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Abstract. Weighted independent domination is an NP-hard graph
problem, which remains computationally intractable in many restricted
graph classes. Only few examples of classes are available, where the prob-
lem admits polynomial-time solutions. In the present paper, we extend
the short list of such classes with two new examples.

1 Introduction

INDEPENDENT DOMINATION is the problem of finding in a graph an inclusion-
wise maximal independent set of minimum cardinality. This is one of the hardest
problems of combinatorial optimization and it remains difficult under substantial
restrictions. In particular, it is NP-hard for so-called sat-graphs, where the prob-
lem is equivalent to SATISFIABILITY [15]. It is also NP-hard for planar graphs,
triangle-free graphs, graphs of vertex degree at most 3 [3], line graphs [14],
chordal bipartite graphs [5], etc.

The weighted version of the problem (abbreviated WID) deals with vertex-
weighted graphs and asks to find an inclusionwise maximal independent set of
minimum total weight. This version is provenly harder, as it remains NP-hard
even for chordal graphs [4], where INDEPENDENT DOMINATION can be solved in
polynomial time [6].

Not much is known about graph classes allowing an efficient solution of the
WID problem. Among rare examples of this type, let us mention cographs and
split graphs.

— A cograph is a graph in which every induced subgraph with at least two
vertices is either disconnected or the complement of a disconnected graph.
In the case of cographs, the problem can be solved efficiently by means of
modular decomposition.

— A split graph is a graph whose vertices can be partitioned into a clique and an
independent set. The only available way to solve WID efficiently for a split
graph is to examine all its inclusionwise maximal independent sets, of which
there are polynomially many.
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Let us observe that in both these examples we deal with hereditary classes, i.e.
with classes of graphs closed under taking induced subgraphs. It is well-known
(and not difficult to see) that a class of graphs is hereditary if and only if it can
be characterized in terms of minimal forbidden induced subgraphs. For instance,
the cographs are precisely Py-free graphs (i.e. graphs containing no induced Py),
while the split graphs are the graphs which are free of 2K5,Cy and Cs.

The class of sat-graphs (as well as each of the other classes mentioned earlier)
also is hereditary. It consists of graphs whose vertices can be partitioned into
a clique and a graph of vertex degree at most 1. Therefore, sat-graphs form
an extension of split graphs. With this extension the complexity status of the
problem jumps from polynomial-time solvability to NP-hardness.

In the present paper, we study two more extensions of split graphs: the
class of (Ps, Ps)-free graphs and the class of (Ps, P; + P;)-free graphs. The first
of them also extends the cographs, since both forbidden graphs contain a Pj.
From an algorithmic point of view, both extensions are resistant to any avail-
able technique. To crack the puzzle for (Ps, Ps)-free graphs, we develop a new
decomposition scheme combining several algorithmic tools. This enables us to
show that the WID problem can be solved for (Ps, Ps)-free graphs in polynomial
time. For the second class, we develop a tricky reduction allowing us to reduce
the problem to the first class.

Let us emphasize that in both cases the presence of Ps among the forbid-
den graphs is necessary, because each of Ps and P; + P, contains a C,; and by
forbidding C; alone we obtain a class where the problem is NP-hard. Whether
the presence of P; among the forbidden graphs is sufficient for polynomial-time
solvability of WID is a big open question. For the related problem of finding
a maximum weight independent set (WIS), this question was answered only
recently [9] after several decades of attacking the problem on subclasses of Ps-
free graphs (see e.g. [2,7,8]). WID is a more stubborn problem, as it remains
NP-hard in many classes where WIS can be solved in polynomial time, such as
line graphs, chordal graphs, bipartite graphs, etc. Determining the complexity
status of WID in Ps-free graphs is a challenging open question. We discuss this
and related open questions in the concluding section of the paper. The rest of
the paper is organized as follows: Sect.2 contains preliminary information, in
Sect. 3 we solve the problem for (Ps, Ps)-free graphs, and in Sect. 4 we solve it

for (Ps, P3 + P»)-free graphs.

2 Preliminaries

All graphs in this paper are finite, undirected, without loops and multiple edges.
The vertex set and the edge set of a graph G are denoted by V(G) and E(G),
respectively. A subset S C V(G) is

— independent if no two vertices of S are adjacent,
— a clique if every two vertices of S are adjacent,
— dominating if every vertex not in S is adjacent to a vertex in S.
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For a vertex-weighted graph G with a weight function w, by id,,(G) we denote
the minimum weight of an independent dominating set in G.

If v is a vertex of G, then N(v) is the neighbourhood of v (i.e. the set of
vertices adjacent to v) and V(G) \ N(v) is the antineighbourhood of v. We say
that v is simplicial if its neighbourhood is a clique, and v is antisimplicial if its
antineighbourhood is an independent set.

Let S be a subset of V(G). We say that a vertex v € V(G) \ S dominates
S if S C N(v). Also, v distinguishes S if v has both a neighbour and a non-
neighbour in S. By G[S] we denote the subgraph of G induced by S and by
G — S the subgraph G[V '\ S]. If S consists of a single element, say S = {v}, we
write G — v, omitting the brackets.

If G is a connected graph but G — S is not, then S is a separator (also known
as a cut-set). A clique separator is a separator which is also a clique.

As usual, P,,C,, and K, denote a chordless path, a chordless cycle and a
complete graph on n vertices, respectively. Given two graphs G and H, we denote
by G + H the disjoint union of G and H, and by mG the disjoint union of m
copies of GG.

We say that a graph G contains a graph H as an induced subgraph if H is
isomorphic to an induced subgraph of G. Otherwise, G is H-free.

A class Z of graphs is hereditary if it is closed under taking induced sub-
graphs, i.e. if G € Z implies that every induced subgraph of G belongs to Z.
It is well-known that Z is hereditary if and only if graphs in G do not contain
induced subgraphs from a set M, in which case we say that M is the set of
forbidden induced subgraphs for Z.

For an initial segment of natural numbers {1,2,...,n} we will often use the
notation [n].

2.1 Modular Decomposition

Let G = (V, E) be a graph. A set M C V is a module in G if no vertex outside
of M distinguishes M. Obviously, V(G), § and any vertex of G are modules
and we call them trivial. A non-trivial module is also known as a homogeneous
set. A graph without homogeneous sets is called prime. The notion of a prime
graph plays a crucial role in modular decomposition, which allows to reduce
various algorithmic and combinatorial problems in a hereditary class Z to prime
graphs in Z (see e.g. [12] for more details on modular decomposition and its
applications). In particular, it was shown in [3] that the WID problem can be
solved in polynomial time in Z whenever it is polynomially solvable for prime
graphs in Z.

In our solution, we will use homogeneous sets in order to reduce the problem
from a graph G to two proper induced subgraphs of G as follows. Let M C V be a
homogeneous set in G. Denote by H the graph obtained from G by contracting
M into a single vertex m (or equivalently, by removing all but one vertex m
from M). We define the weight function w’ on the vertices of H as follows:
w'(v) = w(v) for every v # m, and w'(m) = id,,(G[M]). Then it is not difficult
to see that
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iy (G) = idy (H). (1)

In other words, to solve the problem for G we first solve the problem for the
subgraph G[M], construct a new weighted graph H, and solve the problem for
the graph H.

2.2 Antineighborhood Decomposition

One of the simplest branching algorithms for the maximum weight independent
set problem is based on the following obvious fact. For any graph G = (V, E)
and any vertex v € V,

154 (G) = max{is, (G — N(v)),i54,(G —v)},

where w is a weight function on the vertices of G, and is,(G) stands for the
maximum weight of an independent set in G. We want to use a similar branching
rule for the WID problem, i.e.

idy(G) = min{id,, (G — N(v)),id(G —v)}. (2)

However, formula (2) is not necessarily true, because an independent domi-
nating set in the graph G — v is not necessarily dominating in the whole graph
G. To overcome this difficulty, we introduce the following notion.

Definition 1. A vertex v is permissible if formula (2) is valid for v

An obvious sufficient condition for a vertex to be permissible can be stated
as follows: if every independent dominating set in G — v contains at least one
neighbour of v, then v is permissible.

Applying (2) to a permissible vertex v of G, we reduce the problem from G
to two subgraphs G — v and G — N(v). Such a branching procedure results in a
decision tree. In general, this approach does not provide a polynomial-time solu-
tion, since the decision tree may have exponentially many nodes (subproblems).
However, under some conditions this procedure may lead to a polynomial-time
algorithm. In particular, this is true for graphs in hereditary classes possessing
the following property.

Definition 2. A graph class G has the antineighborhood property if there is a
subclass F C G, and polynomial algorithms P,Q and R, such that

(i) Given a graph G the algorithm P decides whether G belongs to F or not;
(ii) @ finds a permissible vertex v in any input graph G € G\ F such that the
graph G — N (v) induced by the antineighborhood of v belongs to F; we call
v a good vertex;
(i) R solves the WID problem for (every induced subgraph of) any input graph
from F.

Directly from the definition we derive the following conclusion.

Theorem 1. Let G be a hereditary class possessing the antineighborhood prop-
erty. Then WID can be solved in polynomial time for graphs in G.
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3 WID in (Ps, P5)-Free Graphs

To solve the problem for (Ps, Ps)-free graphs, we first develop a new decompo-
sition scheme in Sect. 3.1 that combines modular decomposition and antineigh-
borhood decomposition. In Sect. 3.2 we apply it to (Ps, P5)-free graphs.

3.1 Decomposition Scheme

Let G be a hereditary class such that the class G, of prime graphs in G has the
antineighborhood property. We define the decomposition procedure by describ-
ing the corresponding decomposition tree T'(G) for a graph G = (V, E) € G. In
the description, we use notions and notations introduced in Definition 2.

1. If G belongs to F, then the node of T'(G) corresponding to G is a leaf.

2. If G ¢ F and G has a homogeneous set M, then G is decomposed into
subgraphs G; = G[M] and Gy = G[(V \ M) U {m}] for some vertex m in M.
The node of T(G) corresponding to G is called a homogeneous node, and it
has two children corresponding to G; and Gs. These children are in turn the
roots of subtrees representing possible decompositions of G; and Gs.

3. If G ¢ F and G has no homogeneous set, then G is prime and by the anti-
neighborhood property of G, there exists a good vertex v € V. Then G is
decomposed into subgraphs Gi; = G — N(v) and G = G — v. The node of
T(G) corresponding to G is called an antineighborhood node, and it has two
children corresponding to G; and Gs. The graph G; belongs to F and the
node corresponding to G is a leaf. The node corresponding to Gs is the root
of a subtree representing a possible decomposition of Gs.

Lemma 1. For an n-vertex graph G € G, the tree T(G) contains O(n?) nodes.

Proof. Since T'(G) is a binary tree, it is sufficient to show that the number of
internal nodes is O(n?). To this end, we prove that the internal nodes of T'(G)
can be labeled by pairwise different pairs (a,b), where a,b € V(G).

Let G = (V',E’) be an induced subgraph of G that corresponds to an
internal node X of T(G). If X is a homogeneous node, then G’ is decomposed
into subgraphs G; = G'[M] and Gy = G'[(V'\ M) U {m}], where M C V' is a
homogeneous set of G’ and m is a vertex in M. In this case, we label X with
(a,b), where a € M\ {m} and b € V' \ M. If X is an antineighborhood node,
then G’ is decomposed into subgraphs G; = G’ — N(v) and G2 = G’ — v, where
v is a good vertex of G'. In this case, X is labeled with (v, b), where b € N(v).

Suppose, to the contrary, that there are two internal nodes A and B in T(G)
with the same label (a,b). By construction, this means that a,b are vertices
of both G4 and Gp, the subgraphs of G corresponding to the nodes A and
B, respectively. Assume first that B is a descendant of A. The choice of the
labels implies that regardless of the type of node A (homogeneous or antineigh-
borhood), the label of A has at least one vertex that is not a vertex of Gp,
a contradiction. Now, assume that neither A is a descendant of B nor B is a
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descendant of A. Let X be the lowest common ancestor of A and B in T(G).
If X is a homogeneous node, then G4 and G can have at most one vertex in
common, and thus A and B cannot have the same label. If X is an antineigh-
borhood node, then one of its children is a leaf, contradicting to the assumption
that both A and B are internal nodes. a

Lemma 2. Let G be an n-vertex graph in G. If time complexities of the algo-
rithms P and Q are O(n?) and O(n?), respectively, then T(G) can be constructed
in time O(n2tmax{2p.a}h)),

Proof. The time needed to construct T'(G) is the sum of times required to identify
types of nodes of T'(G) and to decompose graphs corresponding to internal nodes
of T(G). To determine the type of a given node X of T(G), we first use the
algorithm P to establish whether the graph Gx corresponding to X belongs
to F or not. In the former case X is a leaf node, in the latter case we further
try to find in Gx a homogeneous set, which can be performed in O(n + m)
time [11]. If Gx has a homogeneous set, then X is a homogeneous node and
we decompose Gx into the graphs induced by the vertices in and outside the
homogeneous set, respectively. If Gx does not have a homogeneous set, then
X is an antineighborhood node, and the decomposition of Gx is equivalent to
finding a good vertex, which can be done by means of the algorithm (. Since
there are O(n?) nodes in T'(G), the total time complexity for constructing 7'(G)
is O(n?tmax{Z.pal), 0

Theorem 2. If G is a hereditary class such that the class G, of prime graphs
in G has the antineighborhood property, then the WID problem can be solved in
polynomial time for graphs in G.

Proof. Let G be an n-vertex graph in G. To solve the WID problem for G, we
construct T(G) and then traverse it bottom-up, deriving a solution for each
node of T'(G) from the solutions corresponding to the children of that node. The
construction of T'(G) requires a polynomial time by Lemma 2. For the instances
corresponding to leaf-nodes of T(G), the problem can be solved in polynomial
time by the antineighborhood property. According to the discussion in Sects. 2.1
and 2.2, the solution for an instance corresponding to an internal node can be
derived from the solutions of its children in polynomial time. Finally, as there
are O(n?) nodes in T(G) (Lemma 1), the total running time to solve the problem
for G is polynomial. O

3.2 Application to (Ps, Ps)-Free Graphs

In this section, we show that the WID problem can be solved efficiently for
(Ps, Ps)-free graphs by means of the decomposition scheme described in Sect. 3.1.
To this end, we will prove that the class of prime (Ps, Ps)-free graphs has the
antineighborhood property. We start with several auxiliary results. The first of
them is simple and we omit its proof.
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Observation 1. Let G = (V, E) be a graph, and let W C V induce a connected
subgraph in G. If a vertex v € V\ W distinguishes W, then v distinguishes two
adjacent vertices of W.

Proposition 1. Let G = (V, E) be a prime graph. If a subset W C V has at
least two vertices and is not a clique, then there exists a vertex v € V'\ W which
distinguishes two non-adjacent vertices of W.

Proof. Suppose, to the contrary, that none of the vertices in V'\ W distinguishes
a pair of non-adjacent vertices in W. If G[W] has more than one connected
component, then it is easy to see that no vertex outside of W distinguishes W.
Hence, W is a homogeneous set in G, which contradicts the primality of G.

If G[W] is connected, then G[W] has a connected component C with at least
two vertices, since W is not a clique. Then, by our assumption and Observation 1,
no vertex outside of W distinguishes C. Also, by the choice of C, no vertex of W
outside of C' distinguishes C. Therefore, V(C) is a homogeneous set in G. This
contradiction completes the proof of the proposition. a

Lemma 3. If a (Ps, Ps)-free prime graph contains an induced copy of 2K, then
it has a clique separator.

Proof. Let G = (V, E) be a (Ps, Ps)-free prime graph containing an induced copy
of 2K5. Let S C V be a minimal separator with the property that G — S contains
at least two non-trivial connected components, i.e. connected components with
at least two vertices. Such a separator necessarily exists, since G contains an
induced 2K5. It follows from the choice of S that

— G — S has k > 2 connected components C1,...,Cy;

— r > 2 of these components, say C1,...,C}, have at least two vertices, and all
the other components C;41,...,Cy are trivial;

— every vertex in S has a neighbour in each of the non-trivial components
C1,...,C, (since S is minimal);

— for every i € {r+1,...,k}, the unique vertex of the trivial component C; has
a neighbour in S (since G is connected).

In the remaining part of the proof, we show that G has a clique separator.
Let us denote U; = V(C;) for i = 1,..., k. We first observe the following.

Claim 1. Any vertezx in S distinguishes at most one of the sets Uy, ..., U,.

Proof. Assume v € S distinguishes U; and U; for distinct 4,j € [r]. Then by
Observation 1 v distinguishes two adjacent vertices a,b in U; and two adjacent
vertices ¢, d in U;. But then a,b,v, ¢, d induce a forbidden Ps.

According to Claim 1, the set S can be partitioned into subsets Sy, S1 .. ., S,
where the vertices of Sy dominate every member of {Uy,...,U,}, and for each
i € [r], the vertices of S; distinguish U; and dominate U; for all j different from
i. Moreover, for each i € [r] the set S; is non-empty, as the graph G is prime.
Now we prove two more auxiliary claims.
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Claim 2. For 0 < i < j < r, every verter in S; is adjacent to every vertex
m Sj.

Proof. Assume that the claim is false, i.e. there exist two non-adjacent vertices
s; € S; and s; € S;. By Observation 1 there exist two adjacent vertices a,b € U;
that are distinguished by s;. But then s;,s;,a,b and any vertex in N(s;) N U;
induce a forbidden Ps, a contradiction.

Claim 3. For i € [r], no vertex in U, distinguishes two non-adjacent vertices

Proof. Assume that there exists a pair of non-adjacent vertices z,y € 5; that
are distinguished by a vertex u; € U;. Let j € [r] \ {i}, and let s; € S; and
u; € Uj \N(ﬁ) Then, since s; dominates S;, we have that u;, z,y, s;,u; induce

a forbidden Ps, a contradiction.
We split further analysis into two cases.

Case 1: there is at least one trivial component in G \ S, i.e. &k > r. For i €
{r+1,...,k} we denote by wu; the unique vertex of U;. Let U = {uy41,...,ur}
and let u* be a vertex in U with a minimal (under inclusion) neighbourhood.
We will show that N(u*) is a clique, and hence is a clique separator in G. By
Claim 2, it suffices to show that N(u*) N.S; is a clique for each 7 € {0,1,...,k}.
Suppose that for some 7 the set N (u*)N.S; is not a clique. Then, by Proposition 1,
there are two nonadjacent vertices x,y € N(u*) N .S; distinguished by a vertex
z e V\ (Nw*)NS;). It follows from Claims2 and 3 that either z € S; \ N(u*)
or z € U. If z € §;\ N(u*), then u*,z,y, 2, and any vertex in U;, j € [r] \ {i}
induce a forbidden Pj, a contradiction. Hence, assume that none of the vertices
in S\ (NV(u*)NS;) distinguishes two nonadjacent vertices in N(u*)NS;. If z € U,
with z being nonadjacent to z and adjacent to y, then by the minimality of N (u*)
there is a vertex s € N(z) that is not adjacent to u*. Since N(z) C S, vertex
s does not distinguish  and y. But then z,u*,y, 2z, s induce either a P5 (if s
is adjacent neither to  nor to y) or a Ps (if s is adjacent to both z and y), a
contradiction.

Case 2: there are no trivial components in G \ S, i.e. k = r. First, observe that
|So| < 1, since G is prime and no vertex outside of Sy distinguishes Sy (which
follows from the definition of Sy, Claim2 and the fact that k& = r). Further,
Claims 2 and 3 imply that for each ¢ € [r] no vertex in V'\ S; distinguishes two
nonadjacent vertices in S;. Therefore, applying Proposition 1 we conclude that
S; is a clique. Hence S = U;O S; is a clique separator in G. g

Lemma 4. Let G be a (Ps, Ps)-free prime graph containing an induced copy of
2K5. Then G contains a permissible antisimplicial vertex.

Proof. By Lemma 3, G has a clique separator, and therefore it also has a minimal
clique separator S. Let C4,...,Ck, k > 2, be connected components of G — .5,
and U; = V(C;), i =1,...,k. Since S is a minimal separator, every vertex in S
has at least one neighbour in each of the sets Uy, ..., Uy. By Claim 1 in the proof
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of Lemma 3, any vertex in S distinguishes at most one of the sets Uy, ..., U,
and therefore, the set S partitions into subsets Sy, S1 ..., Sk, where the vertices
of Sy dominate every member of {Uy,..., Uy}, and for each ¢ € [k] the vertices
of S; distinguish U; and dominate U; for all j different from i.

If Sy # 0, then any vertex in Sy is adjacent to all the other vertices in the
graph, and therefore it is permissible and antisimplicial. Hence, without loss of
generality, assume that So = () and S; # 0.

Let s be a vertex in S7 with a maximal (under inclusion) neighbourhood in
U;. We will show that s is antisimplicial and permissible. Suppose that the graph
induced by the antineighbourhood of s contains a connected component C' with
at least two vertices. Since G is prime, by Observation 1 it must contain a vertex
p outside of C distinguishing two adjacent vertices ¢ and ¢ in C. Then p does not
belong to N(s)NUy, since otherwise g, t, p, s together with any vertex in Us would
induce a Ps. Therefore, p belongs to S;. Since the set N(s) N Uy is maximal, it
contains a vertex y nonadjacent to p. But now ¢, ¢q,p, s,y induce either a Ps or
its complement, as y does not distinguish ¢ and ¢. This contradiction shows that
every component in the graph induced by the antineighbourhood of s is trivial,
i.e. s is antisimplicial.

Assume now that s is not permissible, i.e. there exists an independent domi-
nating set I in G — s that does not contain a neighbour of s. Since s dominates
Us U...UUy, the set T is a subset of U \ N(s). But then I is not dominating,
since no vertex of Us has a neighbour in I, This contradiction completes the
proof of the lemma. O

Lemma 5. The class of prime (Ps, Ps)-free graphs has the antineighborhood
property.

Proof. Let F be the class of (2K, Ps)-free graphs (this is a subclass of (Ps, Ps)-
free graphs, since 2K is an induced subgraph of Ps). Clearly, graphs in F can be
recognized in polynomial time. The WID problem can be solved in polynomial
time for graphs in JF, because the problem is polynomially solvable on 2K5-
free graphs (according to [1], these graphs have polynomially many maximal
independent sets).

If a prime (Ps, Ps)-free graph G = (V, E) does not belong to F, then by
Lemma4 it contains a permissible vertex v whose antineighbourhood is an inde-
pendent set, and therefore, G — N(v) € F. It remains to check that a permissible
antisimplicial vertex in G can be found in polynomial time. It follows from the
proof of Lemma4 that in a minimal clique separator of G any vertex with a
maximal neighbourhood is permissible and antisimplicial. A minimal clique sep-
arator in a graph can be found in polynomial time [13], and therefore the desired
vertex can also be computed efficiently. a

Now the main result of the section follows from Theorem 2 and Lemma 5.

Theorem 3. The WID problem can be solved in polynomial time in the class of
(Ps, Ps)-free graphs.
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4 WID in (Ps, P; + P»)-Free Graphs

To solve the problem for (Ps, Ps + P»)-free graphs, we introduce the following
notation: for an arbitrary graph F, let F* be the graph obtained from F by
adding three new vertices, say b, ¢, d, such that b is adjacent to each vertex of
F, while ¢ is adjacent to b and d only (see Fig.1 for an illustration in the case
F = P5). The importance of this notation is due to the following result.

Theorem 4 [10]. Let F be any connected graph. If the WID problem can be
solved in polynomial time for (Ps, F')-free graphs, then this problem can also be
solved in polynomial time for (Ps, F*)-free graphs.

This result together with Theorem 3 leads to the following conclusion.

Corollary 1. The WID problem can be solved in polynomial time in the class
of (Ps, P5*)—f7“ee graphs.

To solve the problem for (Ps, P3 + P»)-free graphs, in what follows we reduce
it to (Ps, P + Pa, E*)—free graphs, where the problem is solvable by Corollary 1.

Let G be a (Ps, P3 + P)-free graph containing a copy of P5" induced by
vertices aq, ag, as, aq,as,b, ¢, d, as shown in Fig. 1.

Fig. 1. The graph P5 "

Denote by U the set of vertices in G that have at least one neighbour in
{a1,a2,a3,a4,as5}, that is, U = N(ay) U...U N(as). In particular, U includes
{a1,as,as3,a4,as,b}. We assume that

(**) the copy of P5 in G is chosen in such a way that |U] is minimum.

Proposition 2. If a vertexr x € U has a neighbour y outside of U, then x is
adjacent to each of the vertices ay,as,as,ay.

Proposition 2 allows us to partition the set U into three subsets as follows:

U; consists of the vertices of U that are adjacent to each of the vertices aq, as, as,
a4, and have at least one neighbour outside of U;

Us consists of the vertices of U that are adjacent to each of the vertices aq, as, as,
a4, but have no neighbours outside of U;

Us =U\ (U UUy).
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Notice that U; is non-empty as it contains b. Also {a1, a2, as, a4, a5} C Us, and
no vertex in Us has a neighbour outside of U.

Proposition 3. U; is a clique in G.

Proposition 4. The graph G[Uy U Us] is P5 -free.

Now we describe a reduction from the graph G with a weight function w
to a graph G’ with a weight function w’, where |V(G")| < |V(G)| — 4, G’ is
(Ps, P3 + Py)-free, and id,(G) = id, (G'). First, we define G’ as the graph
obtained from G by
1. removing the vertices of Us;

2. adding edges between any two non-adjacent vertices in U; U Us;
3. adding a new vertex u adjacent to every vertex in Uy U Us.
Clearly, |V(G")| < |V(G)|—4, as the set Us of the removed vertices contains at

least 5 elements and we add exactly one new vertex u. In the next proposition, we
show that the above reduction does not produce any of the forbidden subgraphs.

Proposition 5. The graph G’ is (Ps, P3 + Ps)-free.

Now we define a weight function w’ on the vertex set of G’ as follows:
1. w'(z) = w(x), for every x € V(G') \ {u} UU1 U Us);

2. w'(u) = idy(G[Us]);

3. w'(x) = w(z) + idyw(G[U \ Nz]]), for every x € Us;

4. w'(z) = w(x) +idy(G[U \ (U1 U N[z])]), for every = € Us.

Lemma 6. Given a weighted graph (G,w), the weighted graph (G',w’) can be
constructed in polynomial time.

To show that id,, (G) = id,,(G), we need two auxiliary propositions.
Proposition 6. Any independent dominating set in G[Us] dominates Uy U Us.

Proposition 7. For every vertex x € Uy, any independent dominating set in
the graph G — U dominates Uy \ N(x).

Lemma 7. For any weighted graph (G,w), we have idy(G) = idy (G').
Now we are ready to prove the main result of this section.

Theorem 5. The WID problem is solvable in polynomial time for (Ps, Ps + Ps)-
free graphs.

Proof. Let (G, w) be an n-vertex (Ps, P3 + P3)-free weighted graph. If G contains
an induced copy of ?5*, then by Proposition 5, and Lemmas 6 and 7, the graph
(G, w) can be transformed in polynomial time into a (Ps, P3 + Ps)-free weighted
graph (G’, w’) with at most n—4 vertices such that id,,(G) = id, (G"). Repeating
this procedure at most [n/4] times we obtain a (Ps, Ps + Py, P5 )-free weighted
graph (H, o) such that id,,(G) = id,(H). By Corollary 1 the WID problem for
(H,o) can be solved in polynomial time. To conclude the proof we observe that
a polynomial-time procedure computing id,,(G) can be easily transformed into

a polynomial-time algorithm finding an independent dominating set of weight
1dy (G). O
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5 Concluding Remarks and Open Problems

In this paper, we proved that WEIGHTED INDEPENDENT DOMINATION can be
solved in polynomial time for (Ps, Ps)-free graphs and (Ps, Ps + P;)-free graphs.
A natural question to ask is whether these results can be extended to a class
defined by one forbidden induced subgraph.

From the results in [3] it follows that in the case of one forbidden induced
subgraph H the problem is solvable in polynomial time only if H is a linear forest,
i.e. a graph every connected component of which is a path. On the other hand,
it is known that this necessary condition is not sufficient, since INDEPENDENT
DOMINATION is NP-hard in the class of 2P;-free graphs. This follows from the
fact that all sat-graphs are 2Ps-free [15].

In the case of a disconnected forbidden graph H, polynomial-time algorithms
to solve WEIGHTED INDEPENDENT DOMINATION are known only for mP;-free
graphs for any fixed value of m. This follows from a polynomial bound on the
number of maximal independent sets in these graphs [1]. The unweighted version
of the problem can also be solved for P, + Ps-free graphs [10]. However, for
weighted graphs in this class the complexity status of the problem is unknown.

Problem 1. Determine the complexity status of WEIGHTED INDEPENDENT DOM-
INATION in the class of P; 4+ Ps-free graphs.

In the case of a connected forbidden graph H, i.e. in the case when H = Py,
the complexity status is known for k > 7 (as P; contains a 2P3) and for k < 4
(as Py-free graphs are precisely the cographs). Therefore, the only open cases
are Ps-free and Ps-free graphs. As we mentioned in the introduction, the related
problem of finding a maximum weight independent set (WIS) has been recently
solved for Ps-free graphs [9]. This result makes the class of Ps-free graphs of
particular interest for WEIGHTED INDEPENDENT DOMINATION and we formally
state it as an open problem.

Problem 2. Determine the complexity status of WEIGHTED INDEPENDENT DOM-
INATION in the class of Ps-free graphs.

We also mentioned earlier that a polynomial-time solution for WIS in a hered-
itary class X does not necessarily imply the same conclusion for WID in A
However, in the reverse direction such examples are not known. We believe that
such examples do not exist and propose this idea as a conjecture.

Conjecture 1. If WID admits a polynomial-time solution in a hereditary class
X, then so does WIS.
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