of vertices of G is called a k-path
vertex cover if C intersects all paths of k vertices in G. The cardinality of a minimum
k-path vertex cover is denoted by βPk (G). For a graph G and a positive integer k,
a subset M of pairwise vertex-disjoint paths of k vertices in G is called a k-path
packing. The cardinality of a maximum k-path packing is denoted by μPk (G). In this
paper, we describe some graphs, having equal values of βPk and μPk , for k ≥ 5, and
present polynomial-time algorithms of finding a minimum k-path vertex cover and a
maximum k-path packing in such graphs.

Keywords k-path vertex cover · k-path packing · Computational complexity

1 Introduction

By default, all graphs in this paper are finite, undirected, without loops and multiple
edges. We use V (G) and E(G) to denote the vertex set and the edge set of a graph G,
respectively. We call a k-path a path of k vertices and use Pk to denote it.

For a positive integer k, a set of pairwise vertex-disjoint k-paths of a graph G is
called a k-path packing of G. The k-path packing problem is to find a maximum
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k-path packing in a graph. For a positive integer k, a set of vertices of a graph G,
which intersects all k-paths of G, is called a k-path vertex cover of G. The k-path
vertex cover problem is to find a minimum k-path vertex cover in a given graph. For
a given graph H , the H -packing problem can be defined in a similar way. The k-path
vertex cover problem can be motivated by a problem, related to security protocols in
wireless sensor networks (see, for example [2,10,12,14]) or the problem of installing
cameras on roads [11].

A lot of papers on packing problems are devoted to algorithmic aspects (see [4,6,
7,13]). It is known that the matching problem (i.e., the 2-path packing problem) can
be solved in polynomial time [3], but the H -packing problem is NP-complete for any
graph H , having a connected component on three or more vertices [5].

It seems perspective to find new polynomially solvable cases for the k-path packing
and k-path vertex cover problems. Several results are known for k = 3 [1], k = 4 [9],
and for the general case [8].

The aim of this paper is to describe a family of graph classes, on which the k-path
packing and k-path vertex cover problems for k ≥ 5 have polynomial-time algorithms.
Namely, we consider some graphs, which hereditarily meet the equality of βPk and
μPk . This property admits us to present a polynomial-time algorithm of finding a
minimum k-path vertex cover and a maximum k-path packing in such graphs.

We denote by (v1, v2, . . . , vk) a k-path that consists of vertices v1, v2, . . . , vk . We
denote by |G| the number of vertices in G. We denote by G ∪ H the graph, obtained
from graphs G and H by their union.

For a given graph G and its subgraph H , we denote by G\H the graph, obtained
from G by deleting each vertex of H with all incident edges. For a given graph G and
A ⊆ V (G), we denote by G[A] the subgraph of G, induced by the set A.

2 k-extended graphs

In this section, we describe k-extended graphs and prove the equality of βPk and μPk
for such graphs.

Definition 1 An induced subgraph T of a graph G is a terminal subgraph of G if there
is only one vertex u of the graph G\T , which is adjacent to one or more vertices of
T . We call u the contact vertex of T .

For any k ≥ 2, we call a connected graph, which does not have a k-path, as a
Fk-graph.

Definition 2 LetMbe apseudograph (a graphwith possible loops andmultiple edges).
Given an integer k ≥ 5, the operation of a k-extension ofM consists of the following.
All edges of cycles, including loops and two or more edges between the same vertices,
are subdivided, each with k − 1 vertices. For a vertex v, denote by d(v) the distance
between v and a nearest vertex of M. For each new vertex x with d(x) ≥ 2, several
terminal Fd(x)-graphs with a contact vertex x can be added. For each old vertex y,
several terminal Fk-graphs with a contact vertex y can be added.

We refer to the obtained graph as k-extended graph.
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Theorem 1 For each integer k ≥ 5, βPk (G) = μPk (G) in every k-extended graph G.

Proof Let G be obtained by the operation of a k-extention from a pseudograph M.
We can assume that G is a connected graph. Otherwise, we can consider any its

connected component. The proof is by induction on the number of vertices in G. If G
does not have k-paths, then μPk (G) = βPk (G) = 0.

Let μPk (G) ≥ 1 and βPk (H) = μPk (H), for each graph H with |H | < |G|.
Consider the following cases.

1. There exists a terminal Fk-subgraph X with the contact vertex a in G, such that
G[V (X) ∪ {a}] contains a k-path. Or there exists terminal Fk subgraphs X1 and
X2 with a common contact vertex a in G, such that none of G[V (X1) ∪ {a}] and
G[V (X2) ∪ {a}] contains k-paths, but G[V (X) ∪ V (Y ) ∪ {a}] contains a k-path.
Denote X = X1 ∪ X2 in the second case. One can see that each k-path, which
contains vertices of the set V (X), contains also the vertex a.
Consider an arbitrary k-path P of G[V (X) ∪ {a}]. Denote G

′ = G\P . By the
induction hypothesis, there exist a k-path packing M and a k-path vertex cover C
of G

′
, such that |M | = |C |.

Then M ∪{P} is the k-path packing of G of the cardinality |M |+1 and C ∪{a} is
the k-path vertex cover ofG of the same cardinality. Therefore,μPk (G) = βPk (G).

2. The graph G has not terminal Fk-subgraphs with the properties above. Then G
contains a cycle of nk vertices, where n ∈ N. Consider a cycle Y0 of M. Denote
by Y1 a cycle of G, which is obtained from Y0 by k − 1 vertex subdivisions of all
its edges.
Denote G

′ = G\Y1. By the induction hypothesis, there exist a k-path packing M
and a k-path vertex cover C of G

′
, such that |M | = |C |.

Denote t = |Y0|. Then |Y1| = kt , i.e. the cycleY1 can be split into t pairwise vertex-
disjoint k-paths.Denote such k-paths as P1, P2, . . . , Pt . ThenM∪{P1, P2, . . . , Pt }
is a k-path packing of G of the cardinality |M | + t .
We need to prove that C ∪V (Y0) is a k-path vertex cover of G. Note, there are not
edges between the vertex sets V (G\Y2) and V (Y2\Y0). So, each path, containing
vertices of the both sets, contains at least one vertex of Y0.
Consider a connected component Z of the graph Y2\Y0. It consists of a (k−1)-path
P and some terminal subgraphs with the contact vertices from P . Let x be a vertex
of P , and T be a terminal subgraph with the contact vertex x . One can see that
d(x) equals the difference between the radius of P and its distance from the center
of P . Since T is a Fd(x)-graph, the graph G[V (T )∪{x}] has not (d(x)+1)-paths.
Thus, none of the paths in Z has length more than k − 1, i.e. Z is the Fk-graph.
Hence, each connected component of the graph Y2\Y0 is a Fk-graph.
Hence, each k-path of Y2 contains at least one vertex of Y0. So, C ∪ V (Y0) is a
k-path vertex cover of G of the cardinality |C | + t = |M | + t .
Therefore, μPk (G) = βPk (G).
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3 Algorithms

Here we show that we can find a maximum k-path packing and a minimum k-path
vertex cover in k-extended graphs in O(n2) time, where n is the number of vertices in
an input graph.

Let M(G) denote a pseudograph, such that G is obtained by the operation of a
k-extention from M(G). Let A be the set of all cyclic vertices of M(G). The set A
can be found in O(n2) time, using the depth-first search (see Algorithm 1).

Algorithm 1.
Input: A k-extended connected graph G = (V , E) with |V | ≥ k.
Output: The set A of all cyclic vertices of M(G).

1. A = ∅; B = ∅.
2. Choose an arbitrary vertex z ∈ V .
3. Build a DFS-tree T of G with the root z.
4. E

′ = E\E(T ).
5. For each e ∈ E

′
do

6. Find a cycle C in the graph (V (T ), E(T ) ∪ {e}).
7. If |C | ≥ k, then add V (C) into B End If
8. End For
9. For each v ∈ B do

10. If deg(v) ≥ 2 in G[B], then
11. add v into A.
12. For each u ∈ B do
13. If dist(v, u) is divisible by k, then add u into A End If
14. End For
15. End If
16. End For

From the proof of Theorem 1, we can see that the following algorithm finds a max-
imum k-path packing and a minimum k-path vertex cover in a connected k-extended
graph G.

Algorithm 2.
Input: A k-extended connected graph G = (V , E) with |V | ≥ k.
Output: A vertex set C ⊆ V , which is a minimum k-path vertex cover of G; a k-path
set M , which is a maximum k-path packing of G.

1. C = ∅; M = ∅.
2. For each vertex v ∈ V do l(v) = 0 End For
3. Find the set A.
4. Choose z ∈ V . If A = B = ∅, then z is an arbitrary leaf of G, else z is an

arbitrary vertex of A.
5. Build a DFS-tree T of G with the root z.

Denote by p(v) the parent of the vertex v in T .
Denote by Ch(v) the set of all children of the vertex v in T .

6. For each leaf v of T do l(v) = 1 End For
7. While |V (T )| ≥ k do
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8. Choose v, such that l(v) = 0 and l(u) > 0, for each u ∈ Ch(v).
9. Choose x ∈ Ch(v), where l(x) ≥ l(u), for each u ∈ Ch(v).

10. If l(x) = k − 1, then
11. Add v into C .
12. Find a k-path P in the subtree with the root v.
13. Add P into M .
14. Delete the subtree with the root v from T .
15. l(p(v)) = 1.
16. Else
17. Choose y ∈ Ch(v)\{x}, where l(y) ≥ l(u), for each u ∈ Ch(v)\{x}.
18. If l(x) + l(y) ≥ k − 1, then
19. Add v into C .
20. Find a k-path P in the subtree with the root v.
21. Add P into M .
22. Delete the subtree with the root v from T .
23. l(p(v)) = 1.
24. Else
25. l(k) = l(x) + 1.
26. End If
27. End If
28. End While

Note that the complexity of building a DFS-tree for a graph is O(n2) and there is
only one cycle in the other part of the algorithm. So, for any fixed k, the complexity
of Algorithm 2 is O(n2). If the graph G is not connected, then we can repeat this
algorithm for each its connected component. Hence, a maximum k-path packing and
a minimum k-path vertex cover can be found in k-extended graphs in time O(n2).
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