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Abstract—The problem of the ∗-weak decomposability into ergodic components of a topological
N0-dynamical system (Ω, ϕ), where ϕ is a continuous endomorphism of a compact metric space Ω,
is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case
(where the Ellis semigroup E(Ω, ϕ) consists of endomorphisms of Ω of the first Baire class), such
a decomposition exists for an appropriately chosen generalized sequential averaging method. A
relationship between the statistical properties of (Ω, ϕ) and the mutual structure of minimal sets and
ergodic measures is discussed.
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1. INTRODUCTION

The object of our attention is topological N0-dynamical systems, that is, semicascades (Ω, ϕ)
generated by a continuous endomorphism ϕ of a compact metric space Ω. The purpose of this paper
is to develop a unified view of the three aspects of the theory of such systems:

(1) the ∗-weak convergence of various ergodic means (averages over orbits of the system) for scalar
test functions x ∈ X

.
= C(Ω) or Borel measures μ ∈ X∗; as applied to Cesàro means, this

approach goes back to works of Kryloff and Bogoliouboff [1] and of Oxtoby [2];

(2) the relationship between minimal sets and ergodic measures;

(3) the decomposability of a dynamical system (Ω, ϕ) into irreducible (ergodic) subsystems, depend-
ing on the choice of an averaging method.

The main results are obtained for the class of tame systems, which were introduced (under a different
name) by Köhler in [3] and studied in detail in [4]–[8]. There are several equivalent definitions of a
tame dynamical system; e.g., a system (Ω, ϕ) is said to be tame if its Ellis semigroup consists of
endomorphisms of Ω belonging to the first Baire class. The class of tame systems is denoted by Dtm. The
interest in such objects is due to the relatively simple topology of their enveloping semigroups against
the background of the often involved phase dynamics. A number of results concerning the convergence
of generalized ergodic means for (Ω, ϕ) ∈ Dtm were obtained in [9] and [10]; in the latter paper, the more
general case of the action on X of arbitrary amenable operator semigroups was considered. There are
grounds for believing that there is a connection between the tame–untame dichotomy and the absence
or presence of chaotic phase dynamics; in any case, any untame semicascade on [0, 1] turns out to be
chaotic in the Lie–Yorke sense [3].

We discuss the following properties of ∗-weakly ergodic (see Sec. 2.1) operator nets and sequences
V ⊂ L (X∗), which we identify with the corresponding averaging methods:
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(a) the convergence of all nets (sequences) V ; the convergence of some ergodic sequences V ;

(b) the possibility of a statistical description of the behavior of orbits of (Ω, ϕ) by using ergodic
measures.

We consider properties (a) of a semicascade (Ω, ϕ) in relation to the following dynamical character-
istics:

(i) the orbital subsystems are uniquely ergodic;

(ii) the supports of ergodic measures are minimal;

(iii) the minimal subsystems are uniquely ergodic.

In Sec. 3, we systematize and strengthen related results of the recent papers [9]–[11]. In particular,
we prove Theorem 3.3, which asserts that, for (Ω, ϕ) ∈ Dtm, each ergodic sequence V contains a
convergent subsequence; in particular, there exists a convergent subsequence of Cesàro means.

The main results of this paper are presented in Sec. 4. We prove (see Theorem 4.5) that a tame topo-
logical dynamical system (Ω, ϕ) admits various decompositions into ergodic components, depending on
the sequential averaging method, and describe all such decompositions in terms of a certain operator
semigroup Kc ⊆ L (X∗) related to (Ω, ϕ). The decomposability (Ω, ϕ) ∈ Dtm into ergodic component
means the existence of an ergodic sequence V such that the asymptotic V -distributions of all orbits are
determined by ergodic measures. Thus, tame semicascades have property (b).

Section 5 contains a brief review of typical examples of tame and untame N0-systems. In particular,
we give a criterion obtained recently in [12], which effectively distinguishes between tame and untame
affine semicascades on the tori Td, d ≥ 1.

2. PRELIMINARIES

Thus, we consider semicascades (Ω, ϕ), where ϕ is a continuous endomorphism of a compact metric
space Ω. For a fixed space Ω, we sometimes identify (Ω, ϕ) with ϕ and use terms such as “minimal
endomorphism.” Let X = C(Ω), and let U be the Koopman operator, which is defined by Ux = x ◦ ϕ
for x ∈ X; then, for V = U∗, V ∈ L (X∗), we have

‖U‖L (X) = ‖V ‖L (X∗) = 1.

By P(Ω) we denote the convex set of Borel probability measures on Ω, which is compact in the
w∗-topology of X∗, and by X1, the subspace of X∗∗ formed by bounded functions of the first Baire class.
Below we give the necessary information about ergodic means, the enveloping semigroups associated
with (Ω, ϕ), and tame dynamical systems.

2.1. Ergodic Means

We slightly modify the classical definition of [13] for the case of a cyclic semigroup {V n} of shift
operators, which we consider in this paper; we say that a net {Vα} ⊆ co{V n, n ∈ N0} in L (X∗) is
ergodic if

(Id− V )Vα
W∗O−−−→ 0 : (x, (Id − V )Vαμ) → 0, x ∈ X, μ ∈ X∗. (2.1)

Here Vα = U∗
α for Uα ∈ L (X); the net {Uα} ⊆ co {Un, n ∈ N0} is said to be ergodic as well. If

Vα
W∗O−−−→ Q, Q ∈ L (X∗), then Q2 = Q. Thanks to the duality

(Ux, μ) = (x, V μ), x ∈ X, μ ∈ X∗,

the convergence Vα
W∗O−−−→ Q in L (X∗) is equivalent to the convergence Uαx

w∗
−−→ Q∗x in X∗∗, where

x ∈ X and Q∗ ∈ L (X∗∗). For ergodic sequences {Un} ⊂ L (X), this convergence is equivalent to the
pointwise convergence Unx → x ∈ X1 of functions. Note that ergodicity is preserved under the passage
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to subnets and subsequences. In what follows, talking about ergodic means, we usually mean operator
nets (sequences) in L (X∗).

Various ergodic sequences V = {Vn} ⊂ L (X∗) can be obtained by applying methods for the
summation of number sequences with infinite number matrices S = {sn,k} satisfying the following
conditions:

(1) sn,k ≥ 0 and
∑∞

k=0 sn,k = 1, n ≥ 0;

(2) each row of S contains finitely many sn,k > 0;

(3) limn→∞(sn,0 +
∑∞

k=1 |sn,k − sn,k−1|) = 0.

The sequence of operators Vn =
∑∞

k=0 sn,kV
k turns out to be ergodic, because ‖(Id− V )Vn‖L (X∗) → 0

as n → ∞. For example, the weights corresponding to appropriate Riesz means are

sn,k =
pk

p0 + p1 + · · · + pn
, 0 ≤ k ≤ n, sn,k = 0, k > n,

where pn ≥ pn+1 > 0 and
∑∞

n=0 pn = ∞ (pn ≡ 1 for the Cesàro means).

2.2. Enveloping Semigroups

The Ellis semigroup [14] E(Ω, ϕ) of a semicascade (Ω, ϕ) is the closure of the set {ϕn, n ∈ N0} of
transformations in the direct product topology of ΩΩ. The Köhler semigroup K (Ω, ϕ) is the closure of
the set

K 0 = {V n, n ∈ N0}

of operators in the W∗O-topology of L (X∗) [3]. Finally, the semigroup Kc(Ω, ϕ) was defined is [11] as
the W∗O-closure of the convex hull coK 0. The right-topological semigroups E(Ω, ϕ), K (Ω, ϕ), and

Kc(Ω, ϕ) are compact. In fact, Kc(Ω, ϕ) is the enveloping semigroup of the action P ×W
V−→ P on

P = P(Ω) of the polynomial Abelian semigroup W = co{tn, n ≥ 0} with usual multiplication.

Below we list some useful properties of the semigroup Kc = Kc(Ω, ϕ) (see [11, Sec. 1]). The
nonempty kernel (the intersection of two-sided ideals) KerKc of the semigroup Kc consists precisely of
the projections Q ∈ Kc with unit norm satisfying the condition V Q = Q or, equivalently,

QX∗ = fix(V )
.
= {μ ∈ X∗ : V μ = μ}.

An operator net Vα ∈ coK 0 such that Vα
W∗O−−−→ T ∈ Kc is ergodic if and only if T ∈ KerKc. Each

element Q ∈ KerKc is the limit of some ergodic operator net; i.e., for each ϕ ∈ C(Ω,Ω), there exist
W∗O-convergent ergodic nets.

Remark 2.1. According to Theorem 3.2 of [11], all ergodic nets (2.1) converge if and only if KerKc

consists of a single element, which is necessarily the zero element of the semigroup Kc. In [10], a
slightly different (more general and more traditional) definition of an ergodic net was used; namely, it
was assumed that, in (2.1), Vα ∈ coK 0 = Kc. Nevertheless, the condition card KerKc = 1 implies
the convergence of all such nets as well [10, Theorem 4.3].
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2.3. Tame Dynamical Systems

In the language of function theory, tame N0-systems can be defined as follows (see [3]).

Definition 2.2. A semicascade (Ω, ϕ) is said to be tame if, for any x ∈ X and any subsequence
{n(k)} ⊆ N0,

inf
a

∥
∥
∥
∥

∞∑

k=0

akxn(k)

∥
∥
∥
∥
X

= 0,

where xn(k) = x ◦ ϕn(k) and the infimum is taken over all sequences a ∈ �1 with finitely many nonzero
terms such that

∑∞
k=0 |ak| = 1.

In essence, this condition is related to the problem of the isomorphic embeddability of �1 in a
Banach space, which goes back to Rosenthal [15]. Let Πb and Π1 be, respectively, the sets of Borel
endomorphisms of Ω and of endomorphisms of Ω of the first Baire class. Each of the following properties
is equivalent to Definition 2.2:

(a) E(Ω, ϕ) is a Fréchet–Urysohn compact space;

(b) cardE(Ω, ϕ) ≤ c;

(c) Kc(Ω, ϕ) is a Fréchet–Urysohn compact space;

(d) E(Ω, ϕ) ⊂ Π1;

(e) E(Ω, ϕ) ⊂ Πb.

Properties (c) and (e) appeared in [10, Proposition 3.11] and [9, Theorem 3.4], respectively, as
equivalent definitions of a tame dynamical system; for the other properties, see the survey [4] and
references therein. In fact, the semigroups E(Ω, ϕ) and Kc(Ω, ϕ) in conditions (a) and (c) are
sequentially compact. According to condition (a), a dynamical system is tame if its Ellis semigroup
is metrizable. The compact subsystems and direct products of tame systems are tame as well [4]. We
also mention two striking properties of the phase dynamics of minimal tame systems:

(1) the topological entropy of such systems vanishes [4, p. 2356];

(2) any such system (Ω, ϕ) is point distal, i.e., there exists a point ω0 ∈ Ω such that none of the pairs
of points (ω, ω0), ω 
= ω0, is proximal [5, Proposition 4.4].

3. CONVERGENCE OF ERGODIC MEANS

A criterion for the ∗-weak convergence of the Cesàro means

Un =
1

n+ 1
(I + U + · · ·+ Un), Vn =

1

n+ 1
(I + V + · · ·+ V n)

was obtained in [16, Theorem 1] and extended to arbitrary ergodic nets

{Uα} ⊂ L (X) and {Vα} ⊂ L (X∗)

in [11, Theorem 1.5]. Namely, the following theorem is valid.

Theorem 3.1 (separation principle). If X0 = {x ∈ X : Uαx
w∗
−−→ x ∈ X∗∗}, then X0 = X if and only

if the limit elements x separate fix(V ).
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The latter condition means that, for any invariant measure μ ∈ fix(V ), there exist continuous
functions x1, x2 ∈ X0 such that (x1, μ) 
= (x2, μ). Moreover, X0 is a nonempty closed U-invariant linear
subspace of X and

x = Tx, T ∈ L (X0,X
∗∗), ‖T‖ = 1.

In the case of ergodic sequences, we have x ∈ X1.
We use the following notation for a N0-dynamical system (Ω, ϕ):

• m ⊆ Ω is a minimal set;

• μe ∈ P(Ω) is an ergodic measure;

• o(ω) is the closure of the orbit o(ω) = {ϕnω, n ≥ 0} of ω ∈ Ω.

We consider the following properties of the dynamics of (Ω, ϕ) and of ergodic operator nets V ⊂ L (X∗):

• (single m in o): each o(ω) contains a unique m;

• (supp μe = m): the supports of μe are minimal;

• (single μe on m): the minimal subsystems (m,ϕ) are uniquely ergodic;

• UE(o): the orbital subsystems (o(ω), ϕ) are uniquely ergodic;

• (AEN): all nets V converge;

• (AES): all sequences V converge;

• (SES): some sequence V converges.

The following lemma describes some general relations between these properties.

Lemma 3.2. The following implications hold for any semicascade (Ω, ϕ):

i) (AEN) ⇒ UE(o) ⇒ (AES);

ii) (SES) ⇒ (single μe on m);

iii) UE(o) ⇔ (single m in o) + (suppμe = m) + (single μe on m).

Proof. The implication (AEN) ⇒ UE(o) follows from Lemma 5.9 of [10] and Remark 2.1. The
implication UE(o) ⇒ (AES) was proved in [11, Theorem 3.2]. Assertion (ii) is a minor generalization of
Theorem 5.4 of [2]. If there exists a convergent ergodic sequence of operators Vn = U∗

n and a set m ⊆ Ω
is minimal, then (Unx)(ω) → x(ω) for any x ∈ X and ω ∈ m, and, moreover, x(ϕω) ≡ x(ω) on m.
Since the orbits o(ω) ⊆ m are dense, it follows that the restriction x|m is either constant or everywhere
discontinuous. A function of the first Baire class cannot be everywhere discontinuous; therefore, by
virtue of, e.g., the separation principle (Theorem 3.1), the dynamical system (m,ϕ) is uniquely ergodic.
Assertion (iii) is trivial.

We see that if a minimal set supports more than one ergodic measure, then there exist no convergent
ergodic sequences (although there always exist convergent ergodic nets). This effect occurs for certain
minimal analytic diffeomorphisms of the torus T2 which admit uncountably many ergodic measures [17,
Corollary 12.6.4].

In the tame case, much more can be said about the convergence of ergodic means.

Theorem 3.3. For a tame N0-system (Ω, ϕ), the following assertions hold:

i) each ergodic operator net {Vα} ⊂ L (X∗) contains a convergent ergodic sequence Vα(n);
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(ii) each ergodic operator sequence {Vn} ⊂ L (X∗) contains a convergent ergodic subsequence;
in particular, the sequence of Cesàro means contains a convergent subsequence.

Proof. Since Kc = Kc(Ω, ϕ) is compact, we can assume without loss of generality that Vα
W∗O−−−→ Q,

where Q ∈ KerKc. The topological space Kc is compact and Fréchet–Urysohn, since (Ω, ϕ) is a tame

semicascade; therefore, the net {Vα} contains a sequence Vα(n)
W∗O−−−→ Q, and this sequence is ergodic,

because Q ∈ KerKc.

Assertion (ii) follows from the sequential compactness of Kc and the preservation of ergodicity under
the passage to a subsequence.

The ergodic sequence {Vα(n)} in 3.3(i) is not generally a subsequence of the ergodic net {Vα}. The
following theorem describes the relationship between the ergodic and dynamical properties of tame
systems.

Theorem 3.4. Any tame N0-system (Ω, ϕ) has property (SES). Moreover,

(AEN) ⇐⇒ UE(o) ⇐⇒ (AES) ⇐⇒ (single m in o).

Proof. Convergent ergodic operator sequences for a tame semicascade exist by Theorem 3.3. Sup-
pose that all such sequences converge and there exist two different elements Q1, Q2 ∈ KerKc(Ω, ϕ).
According to 3.3 (i), there exist ergodic sequences

V (1)
n

W∗O−−−→ Q1, V (2)
n

W∗O−−−→ Q2.

The mixed sequence V2n−1 = V
(1)
n , V2n = V

(2)
n is ergodic but divergent. Thus, property (AES) implies

cardKerKc = 1,

which is equivalent (by Theorem 3.2 of [11]) to property (AEN), and by virtue of Lemma 3.2(i), we
have (AEN) ⇔ UE(o) ⇔ (AES) for tame systems. Finally, Theorem 4.6 of [9] gives the implication
(single m in o) ⇒ (AES), and it remains to note that UE(o) ⇒ (single m in o).

The equivalence (AEN) ⇔ (single m in o) was proved independently in [10, Theorem 5.10]. Theo-
rem 3.4 implies, in particular, the unique ergodicity of minimal tame semicascades; this fact was proved
for a larger class of tame systems more than ten years ago in [7] and [8]. In [10, Lemma 5.12], it was
strengthened: the uniqueness of a minimal set m ⊆ Ω implies the unique ergodicity of (Ω, ϕ) ∈ Dtm. In
this connection, it is useful to make the following remark.

Remark 3.5. The supports of ergodic measures of tame N0-systems either are minimal or contain more
than one minimal set.

On the other hand, according to Theorem 3.1 of [18], if a semicascade (Ω, ϕ) has a unique minimal
set and the Cesàro means ∗-weakly converge, then there exists either precisely one ergodic measure or
uncountably many such measures. Moreover, the second possibility can indeed be realized [18, Sec. 4].

Remark 3.6. Even for tame systems, the convergence of one ergodic sequence does not imply that of all
other ergodic sequences, i.e., (SES) � (AES). Namely, a tame Bernoulli subshift has been constructed
for which the Cesàro means converge but condition (single m in o) does not hold [10, Example 5.14].
According to Theorem 3.4, for this semicascade, condition (AES) does not hold either.
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4. THE ASYMPTOTIC DISTRIBUTION OF ORBITS
In this section, we carry over some constructions of [1] and [2] related to the pointwise convergence

on Ω of the Cesàro means Unx for continuous test functions x ∈ X = C(Ω) to arbitrary ergodic
sequences. Instead of the individual ergodic theorem (which does not hold for general averaging
methods), we use a priori information about the pointwise convergence of certain generalized ergodic
means. Our main task is to prove the possibility of decomposing tame dynamical systems into irreducible
(ergodic) components. By Pin(Ω) and Pe(Ω) we denote the subsets of P(Ω) formed by all ϕ-invariant
and all ϕ-ergodic measures, respectively, and by X1 we denote the set of bounded scalar functions of the
first Baire class on Ω. A set Θ ⊆ Ω is said to be bi-invariant if ϕ−1Θ = Θ. We also use the notation
D(Ω) for the set of Dirac measures δω on Ω and

Kc = Kc(Ω, ϕ) ⊆ L (X∗)

for the operator semigroup defined in Sec. 2.2.
We assume that there exists a convergent ergodic operator sequence

V = {Vn} ⊂ L (X∗), Vn
W∗O−−−→ Q ∈ KerKc;

for this convergence we use the shorthand notation V → Q. Under this assumption, for the dual ergodic
sequence {Un} ⊂ L (X), U∗

n = Vn, we have (Unx)(ω) → x(ω) for all ω ∈ Ω and x ∈ X; moreover, the
function x ∈ X1 is invariant (that is, x ◦ ϕ = x), and to each point ω ∈ Ω there corresponds the measure

μω = Qδω ∈ Pin(Ω), x(ω) = (x, μω),

which determines the asymptotic V -distribution of the orbit o(ω). This means essentially that

Vnδω
w∗
−−→ μω. A linear projection Q in X∗ induces a mapping ΨV : Ω → Pin(Ω) of the first Baire class.

This mapping is completely determined by the limit element Q of the sequence V , but it is convenient to
use the notation ΨV .

Lemma 4.1. If an ergodic sequence V = {Vn} converges, then ΨV Ω ⊇ Pe(Ω).

In other words, for any convergent ergodic sequence V , each ergodic measure determines the
asymptotic V -distribution of some orbit.

Proof. Let μ ∈ Pe(Ω), and let x ∈ X. We set c(x) = (x, μ). Under the assumptions of the lemma, we
have

(Unx, μ) = (x, Vnμ) = (x, μ),

and the dual sequence (Unx)(ω) converges to x(ω) for all ω ∈ Ω; moreover, x = x ◦ ϕ and (x, μ) = c(x)
by Lebesgue’s theorem. An argument similar to that used to prove the implication (i) ⇒ (iv) in
Proposition 7.15 of [19] shows that the ergodicity ofμ implies that the bounded invariant function x ∈ X1

equals identically the constant c(x) on a Borel set Θx,μ ⊆ Ω of full μ-measure. Therefore, for all points
ω ∈ Θx,μ, we have

(x, Vnδω) = (Unx, δω) → (x, δω) = (x, μ) = (x, μ). (4.1)

Choosing x in any countable set Y dense in X, we obtain relation (4.1) for x ∈ Y and ω ∈ Θμ, where
Θμ =

⋂
x∈Y Θx,μ and μ(Θμ) = 1. Since ‖Vn‖ ≤ 1 for all n ∈ N0, it follows that this relation also holds

for any x ∈ X and ω ∈ Θμ. Thus,

Vnδω
w∗
−−→ μ for ω ∈ Θμ.

Given a convergent ergodic sequence V = {Vn}, we set

ΩV = {ω ∈ Ω : μω ∈ Pe(Ω)},

where Vnδω
w∗
−−→ μω; then, for ergodic measures μ, the sets Ωμ,V = Ψ−1

V μ form a partition of ΩV into
V -quasi-ergodic components. The sets ΩV and Ωμ,V are bi-invariant. Moreover, they are Borel; this
follows from purely topological considerations [2, pp. 78–79] in no way related to the specifics of Cesàro
averaging. Since Ωμ,V ⊇ Θμ, where Θμ is the set from the proof of Lemma 4.1, we obtain the following
result.
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Corollary 4.2. If an ergodic sequence V converges, then to each ergodic measure μ there corre-
sponds a Borel V -quasi-ergodic set Ωμ,V of full μ-measure.

Now we proceed to the main topic of this paper.

Definition 4.3. We say that an N0-system (Ω, ϕ) is ergodically decomposable if there exists a
convergent ergodic operator sequence V such that ΩV = Ω or, equivalently, ΨV Ω = Pe(Ω).

In fact, an ergodically decomposable topological dynamical system (Ω, ϕ) admits a decomposition
into ergodic subsystems (Ωμ,V , ϕ), μ ∈ Pe(Ω). In this situation, we have V → Q ∈ KerKc, and
to any continuous function x ∈ X there corresponds a function x = Q∗x ∈ X1 taking the constant
value (x, μ) = (x, μ) on each quasi-ergodic set Ωμ,V . Thus, for each measure μ ∈ Pe(Ω), the metric
dynamical system (Ωμ,V , ϕ) is ergodic with respect to μ in the standard sense [19, Definition 6.18]. In
the interpretation of [17, Sec. 4.1], the ergodic decomposability of a semicascade (Ω, ϕ) means that
the asymptotic V -distributions of all orbits are determined by ergodic measures. Since the mapping
ΨV : Ω → Pe(Ω) inducing the decomposition of (Ω, ϕ) is of the first Baire class, it follows that the
points of continuity of this mapping form a dense Gδ-set in Ω.

It turns out that the ergodic decomposability of an N0-dynamical system is related to the existence of
ergodic operator sequences converging to extreme points of the kernel of the semigroup Kc = Kc(Ω, ϕ).

Proposition 4.4. If an ergodic sequence V converges to Q ∈ exKerKc, then the dynamical system
(Ω, ϕ) is ergodically decomposable.

Proof. Let V = {Vn}. According to Proposition 2.10 of [9], in this case, we have Q : D(Ω) → Pe(Ω),

and since Vn
W∗O−−−→ Q, it follows that Vnδω

w∗
−−→ μ ∈ Pe(Ω) for each ω ∈ Ω. Thus, ΩV = Ω, and the

system (Ω, ϕ) is ergodically decomposable.

Theorem 4.5 (main theorem). Any tame N0-system (Ω, ϕ) is ergodically decomposable.

Proof. Each projection Q ∈ exKerKc is the W∗O-limit of some ergodic net {Vα} ⊂ L (X∗); by

Theorem 3.3(i), there exists an ergodic operator sequence Vα(n)
W∗O−−−→ Q. Proposition 4.4 implies

ergodic decomposability with V = {Vα(n)}.

Now, let us describe the structure of all possible decompositions of tame systems into ergodic
components.

Lemma 4.6. For any tame N0-system (Ω, ϕ), the operators T ∈ Kc(Ω, ϕ) are determined by their
values at the Dirac measures.

Proof. In the situation under consideration, the semigroup Kc is a Fréchet–Urysohn compact space;
therefore, for any T ∈ Kc, there exists a sequence

{Vn} ⊆ co{V n, n ≥ 0}
converging to T in the W∗O-topology of L (X∗). For U∗

n = Vn, x ∈ X, and ω ∈ Ω, we have
(x, Vnδω) = (Unx)(ω) and

(Unx)(ω) → x(ω), where x(ω) = (x, Tδω).

Here x ∈ X1 and, by Lebesgue’s theorem,

(x, Vnμ) = (Unx, μ) → (x, μ) = (x, Tμ)

for each measure μ ∈ P(Ω). At the same time, x(ω) = (x, Tδω) for ω ∈ Ω, and hence the operator T is
completely determined by its values on D(Ω).

Lemma 4.6 strengthens a similar assertion (Theorem 3.5, (a1) ⇒ (a4)) in [9], in which, instead of the
assumption (Ω, ϕ) ∈ Dtm, it was required that the semigroup E(Ω, ϕ) be metrizable.
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Corollary 4.7. If (Ω, ϕ) ∈ Dtm and Q1|D(Ω) = Q2|D(Ω) for Q1, Q2 ∈ KerKc, then Q1 = Q2.

This readily implies that, in the tame case, the condition Q ∈ exKerKc is not only sufficient but
also necessary for the relation Q : D(Ω) → Pe(Ω), Q ∈ KerKc, to hold. For (Ω, ϕ) ∈ Dtm, it is
natural to define quasi-ergodic sets based on elements Q ∈ exKerKc rather than on convergent ergodic
sequences V . Namely, we set

Ωμ,Q = {ω ∈ Ω : Qδω = μ}, μ ∈ Pe(Ω).

We see that the Borel bi-invariant quasi-ergodic sets Ωμ,Q of full μ-measure form a partition ΦQ of
the phase space Ω. The set Λ of all ergodic sequences V → Q decomposes into disjoint classes ΛQ

corresponding to different Q. The elements V ∈ ΛQ relate the dynamics of the semicascade (Ω, ϕ)
to ergodic measures; namely, the asymptotic V -distribution of each orbit o(ω) is determined by the
measure μ = Qδω. Moreover, there is a one-to-one (by Corollary 4.7) correspondence between the
projections Q ∈ exKerKc, the partitions ΦQ of the phase space Ω into quasi-ergodic sets, and the
partitions ΛQ of the set Λ of ergodic operator sequences converging to extreme points of the kernel of
the semigroup Kc(Ω, ϕ).

5. ADDENDUM
In this section, we consider several typical examples of tame and untame N0-dynamical systems. We

set I = [0, 1].

Example 1. According to [20, Proposition 10.5] and [4, Sec. 9], any semicascade generated by a
self-homeomorphism of I or S1 has metrizable Ellis semigroup and, hence, is tame.

Example 2. The left Bernoulli shift on the setΩ = {0, 1}N0 of sequences ω0, ω1, . . . with standard metric

ρ(ω, ν) = (1 + min{k : ωk 
= νk})−1

generates an untame N0-system (Ω, ϕ), which, however, has tame subsystems (Θ, ϕ). There exists an
elegant description of these subsystems: each infinite set L ⊆ N0 contains an infinite subset K ⊆ L such
that the projection πK(Θ) is a countable subset of {0, 1}K [6, Theorem 4.7].

Example 3. For the semicascade (I, ϕ) defined in the example in [21, pp. 147–149], the set of periodic
point is not closed, and, given any orbit o(ω), ω ∈ I, either this orbit is eventually periodic (that is,
ϕkω = ϕk+pω for some k ≥ 0 and p ≥ 1) or its limit points fill the classical Cantor set. This semicascade
turns out to be tame [3, Example 5.8(c)].

Example 4. On the other hand, any semicascade (I, ϕ) having periodic points with period not equal to
a power of 2 is untame [3, Example 5.8(e)].

Example 5. A minor modification of an argument in [4, p. 2354] shows that the projective action of any
invertible operator T ∈ GL(n,Rn), n ≥ 2, induces a tame semicascade on the sphere S

n−1.

Examples 3 and 5 show that tame systems may exhibit nontrivial phase dynamics.
A very simple and constructive equivalent definition of tame dynamics was given in [12]: a sem-

icascade (Ω, ϕ) is tame if any sequence ϕn(k), {n(k)} ⊆ N0, of iterations contains a pointwise
convergent subsequence. Based on this definition, the author of [12] obtained a criterion distinguishing
between tame and untame affine torus endomorphisms ϕ : ω → Aω + b, ω ∈ T

d, d ≥ 1, with integer
matrix A and any shift b ∈ T

d. If detA = ±1, then ϕ is an automorphism.

Theorem 5.1 (Lebedev [12]). A semicascade (Td, ϕ) is tame if and only if Ak = Al for some
k, l ∈ N0, k 
= l.

The eigenvalues λ(A) of such a matrix are either zeros or roots of unity, and

ϕk = ϕl + b1,

where b1 is a shift on T
d. If detA = ±1, then the assumption of the theorem takes the form Ak = Id. In

particular, the automorphism ϕ : (ω1, ω2) → (ω1 + ω2, ω2) of the torus T2 is not tame.
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