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Abstract—We prove equivalence of using the modulus metric and Euclidean metric in solv-
ing the soft decoding problem for a memoryless discrete channel with binary input and Q-ary
output. For such a channel, we give an example of a construction of binary codes correct-
ing t binary errors in the Hamming metric. The constructed codes correct errors at the output
of a demodulator with Q quantization errors as (t+1)(Q− 1)− 1 errors in the modulus metric.
The obtained codes are shown to have polynomial decoding complexity.
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1. MODEL OF A SYMMETRIC MEMORYLESS CHANNEL
WITH BINARY INPUT AND Q-ARY OUTPUT ALPHABETS

By a symmetric binary-input continuous-output channel we call a discrete-time channel with
the following properties:

• The input alphabet U ≡ {0, 1} consists of two symbols, denoted by 0 and 1. We denote by Un

the set of length-n vectors with elements from U ;
• The output alphabet F is the set of real numbers;
• An output f ∈ F at a given time slot depends on a single input symbol;
• All outputs f satisfy the symmetry property: Pr(f |0) = Pr(1− f |1). By Pr(f |x) we mean the
distribution density of the conditional probability of receiving symbol f from the channel given
that symbol x ∈ U was transmitted.

An example of functions Pr(f |0) and Pr(f |1) is shown in the figure.

By an error vector for a codeword u = (u1, u2, . . . , un), ui ∈ U , of length n we mean a vector e =
(e1, e2, . . . , en), ei ∈ F , of the same length whose corresponding elements are differences between
the vector f = (f1, f2, . . . , fn) received from the channel and the transmitted word: ei = fi − ui,
1 ≤ i ≤ n.

Maximum likelihood decoding for a code G ⊂ Un means the following [1]: for a given received
vector f , find a codeword u ∈ G which maximizes the probability that u was transmitted given
that f was received: P (u |f ) → max. An additive white Gaussian noise memoryless channel is
compatible with the Euclidean metric. The maximum likelihood decoding in this case consists in
finding a vector u = (u1, u2, . . . , un) ∈ G which is at the smallest Euclidean distance from the
received vector f = (f1, f2, . . . , fn).

In [2], the soft decoding problem for a binary-input Q-ary output channel was considered. In
this problem setting, values of components of a vector f = (f1, f2, . . . , fn) remain to be real but
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may take a finite number of values, which will be referred to as an output alphabet. The output
alphabet size is determined by the number of quantization levels of an output matched filter.
A quantization scheme with Q = 8 is often used in soft decision decoding systems. As was noted
in [2], the behavior of such a system is close to that obtained under infinitely many quantization
levels. The maximum likelihood decoding for a quantized channel also consists in finding a vector
u = (u1, u2, . . . , un) ∈ G which is at the smallest Euclidean distance from the received vector
f = (f1, f2, . . . , fn).

Real-world communication systems, as is noted in [2], use not the real values of the components fi
but numbers indicating a quantization level vi ∈ {0, 1, . . . , Q − 1} that corresponds to fi. As a
result, to a vector f = (f1, f2, . . . , fn) there corresponds a Q-ary vector v = (v1, v2, . . . , vn). Thus,
we have obtained a description of a discrete binary-input channel with a Q-ary output alphabet.
This channel is completely described by a set of transition probabilities Pr(j |x), where Pr(j |x)
is the conditional probability that the output symbol is j given that the input symbol is x. We
assume that the channel is symmetric and Pr(j |0) = Pr(Q− 1− j |1).

If a binary vector u = (u1, u2, . . . , un) ∈ Un was transmitted through the channel, the probability
that a vector v = (v1, v2, . . . , vn) was received is computed as

Pr(v |u) =
n∏

i=1

Pr(vi |ui).

By taking the logarithm, we obtain

log(Pr(v |u)) =
n∑

i=1

log(Pr(vi |ui)). (1)

A decoder has to maximize the value of Pr(v |u), which is maximal when the negative sum on
the right-hand side of (1) is minimal. In [2] an approximating expression for (1) was introduced,
which is more convenient for computing the distance in soft decoding and which is called the symbol
metric. The corresponding values in this metric are defined to be mj = −A−B log(Pr(j |0)). The
constants A and B are chosen in such a way that the minimum value of mj is zero and the others
are positive.

The scheme with mj = j is used most often. If the number of levels is Q, the metric assumes
only values in the set {0, 1, 2, . . . , Q − 1}. As is noted in [2], this choice of a metric well describes
many decoders used in practice.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 55 No. 2 2019



ON APPLICATION OF THE MODULUS METRIC 147

In what follows we will only consider channels compatible with the Euclidean metric defined via
their transition probabilities. Thus, the maximum likelihood decoding problem is used by finding
a nearest (in the Euclidean metric) codeword to the received vector.

2. INTERRELATION BETWEEN THE MODULUS AND EUCLIDEAN METRICS
IN A CHANNEL WITH BINARY INPUT AND Q-ARY OUTPUT ALPHABETS

Consider the channel from Section 1 with Q = 2z + 1. Let a set of binary code vectors G ⊂ Un

used for the transmission through the channel be fixed.

A binary vector u = (u1, u2, . . . , un) ∈ G with elements from {0, 1} in the situation with
Q = 2z + 1 quantization levels and no errors in the channel is considered by a demodulator as a
binary vector v∗ = (v1, v2, . . . , vn) ∈ G∗ with elements vi ∈ {0, 2z} � H . Thus, the set G of words
in the binary alphabet {0, 1} will be considered by the demodulator as a set G∗ of binary words in
the binary alphabet {0, 2z}.

When channel errors affect a vector u∗ = (u∗1, u
∗
2, . . . , u

∗
n), the output of the demodulator is a

Q-ary vector y∗ = (y1, y2, . . . , yn) with elements in {0, 1, 2, . . . , 2z} � Z. Denote by Zn the set of
length-n vectors with elements from Z.

The maximum likelihood decoding problem for a code G∗ with 2z +1 sublevels in a memoryless
channel under Gaussian noise is solved by finding a codeword v∗ = (v1, v2, . . . , vn) ∈ G∗ nearest to
the received vector y∗ = (y1, y2, . . . , yn) ∈ Zn with respect to the Euclidean distance

dE(y
∗;v∗) =

√√√√ n∑
i=1

(yi − vi)2. (2)

The distance dM (u;v) in the modulus metric between vectors u = (u1, u2, . . . , un) ∈ Zn and
v = (v1, v2, . . . , vn) ∈ Zn is

dM (u;v) =
n∑

i=1

|ui − vi|. (3)

The weight wM (u) of a vector u = (u1, u2, . . . , un) in the modulus metric is defined as the distance
dM (u;0), where 0 is the all-zero vector of length n. If dM (u;v) = t, we will say that u =
(u1, u2, . . . , un) is obtained from v = (v1, v2, . . . , vn) by an error of multiplicity t.

Let us introduce a partial order relation on the set Zn of vectors of length n. We define u � v
if for all 1 ≤ i ≤ n we have vi ≤ ui. If the last inequality does not hold for all 1 ≤ i ≤ n, we say
that u and v are incomparable. Let dM (u;v) = t and u � v. Then we say that u is obtained
from v by t one-way increasing errors. One-way decreasing errors are defined similarly.

Denote by J the set of vectors of length n with components from the set {0, 1, 2, . . . , 2z}. For
the cardinality of J , we have |J | = (2z + 1)n.

Let u∗ and v∗ be vectors of length n with components belonging to {0, 2z} = H . Denote by W
the set of all such vectors. Note that for the cardinality of this set we have |W | = 2n. In fact,
vectors from W are vertices of an n-cube, and y∗ is an arbitrary point of this cube. For a code B∗

and the sets W and J , we have B∗ ⊂ W ⊂ J .

Theorem. For any vector y∗ = (y1, y2, . . . , yn) ∈ J and any pair of vectors u∗ ∈ W and
v∗ ∈ W we have

d2E(y
∗;v∗)− d2E(y

∗;u∗) = 2z(dM (y∗;v∗)− dM (y∗;u∗)). (4)

Proof. Consider the vectors u∗ ∈ W and v∗ ∈ W . Note that the set of positions where these
vectors coincide has no effect on the identity (4). Thus, we will only consider positions where these
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vectors differ. Without loss of generality, let us assume that the first � positions of u∗ contain
symbol 2z, and the next m positions contain 0. Accordingly, the first � positions of v∗ contain 0,
and the next m positions contain 2z . The remaining n− �−m positions of these vectors coincide,
so we ignore them in what follows. Then, according to (2), for the left-hand side of (4) we have

d2E(y
∗;v∗)− d2E(y

∗;u∗)

=

(
�∑

i=1

y2i +m22z − 2z+1
�+m∑
i=�+1

yi +
�+m∑
i=�+1

y2i

)
−

(
�∑

i=1

y2i + �22z − 2z+1
�∑

i=1

yi +
�+m∑
i=�+1

y2i

)

= 2z
((

m2z − 2
�+m∑
i=�+1

yi

)
−

(
�2z − 2

�∑
i=1

yi

))
. (5)

Now consider the right-hand side of (4) in the modulus metric. By virtue of (3), we obtain

dM (y∗;v∗)− dM (y∗;u∗) =
�∑

i=1

yi +m22z −
�+m∑
i=�+1

yi −
(
−

�∑
i=1

yi + �2z +
�+m∑
i=�+1

yi

)

=

(
m2z − 2

�+m∑
i=�+1

yi

)
−

(
�2z − 2

�∑
i=1

yi

)
. (6)

Comparing (5) and (6) proves the validity of identity (4). �
Corollary. For any vector y∗ = (y1, y2, . . . , yn) ∈ J and any pair of vectors u∗ ∈ W and

v∗ ∈ W we have the following equivalence of inequalities:

dE(y
∗;v∗) > dE(y

∗;u∗) ⇐⇒ dM (y∗;v∗) > dM (y∗;u∗). (7)

Proof. Assume that for a vector y∗ = (y1, y2, . . . , yn) ∈ J and any pair of vectors u∗ ∈ W and
v∗ ∈ W we have

dE(y
∗;v∗) > dE(y

∗;u∗).

Then squaring both sides of the inequality does not change the inequality sign; i.e., we have

d2E(y
∗;v∗) > d2E(y

∗;u∗).

This follows from the fact that the set {0, 1, 2, . . . , 2z} containing all components of u∗, v∗, and y∗

consists of nonnegative integers.

Now we divide both sides of the obtained inequality by 2z. We obtain an inequality with the
same inequality sign

d2E(y
∗;v∗)

2z
>

d2E(y
∗;u∗)

2z
,

which implies
d2E(y

∗;v∗)

2z
− d2E(y

∗;u∗)

2z
> 0. (8)

Identity (4) proved above implies that (8) is equivalent to the inequality

dM (y∗;v∗)− dM (y∗;u∗) > 0.

Thus, the desired equivalence (7) is proved. �
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If a vector y∗ = (y1, y2, . . . , yn) ∈ J is received, maximum likelihood soft decoding of a code B∗

using 2z+1 sublevels for a memoryless white Gaussian noise channel is performed by finding a word
v∗ = (v1, v2, . . . , vn) ∈ W ⊂ J nearest to the received word y∗ in the Euclidean metric which at
the same time is a codeword of B∗ ∈ W .

Taking into account the above-proved equivalence (7), we conclude that it is possible to use the
modulus metric in soft decoding instead of the Euclidean metric. The result of such decoding will
not change.

3. CODES IN THE MODULUS METRIC

A set G(n, t) ⊂ Zn is said to be a code correcting t one-way increasing errors if for any pair
of distinct vectors u ∈ G(n, t) and v ∈ G(n, t) there is no vector c such that c � u, c � v,
dM (c;v) ≤ t, and dM (c;u) ≤ t.

Choose a finite field GF (qm), where q is a prime, m is a positive integer, and the inequality
qm > n holds. Let α be a primitive element of the field. Define a mapping F from Zn to the set
of polynomials in a formal variable x over GF (qm). To this end, to the ith position (1 ≤ i ≤ n)
of vectors of Zn we put into correspondence the nonzero element αi of GF (qm). The inequality
qm > n implies that this correspondence is well defined. Now define a mapping F taking a vector
u = (u1, u2, . . . , un) to a polynomial u(x) according to the rule

F(u) � u(x) =
n∏

i=1

(
1− x

αi

)ui

.

Note that for any vectors u,v ∈ Zn we have F(u) ≡ F(v) ≡ 1 mod x.

Denote by GF [x] the ring of polynomials in a formal variable x over GF (qm). Let s(x) ∈ GF [x]
be a polynomial of degree no greater than t with lowest-degree coefficient 1. In [3] it is proved that
the set

C � {u | u ∈ Zn, F(u) ≡ s(x) mod xt+1} (9)

is a code correcting t one-way increasing errors in the modulus metric. It is proved in [3] that
a code C correcting t one-way increasing errors in the modulus metric also corrects t one-way
decreasing errors. It is also proved in [3] that for any 0 ≤ σ ≤ 2t the subset

B �
{
u

∣∣∣ u ∈ C,
n∑

i=1

ui ≡ σ mod (2t+ 1)

}
⊂ C (10)

is a code correcting t arbitrary errors in the modulus metric. Along with code constructions,
in [4] there was also proposed a polynomial-complexity decoding algorithm for such codes based on
solving the key equation by the Euclidean method.

4. USING CODES IN THE MODULUS METRIC FOR SOFT DECODING
IN A CHANNEL WITH BINARY INPUT AND Q-ARY OUTPUT ALPHABETS

Let binary vectors u ∈ 2n and v ∈ 2n be given. Denote by dH(u;v) the distance between these
vectors in the Hamming metric. Then for any vectors u and v we have the identity

dM (u;v) = dH(u;v).

Consider the set of words

C � {u | u ∈ 2n, F(u) ≡ s(x) mod xt+1}.
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Then the subset

B �
{
u

∣∣∣ u ∈ C,
n∑

i=1

ui ≡ σ mod 2(t+ 1)

}
⊂ C

is a binary code correcting t errors in both the Hamming metric and modulus metric.

We will construct a soft decoding scheme for B. Let us explicitly write the condition for C:

F(u) � u(x) =
n∏

i=1

(
1− x

αi

)ui

= s(x) + f(x)xt+1. (11)

We will assume that n < 2m and αi ∈ GF (2m) for 1 ≤ i ≤ n. Let the decoder have Q = 2z + 1
sublevels. In other words, at the output of the demodulator, for each symbol of the code a decision
belonging to {0, 1, 2, . . . , 2z} is made.

Now we rise both side of equation (11) to the power 2z. Since operations are made in a filed of
characteristic 2, we obtain

u∗(x) =

(
n∏

i=1

(
1− x

αi

)ui

)2z

= s(x)2
z
+ f(x)2

z
x(t+1)2z .

This means that the binary vector u = (u1, u2, . . . , un) ∈ C with elements from {0, 1} was trans-
formed to a binary vector u∗ = (u∗1, u

∗
2, . . . , u

∗
n) with elements from the set {0, 2z} = H .

Note that the degree of the polynomial s(x)2
z
satisfies the inequality deg(s(x)2

z
) ≤ 2zt. Thus,

s(x)2
z
is a polynomial of degree no greater than 2zt with lowest-degree coefficient 1.

Note that 2z(t+ 1) = 1 + (2zt+ 2z − 1). Therefore, from (9) we obtain that

C∗ �
{
u∗ | u∗ ∈ Hn, F(u∗) ≡ s(x)2

z
mod x2

z(t+1)}
is a code correcting 2zt + 2z − 1 one-way increasing errors in the modulus metric if a single error
is understood as a change by one level in the level set {0, 1, 2, . . . , 2z} in one of the n symbols of a
vector u∗ = (u∗1, u

∗
2, . . . , u

∗
n).

If for a vector u = (u1, u2, . . . , un) ∈ C we have

n∑
i=1

ui ≡ σ mod (2t+ 1),

then for the vector u∗ = (u∗1, u
∗
2, . . . , u

∗
n) ∈ C∗ with elements in the set {0, 2z} = H we have

n∑
i=1

2zui ≡ σ2z mod (2z(2t+ 1)).

Then from the equality 2z(t+ 1) = 1 + (2zt+ 2z − 1), taking into account (10), we conclude that

B∗ �
{
u∗

∣∣∣ u∗ ∈ C∗,
n∑

i=0

u∗i ≡ σ2z mod (2z(2t+ 1))

}
⊂ C∗

is a code correcting 2zt+2z−1 arbitrary errors in the modulus metric if a single error is understood as
a change by one level in the level set {0, 1, 2, . . . , 2z} in one of the n symbols of u∗ = (u∗1, u

∗
2, . . . , u

∗
n).

The algebraic structure of the obtained codeB∗ can be used together with the algorithm from [4]
for finding (with polynomial complexity) a part of errors corrected by the code B∗ in the modulus
metric up to its designed distance 1 + (2zt + 2z − 1). Finding all other errors corrected by B∗ in
the modulus metric yields maximum likelihood soft decoding for the binary-input code B∗ with an
output alphabet of Q = 2z + 1 symbols.
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