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Preface

The fourth RuFiDiM conference, Russian-Finnish Symposium on Discrete Mathematics,
took place in Turku in May, from 16th til 19th, 2017. This meeting was organized as a
part of research activities between Steklov Institute of Mathematics of St. Petersburg
and Department of Mathematics and Statistics of University of Turku. The goal of the
conference series is to increase cooperation between Finnish and Russian mathematicians
in discrete mathematics, but the symposium is open for a broader international audience.
In the present event there were contributions from 10 different nations.

RuFiDiM 2017 consisted of six invited talks and 25 contributed presentations. The
invited speakers were Volker Diekert (University of Stuttgart), Alexandr Kostochka (Univer-
sity of Illinois at Urbana-Champaign), Alexei Miasnikov (Stevens institute of Technology),
Igor Potapov (University of Liverpool), Aleksi Saarela (University of Turku) and Jouko
Véaédnanen (University of Helsinki). The program was chosen by the international pro-
gram committee. Abstracts or extended abstracts of the lectures are presented in these
preproceedings.

The organizers are grateful to the supporters of the symposium: Magnus Ehrnrooth
Foundation, Turku University Foundation, Finnish Academy of Sciences (Mathematics
Fund), and the University of Turku and Turku Centre for Computer Science.

Turku and St. Petersburg, April 2017

Juhani Karhuméki, Yuri Matiyasevich, Aleksi Saarela
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Abstract

Commonly in network analysis an undirected graph (network) is represented by
its adjacency matrix, and while the latter may have an enormous order. We show
that in many cases instead of the adjacency matrix a much smaller matrix (referred
as type adjacency matrix) may be used. We introduce notions of the types of nodes
of graph and of the type adjacency matrix, propose an algorithm for division of the
set of nodes into types. We study properties of the type adjacency matrix and some

of its applications in the social and economic network analysis.

Keywords: undirected graph, network, type of node, centrality, growth of network,
production, knowledge. externality, network game, Nash equilibrium, network formation.

1 Introduction

Commonly in network analysis and its economic and social applications an undirected
graph (network) is represented by its adjacency matrix, A. A drawback of the adjacency
matrix is that it can have an enormous size, and this may trouble working with graphs
possessing big size but simple structure. For example, for the star graph with v peripheral
nodes the adjacency matrix is of size (v + 1) x (v + 1), and this matrix, by itself, does not
rely on the simple structure of the graph.

This drawback may be somehow rectified if another kind of matrix, referred further as
type adjacency matrix, T, is used. The type adjacency matrix usually has much smaller size
in comparison with the adjacency matrix and reflects important features of the structure
of the graph in an aggregate form. For example, for the str graph the type adjacency
matrix has the size 2 x 2, independently on the number of peripheral nodes. Due to the
small size, the type adjacency matrix can considerably simplify the network analysis.

The presence of the type adjacency matrix corresponds to the fact that the set of the
nodes of undirected graph can be divided into disjoint subsets (types) in such way that
each node of definite type has definite numbers of neighbors (adjacent nodes) of each type.
We will consider such division with the minimal possible number of types.

For example, for the network shown in Figure 1, whose adjacency matrix is

>
Il
— = = O

1
0
1
1
0

— O O =
O O = =
O = = O =

the set of nodes is divided into two types: the 15 type consists of node 1. and the 2¢ type
includes nodes 2, 3. 4, 5 (see Figure 2). The 1% type node is adjacent to 0 first-type nodes
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Figure 2: Division of the set of nodes into two types.

and to 4 second-type nodes, while each 2"¢ type node is adjacent to 1 first-type node and
2 second-type nodes. These numbers of neighbors of different types can be written in form
of the type adjacency matrix:
0 4
()

We will see that in many respects the type adjacency matrix may serve as a substitute
for the adjacency matrix.

In the present paper we provide a definition of the types of nodes and the type adjacency
matrix, propose an algorithm for division of the set of nodes into types and construction
of the type adjacency matrix, and study its properties and some of its applications.

2 Types of nodes

Let G be undirected graph (network) of order n and A be its adjacency matrix. Let us
remind that A is n x n matrix such that a;; = a;; = 1 if in the graph there is an edge
connecting nodes ¢ and j, and a,;; = a;; = 0 otherwise: a;; =0 for alli =1,2,...,n.

The concept of types of nodes may be explained informally in the following way. The
nodes of graph can be colored in S colors in such way that each node of color j has a
definite number [;(j) of neighbors of color i (for each i =1.2,.... S).

More formally, the set of nodes of graph may be decomposed into minimal number
S of disjoint classes j = 1,2,...,S in such way that any node belonging class j has 7;(j)
neighbors from class 7 (for i = 1,2,...5). The classes will be referred as types of nodes.
Type j is characterized by vector 1(5) = (I1(J);l2(4);...:1s(4)), where [;(j) is the number
of neighbors in class i for each node of class j.
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2.1 Type adjacency matrix

Let the graph have S types of nodes. We construct a S x S-matrix T in the following way.

The first row of this matrix is the row vector 1(1), the second row is 1(2), ..., the S-th row
is 1(S):
1(1) 11(1) (1) ... Is(1)
@] _[a® e@ .. 5O
1(5) L(S) 1(S) ... Is(S)

This matrix will be referred as type adjacency matriz of the graph. Our type adjacency
matrix T is the same as, in spectral graph theory, a quotient matrix for the symmetric
matrix A (e.g. (6], [2]).

Figures 3 and 4 provide an example of two graphs which have the same size and the
same distribution of degrees, but different typology. Their type adjacency matrices are,

correspondingly,
B 2 L 1
2 Li°A1L 2}°

Later we will see that there exist graphs of different size, but with the same typology.

Figure 3: Graph with 1(1) = (0;2), 1(2) = (2;1).

Figure 4: Graph with 1(1) = (1;1), 2} ={1:2).

2.2 Algorithm

Let us describe an algorithm of subdivision of the set of nodes of undirected graph into
types. Let s be a current number of subsets of subdivision. Initially s = 1.

Iteration of the algorithm. Consider nodes of the first subset. If all of them have the
same numbers of neighbors in each subset 1,2,...,s, then the first subset is not changed.
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Figure 6: Result of the first iteration: s = 2.

In the opposite case, we divide the first subset into new subsets in such way that all nodes
of each new subset have the same numbers of neighbors in subsets.

We proceed in precisely same way with the second, the third, ..., the s-th subset. If on
the present iteration the number of subsets s has not changed, then the algorithm finishes
its work. If s has increased, then the new iteration starts.

The number of subsets s does not decrease in process of the algorithm. Since s is
bounded from above by the number n of nodes in the graph, the algorithm converges. It
is clear that the algorithm divides the set of nodes into the minimal possible number of
classes.

Ezample. Let us apply the algorithm to the graph depicted in Figure 2. Initially s = 1,
all nodes constitute the same one set (Figure 5).

After the first iteration we obtain the division corresponding to degrees, depicted in
Figure 6. Then, on the first step of the second iteration. we obtain the division depicted
in Figure 7. On the second step of the second iteration we obtain the division shown in
Figure 8.

On the third iteration nothing changes, and the algorithm stops.

Figure 7: The first step of the second iteration: s = 3.
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Figure 8: The second step of the second iteration: s = 4.

We have obtained a subdivision of the set of nodes of the graph into four types which
are characterized by the vectors of numbers of neighbors:

1(1) = (1;2;1;0),1(2) = (1;0:1;1),1(3) = (1;2;0; 1),34) = [0:2; 1:0).

The corresponding type adjacency matrix is

ot f— —
SIS, NG PN
00 N =
N S N N’
|
O = =
DO N
— O = =
O~ = O

2.3 Relation to modular division

Our subdivision of the set of nodes of graph into types is a generalization of the modular
aggregation of Allouch [1]. Allouch [1] defines module as a subset of nodes, such that each
node in a module has the same neighbors. It can be seen that each division into modules
is a division into types, but not the opposite.

3 Some applications of the type adjacency matrix in
network analysis

3.1 Numbers of routes

It is known that each element af-"j of the k-th power of the adjacency matrix, A*, is equal
to the number of the k-step routes between nodes i and j. In a parallel way, each element
t’;] of the k-th power of the type adjacency matrix, TF*. shows the number of the k-step
routes between any i-th type node and all j-th type nodes.

E.g., for the graph shown in Figure 1 the 374 power of the adjacency matrix,

8 8 8 8 8
8 4 8 8 4
A3=18 8 4 4 8
8 8 4 4 8
8 4 8 8 4

shows that in the graph there are 8 three-step routes from node 3 to node 2 and 4 three-step
routes from node. 3 to node 4. The same graph is characterized by the type adjacency

matrix
0 4
- (0 )
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Matrix T shows, in particular, that the degree of the 1% type node is 0 + 4 = 4, and the
degree of any 2"¢ type node is 1 4+ 2 = 3. The 3% power, e.g.,

8 32
3
t _<8 24)*

shows that in the graph there are 24 three-step routes from each 2"? type node to all 2"¢
type nodes.

3.2 Centrality measures

Network analysis uses various centrality measures, among them degree centrality, Katz-
Boncicz centralities [12],[4], eigenvector centrality, and a- centrality [5].

The degree centrality of the node (or of each node of the type) may be calculated in a
similar way by use of either the adjacency matrix, A, or the type adjacency matrix T:

Cpli) = =232, M
S =
Cp(i) = ijz_l f”

where 7 is the type of node i.

Let us remind how the numbers of routes are used in calculation of the Katz-Bonacich
centrality measures. Katz [12] and Bonacich [4] propose to use in definition of centrality
measure not the degree of node ¢, as in formula (1), but the total discounted number of
routes outgoing from the node i. All such routes are accounted for, and the longer the route
is (the more is its length. k), the smaller discounting multiplier, a® (where 0 < @ < 1), it
receives in calculation of the discounted number of routes.

Because, as was already mentioned, the number of the k-step routes is an element of
the power of adjacency matrix, A*, the total discounted number of the routes between
nodes ¢ and j (where i # j) is equal to

_E: k_k

Assuming for the sake of simplicity of further calculation that there is a fictitious zero-length
route from node 7 to itself, one obtains the formula

o0
N § k_k
my; = « aij'

k=0

Using the notation for the identity matrix, I = (a«A)°. one comes to the formula for
the matrix of the total discounted numbers of routes between pairs of nodes:

M = i(aA)k = (I —-aA)
k=0

The total discounted number of routes between node i and all possible nodes j, called
sometimes (e.g. [8]) Bonacich centrality of node i, is

Cp(i) =) mi;.
g=1
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The vector of the Bonacich centrality measures for nodes is

Cp(1)

Cp(2)

Cs = —M-1=(I-cA)!:1,

CB(”)

where 1 is the vector of all ones.

We have seen, that in this version of the formula for Bonacich centralities an unwanted
1 enters the measure for each node — it is the number of fictitious “zero-length” routes
which was added for the sake of simplicity of calculation. Some authors, to improve this
“fault”, do subtract these unwanted units; then the formula turns into

Clse = (T =~ gAJ L= 1)+ L.

This version is often referred as Katz centrality. Both versions are met in the literature,
often under similar names, what commonly puzzles readers.

Since only the summary numbers of the routes from node ¢ (but not the numbers of
routes to particular nodes) are needed in calculation of both Katz-Bonacich centrality
measures, the type adjacency matrix, T, can be, naturally, used instead of the adjacency
matrix, A.

The total discounted number of routes from any node of type 7 to all nodes of type j
(where 4,7 = 1,2, .+ ;83 % 4) is equal to

0
~ § kik
k=1

A fictitious “zero-length” route is interpreted now as a route from a node of type i to
nodes of the same type. Accounting for this route, we obtain the following formula for the
discounted number of routes from any node of type i to all nodes of the same type:

If node ig is of type i, then Cp(ip) = Cp(i). We come to the formula for the matrix of
summary discounted numbers of routes between any nodes of type i and all nodes of type
§ 100 = 1ilyasss S):

0
M=) (@T)f=1-aT)},
k=0
where I is the S x S unit matrix.

The vector of Bonacich centralities for types is
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where M, I, T are S x S-matrices, and 1 is the S-vector of all ones. Correspondingly, the
vector of Katz centralities for types is

B = {1 - &y — D

As an example, let us calculate the vector of Bonacich centralities for the star graph
with v peripheral nodes. The type adjacency matrix is

0 v
r=(1 o)

(i—aT):<1 —au>7

hence,

- 1

I o . B (1 O‘”) ,

T 1-c2v\a 1
éB:(i—aT)_l-i:;(1—%041/'1-1—@)?
1—a?v '

The positive values of centralities are received under values of parameter o sufficiently
small in comparison with the size of the star:

il
R \/—;
In other words, the parameter « has to be lower than the inverse of the Frobenius eigenvalue
of matrix T.

We see that the Bonacich centrality of the center of the star is (1 + av)/(1 + «) times
higher than the Bonacich centrality of the peripheral node. If &« — 1//v, i.e. if a converges
to the inverse of the Frobenius eigenvalue, the ratio of the Bonacich centralities of the
center and the periphery converges to /v, i.e. to the ratio of their eigenvalue centralities.

The following two theorems show that the type adjacency matrix T may be used instead
of the adjacency matrix A for calculation of eigenvalue centralities and o — centralities.

Let the first type have n; nodes, the second type have ny nodes, ..., the S-th type have
ng nodes, so that

n=ny+nz2+...+ngs.

Let the nodes of graph G be numbered in the following way. The nodes of the first type
are numbered from 1 to ni, the nodes of the second type — from n; + 1 to ny + na, ..., the
nodes of the S-th type — from ny +no +... +ng_1 + 1 to n.

Theorem 162. 1. Let X\ be an eigenvalue of the type adjacency matriz T and g be
corresponding eigenvector

g = (51;»“32; cee ;5S)T-

Then X is also an eigenvalue of the adjacency matriz A and the corresponding eigenvector
8

g =05 Digs sy P15.083 Bt s st Dot o s 5553 Bt s s ;,BS)T
(where B; is repeated n; times; i =1,2,...,5)).

2. Let \* be the Frobenius eigenvalue of matriz T. Then \* is also the Frobenius
eigenvalue of matric A.
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Proof. 1. Foranyi=1,2;..., S we have for i-th row of matrix T:
,31[1(7:) + 532[2(1) + ...+ Gsls(i) = AB;.

Then forany¢=1,2,..., Send g =1,2,::5 n; we obtain for the (n;+n2+...+n;—1+7)-th
row of matrix A the equality

BitBitwtBitBotB+otBtoFtBatlst ..+ 8= A5
L (i) L2 (i) 15 (i)

2. Assume that the Frobenius eigenvalue of matrix A is u # A*. The first part of the
theorem implies that g > A*. Let e be the Frobenius eigenvector of matrix A, and € be
the vector constructed in the following way. Each of the first n; components of vector
é is equal to the maximum of the first n; components of vector e; each of the next ns
components of & is equal to the maximum of the corresponding n, components of e;. ..
each of the last ng components of & is equal to the maximum of the last ng components
of e. Let f be the S-vector corresponding to & (i.e. i-th component of f (i = 1,2,..., S )
is equal to the maximum of n; corresponding components of e). Evidently,

Aé > pé.
Correspondingly, R "
T > uf. (2)

But, according to the Perron-Frobenius theorem, since A* is the Frobenius eigenvalue, (2)
implies that A* > p. Contradiction!
O O

Theorem 163. Let A be adjacency matriz, T be type adjacency matriz, a be any number,
& = (ey:€2:...;e5)T be any S-vector and let the matriz I + T be invertible. Then the
matriz I + aA is also invertible. Let k be the S-vector of a-centralities,

k= (I+aT) 16 (3)

Let e be the n-vector, ny first components of which are equal to the component e1; ny
following components are equal to es; ...; the last ng components are equal to es. Let k be
the n-vector of a-centralities,

k=(I+aA) e (4)
Then the first n1 components of vector k are equal to k1; the next no components are equal
to Ko; ...; the last ng components are equal to Kg.

Proof. The system of equations (3) is equivalent to
k+aTk =e. (5)
Writing the system (5) for individual components, we obtain
ki = a(l1(i)k1 + l2(i)ka + ... + ls(i)ks) = &, (6)

where i = 1,2,...,5. But for each i equation (6) coincides with each of the equations with
numbers from n; +ng + ... +n;_1 + 1 until n; + na + ... + n; of the system

k+aAk =e,
which is equivalent to system (4). The invertibility of the matrix I + oA follows from

invertibility of the matrix I + T. O u
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4

Figure 9: Graph with 2 peripheral components (¢ = 2).

3.3 Growth of a core-periphery network

The graph shown in Figure 9 has the following structure: the central node (type 2), two
symmetric peripheral components (with nodes of types 3 and 4) and a node close to the
center (type 1). This graph can be described either by the adjacency matrix M of order 8
or by the type adjacency matrix of order 4:

O O = O
SO = O
= o NN O
=N OO

Any of matrices M and T can be used for calculation of the eigenvector centralities
(which are approximately proportional to 0.25, 0.61, 0.61, 0.43 for the types 1, 2, 3, 4,
correspondingly).

Now, let the number of symmetric peripheral components, ¢, increase (Figure 10). The
type adjacency matrix becomes

Tle) =

OO = O
SR O =
Ll = T
=R OO

Despite the increase of the order of the adjacency matrix, (3¢ +2) x (3¢ +2), the order
of the type adjacency matrix, 4 x 4, does not change: moreover, the only element which
changes in the type adjacency matrix is ¢ = [3(2) — the number of the 3" type nodes.

Below we list the eigenvectors of the type adjacency matrices with the numbers of
peripheral components ¢ = 2, 3,4, 5, 6.

1 1 1 1 1
[ 2.44 | 267 282 [ 296 | 3.07
X(2) = |5 4y | Xx(3) = 196 | X = |17 | x0G) = 154 | X0 =14
1.72 1.22 0.96 0.79 0.68

It is interesting to observe how the eigenvector centrality of the center (type 2) increases
with respect to ¢, and how at the same time the relative centrality of type 1 (which is a
neighbor of the center) increases in relation not only to type 4 but even to type 3. The
type adjacency matrix T allows a simple and visible analysis without any increase in the
order of the matrix.
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Figure 10: Graph with 4 peripheral components (e=4],

Theorem 164. With increase of c, if the eigenvector centrality of the 1°% type node is
taken constant equal to 1, then the centrality of the 2" type node increases slower than
V¢ and goes to infinity; the centrality of each 374 type node decreases and converges to 1;
the centrality of each 4" type node decreases faster than 1/+/c and converges to 0.

Proof. The characteristic equation of the matrix T is
A=D1 = (c+3)A=2]=0.

To the eigenvalue A = 1 the eigenvector (1,1,0, -1 /2)T corresponds. The equation for
other three eigenvalues is

M —(c+3))-2=0. (7)
This equation is of the form
A 4+ 3pA+2¢=0,
where
c+3
3

p=-— , g=-L

Since the discriminant is
D=¢+p*=1-~——

(because ¢ > 2), the equation has three real roots:

T— 0 T+

10)
Al = —2rcos§. Ao = 2rcos

where r = £1/]p| = £+/(c + 3)/3 (the sign of 7 is chosen to coincide with the sign of q);
the angle ¢ is determined by the relation

) . 3 \3/2
CosS) = — = .
e r3 c+3

Under ¢ = 2: ¢ = arccos (3/ 5)3/ 2 ~ 1.087. With increase in ¢ the angle ¢ also increases
and lime—,oc ¢ = m/2. Thus, of the three roots of the equation, only the first one is positive:

3/2
c+3 1 3
Ay =2 5 C0s8 <§ arccos <c+ 3> ) : (8)
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Under ¢ = 2:

3
5 1 3\ 2
A= 2\/§cos <§ arccos <5> > &8 2414 > 1;4‘

with increase in ¢ the value \; also increases and lim.—,~ A1 = +0oc. Thus, under any ¢
the Frobenius eigenvalue of matrix T(c) is given by (8). Let us find the general form of the
dependence of the coordinates of the eigenvectors corresponding the eigenvalues obtained
from equation (7). The eigenvector is defined by the equation

T(c)X = AX,

or, in coordinate form:

AT, = T2,

r1 + crs = A\xa,

T2 + 2x4 = AT3,

z3+ (1 —A)zg =0.
Solving these system of equations and using the fact that A # 1, we find the eigenvector
corresponding to the eigenvalue A:

A2—1 A+1\7

X= <1, k, b ) .
c &

If A is given by (7), then the components of the vector X are the values of eigenvector

centrality of the nodes of the corresponding types. This implies the demanded result. U

O

4 Game equilibria in a model of production and exter-
nalities in network

One more field of application of the type adjacency matrix is analysis of game equilibria
in economic networks. An example is the network model of production with knowledge
externalities [14], [15].

Behavior of agents in a network structure is defined in much by actions of their
neighbors or by information reccived from them. Network economics and network games
theory consider questions of network formation, spreading of information in networks,
positive and negative externalities, complementarity and substitutability of activities (see
reviews [9]. [7], [10]). Externalities, i.e. influence of other agents which does not go through
the price mechanism, possess properties of public goods and are not fully paid. Positive
externalities, and among them externalities of knowledge and human capital, spring up
both in processes of production [16], [13] and consumption [3], and it is important to
account for them in economic and sociological analysis, forecasting, and mechanism design.

Matveenko and Korolev [14], [15] continue the line of research of Nash equilibria
in networks in presence of positive externalities and introduce several new elements
in comparison to the previous literature. Firstly, production externalities are studied;
agents’ efforts have meaning of investments, in particular, investments into knowledge.
The presence of production block allows to interpret game-theoretic concepts of strategic
complementarity (supermodularity) and strategic substitutability (submodularity) as,
correspondingly, absence and presence of productivity and to analyse these concepts within
the same model.
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Secondly, the model, for the first time in the network literature, uses the notion of
the Jacobian production externality [11], [16], [13] in definition of the concept of game
equilibrium. The essence of this notion is that any agent makes her decision staying in
a particular environment which depends on actions produced by the agent herself and
by her neighbors in network. When making her decision, the agent considers the state of
the environment as exogenous; this means that the agent does not take into account that
her actions can directly influence the state of the environment. As a simplest example,
imagine a game equilibrium in a collective of smokers and non-smokers. A smoker, when
making in equilibrium a decision to continue or to give up smoking, makes it staying in an
environment relating already to her smoking.

The third novation of the model is the use of dynamic approach. Essentially, the model
is a network generalization of the simple two-period model of endogenous growth and
knowledge externalities of Romer [16].

We will see that an important place in the model is played by the typology of nodes
described above. The typology defines behavior of agents in equilibrium and allows to
consider a possibility of transplantation of equilibrium among networks of different size
but the same typology.

4.1 Description of the model

There is an undirected graph (network), G, with n nodes i = 1,2,....,n; each node
represents an agent. In time period 1 each agent i possesses endowment e of good and
can use it partly (or wholly) for consumption in the 15t period, c!, and partly (or wholly)
for investment into knowledge, k;. The investment is immediately transformed into the
stock of knowledge and is used in production of good for consumption in the 2"¢ period,
2. Agent’s preferences are described by quadratic utility function

Ucl,c?) = ct(e —ac}) + dc},

where a is a satiation coefficient; d > 0. It is assumed that under ct € [0,¢€] the utility
increases in c}. These assumptions imply that 0 < a < 1/2. The production in node ¢ is
described by function

F(ki, K;) = gk:K; (9 > 0),

which depends on the state of knowledge. k;. and the environment, K;. The environment,
by definition, is the sum of investments of the agent herself and her neighbors (the agents
in the adjacent nodes of the graph, j € N(7)).

Since increase in each of the parameters d and g promotes increase in the 2"¢ period
consumption, we denote dg = b and talk about parameter b as a productivity. We assume
b> a. If b> 2a we say that productivity presents, and if b < 2a we say that productivity
absents.

Let us consider the following game. Players are the agents i = 1,2,..., n. Strategies
of player i are her feasible volumes of investment, k; € [0,€]. Nash equilibrium with
externalities (for shortness, equilibrium is a profile of players’ strategies, k1,k3..... k7,
such that each k; solves the agent’s problem:

max U(cj, cf)
L"l.c’z.k’,‘

§.L.
c} <e—k,

¢ < F(ki, Ki),

131



Vladimir Matveenko, Alexei Korolev

¢; 20,¢f >0,k >0,

given K, =k} + K;, where K; = Yjen(ik; is the sum of investments by the player i’s

neighbors in the network. If &7 € (0,e),7 = 1,2,...,n, the equilibrium is called inner.

The first order conditions imply (see details in [14], [15]) that the inner equilibrium
(when it exists given values of parameters) is uniquely defined by the system of equations

(b—2a)k + bAk = e(1 — 2a)1,

where k = (k1,k2,....k,)T, A is the adjacency matrix of graph G, 1 is the vector of all
ones. It follows that
B* =T — aA~1)E,

where o = b/(2a —b), & = [e(1 —2a)/(b — 2a)]1. Thus, agents’ strategies are defined by
their a-centralities in the network.

4.2 Usage of the type adjacency matrix in analysis of game equi-
libria
An alternative way to find the inner equilibrium is by use of the type adjacency matrix.
We have R A X
(b—2a)k + bTk = e(1 — 2a)1, 9)

where k = (l%l, ko .., ffS)T is the vector of investments by types, 1 is the S-vector with
all ones. This implies A
k*=(I1-aT1)e,

where a = b/(2a — b), & = [e(1 — 2a)/(b — 2a)]1.

In the inner equilibrium (which is unique) all agents of the same type use the same
strategy, i.e. make the same investment (defined by the a-centrality of the type). Moreover,
if two networks are characterized by the same type adjacency matrix T, then their inner
equilibria do coincide, in the sense that agents in the nodes of the same type make the
same investment.

Thus, the characterization of the inner equilibrium in terms of the types of nodes
is especially important because it shows a possibility of transplantation of the inner
equilibrium from one network into another network with different size but the same
typology.

For example, in Figure 11 three graphs are shown which have different sizes but the
same typology: the type adjacency matrix is

1 2
r-(13)
Transplantation of equilibrium among these graphs is possible.
Generally, let there be two types of nodes characterized by the type adjacency matrix

(81 82
T= (3 a):
Then (9) implies the system of linear equations

(b —2a + Slb)k1 + Sobky = 6(1 . 2&),
t1bk1 + (b — 2a + tab)ks = e(1 — 2a),
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Figure 11: Three graphs with the same typology.

where k1, ko are investments of the types. The solution of the system is the pair

e(l —2a)[b—2a+ (ta — s2)b
(b—2a)?+ (s1 +t2)(b—2a)b+ (s1ta — t132)b2'

e(l —2a)[b—2a+ (s;1 —t1)b (11)
(b—2&)2+(81 +t2)(b—2a)b+ (Sltg —t182)b2. ‘
If0< k; <e, i =1,2, then the values kq, k2 define the inner equilibrium of the game.

Here we limit ourselves by several examples of the networks with two types of nodes.
For the chain of four nodes (with the order of types: 2-1-1-2) the type adjacency

matrix is
1 1
T = (1 O).

ky =

(10)

iy =

Formulas (10)-(11) take the form

b — 2ae(1 — 2a)
'™ 6ab — 402 — b2’

k _e(1—2a)(2a—-0)
7 6ab—4a2 - b

The conditions of inner equilibrium 0 < k; < e.i = 1,2 are fulfilled under absence of
productivity (b < 2a.)

A generalization of the previous case is a fan, i.e. a dyad to each node of which a
bundle of v hanging nodes is adjoined. The type adjacency matrix of the fan is

T=(} g).

An important example of network with two types of nodes is the star network: let us
remind that its type adjacency matrix is

(0 3)

e(1 —2a)[(v — 1)b+ 24
vb? — (b —2a)?

Equations (9)-(10) turn into

ki =
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_ 2ea(l - 2a)
2T Uk — (b-20)%

The pair ki, ko defines inner equilibrium if 0 < k; < e,i = 1,2, i.e. if

vb® — (b —2a)% > 0,
vb? — (b—2a)% > (1 —2a)[(v — 1)b+ 2a],
vb? — (b—2a)? > 2a(1 — 2a).

The third and the first inequalities follow from the second one, and the latter is fulfilled
for all v if b+2a > 1 and b > (—6a + 1+ v36a? — 4a + 1)/2.
The following proposition identifies agents interested in growth of the star network.

Theorem 165. In star network, if the number of peripheral nodes, v , increases, then
knowledge and utility in the central node decrease under absence of productivity, but
increase under presence of productivity. Knowledge and utility in each peripheral node
always decrease.

Proof. Derivative of k1 in v (if v is considered as a continuous variable) is

2bae(1 — 2a)(b — 2a)
[(b—2a)? —vb?]?

Hence, knowledge in the central node decreases in v if b < 2a and increases if b > 2a. It
is directly seen that ky decreases in v. According to Theorem 2.2 in [15], utility increases
in knowledge. O O
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